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1 Useful Concepts in Molecular Modelling 

/:������� �� !	�� $ >&�?@� A�B�?@� 

1.1     Introduction ��&
@�  /  /  /  /     
 

What is molecular modelling?  

“Molecular” clearly implies some 
connection with molecules. The 
oxford English Dictionary defines 
“model” as ‘a simplified or 
idealized description of a system or 
process, often in mathematical 
terms, devised to facilitate 
calculations and predictions’. 
Molecular modelling would 
therefore appear to be concerned 
with ways to mimic the behavior of 
molecules and molecular systems. 
Today, molecular modelling is 
invariably associated with 
computer modelling, but it is quite 
feasible to perform some simple 
molecular modelling studies using 
mechanical models or pencil, paper 
and hand calculator. Nevertheless, 
computational techniques have 
revolutionized molecular modelling 
to the extent that most calculations 
could not be performed without the 
use of a computer. This is not to 
imply that a more sophisticated 
model is necessarily any better than 
a simple one, but computers have 
certainly extended the range of 
models that can be considered and 
the systems to which they can be 
applied. 

 

 

Fig1: Example of 

Molecular Model 

(Source: 

http://www.giantmolecu

le.com/shop/scripts/prod

View.asp?idproduct=6) 

 

 

Fig2: Example of 

Molecular 

Modelling(Source: 
http://www1.imperial.ac

.uk/medicine/people/r.di

ckinson/) 

������� �� !	�� CB �� D  

"TPWJXY� "       B�$ x���Ls� ���z�� #KJ
d�WJXY�.   �$��� �a�KJ�   ���Q_���� �
���V����Model   �]�� " {_�$ �H�

         d��!k��R� S � TP!V" �� ��\�� ���$ ��
      d�P!VK�� DPg_
� �G�
_J �$ ��E�� TPz�J���

 d�K��
��� TP��_��."    T�PWJXY� TCUV��� O
�
    d�PWJXY�� jWJXY� TV\]� t�!� GP!Z
�. �V�

      TCUV���� ���w D`c� TCUV��� �U� {�L�L
TP������.`��      �K� X��oL 
� �`VR� �$ �

     ��G�
��� TkP_��� TPWJXY� ���V��� d�����
           T��M� � T���� � O!� ��  TP`P]�`P$ ����

 TJ�GJ T���� .   ���� B$� d�P�Z
�� �wG�� 
  S e��w TP������    T�PWJXY� T�CUV���  �I 

TC��        X��oL 
� �`f s d���_�� TP���F 
� 
  m����� x�VK
�I 
�G� .     #KJ s �U� 
�

       �$ D�u� e������� �� ����kL ���� ����
        �L��P�V`�� eXgC� �`�� � {P_� G��� n�
        ����V��� �$ B��� T"�V�  GP��
��� �gJG�
        ��`f ���� O\����� �gPu �\��� �`f ���

�gZP�kL. 
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The ‘models’ that most 
chemists first encounter are 
molecular models such as the 
‘stick’ models devised by 
Dreiding or the ‘space filling’ 
models of Corey, Pauling and 
Koltun (commonly referred to 
as CPK models). These models 
enable three-dimensional 
representations of the 
structures of molecules to be 
constructed. An important 
advantage of these models is 
that they are interactive, 
enabling the user to pose ‘what 
if …’ or ‘is it possible to …’ 
questions. These structural 
models continue to play an 
important role both in teaching, 
and in research, but molecular 
modelling is also concerned 
with some more abstract 
models, many of which have a 
distinguished history. An 
obvious example is quantum 
mechanics, the foundations of 
which were laid many years 
before the first computers were 
constructed. 
There is a lot of confusion over 
the meaning of the terms 
‘theoretical chemistry’, 
‘computational chemistry’ and 
‘molecular modelling’. Indeed, 
many practitioners use all three 
labels to describe aspects of 
their research, as the occasion 
demands! 

 
 

 

 

 

 

Fig3: space filling model of 

formic acid 

 ����‘space�filling’�P$��Q�� �$��   
(Source: 

http://www.answers.com/topic/

molecular-graphics) 

 
 

 
Fig4: Stick model 

(Created with Ball View) 

‘Stick’ ����   

 
 

 
Fig5: ‘Ball and Stick’ model of 

proline molecule (Source:  
http://commons.wikimedia.org/
wiki/File:L�proline�zwitterion�
from�xtal�3D�balls�B.png) 

       T�J�G��� S pP¦��PVP`�� TP���F ���H
 � ���V���   ��� ���� D�$ TPWJXY"Stick 

 " �g"�
A� ���Dreiding  ���� �� 
"space filling  "   ��g"�
A� ����

Corey  � Pauling  � � 
Koltun)  �����V�� �e����" ����KoL
CPK .(      �J���L ���V��� �U� yP
L

       ���� d��PWJXY� T�P��
� ��K�ª� jw�w
«�oL .      j� ���V��� �Uq TVgR� �J�XR� �$�
 L �¬�      TH�u �G�
_V!� yP
J �­ � TP!"�Q

  x®�_
��'  ��� ���$... '  ��'    ��$ D��
�`VR�... '..     s TP!`Pq� ���V��� �U�

       }J�G
�� S ���� �$�� ���� °K!L x�XL
±������� S �� �. T��CUV��� ���`�� 

      ����� TJ�\] ���V�� ���J� «KoL TPWJXY�
      ²��� ³J��L �JG� �g�$ GJGK�� 
� ´Pµ. 

    �� yz�� x��$    ´Pµ � O`�� �`P]�`P$
       d����� D�� �Kz� ��� }�ª� 
�
��ª� �L�P�V`�� eXgC� dGP¶ eGJG". 

        «�K$ x��� t���h� �$ E�� GC�J
 TP��
�� d��!k�R� :   T�J�\��� ��PVP`��

“theoretical chemistry”  �
T�����P¦�PVP`�� T�����PL�$�!KR� 
“computational chemistry”  

 T��PWJXY� T��CUV����“molecular 

modeling”  .   �G�
_�J B����� S
      ��H�� T�w���� d��!k�R� ·K���
TC��� �"GL �$ °_µ Ogw�µ� °]��C. 
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‘Theoretical chemistry’ is often considered 
synonymous with quantum mechanics, 
whereas computational chemistry encompasses 
not only quantum mechanics but also 
molecular mechanics, minimization, 
simulations, conformational analysis and other 
computer-based methods for understanding 
and predicting the behavior of molecular 

systems. Most molecular modelling studies 

involve three stages. In the first stage a model is 
selected to describe the intra- and inter- 
molecular interactions in the system. The two 
most common models that are used in 
molecular modelling are quantum mechanics 
and molecular mechanics. These models enable 
the energy of any arrangement of the atoms 
and molecules in the system to be calculated, 
and allow the modeler to determine how the 
energy of the system varies as the positions of 
the atoms and molecules change. The second 
stage of a molecular modelling study is the 
calculation itself, such as an energy 
minimization, a molecular dynamics or Monte 
Carlo simulation, or a conformational search. 
Finally, the calculation must be analyzed, not 
only to calculate properties but also to check 
that it has been performed properly.  

    ¸
KL �$ ����F' TJ�\��� ��PVP`�� '      S � O�`�� �`P]�`PR �u���$
    DVcL s p�   TP¦�PVP`�� TPL�$�!KR�    � °_�u O`�� �`P]�`P$

            D�P!¹� � e����º�� � G��� � TPWJXY� �`P]�`PR� ��J� D�
           �!" T�V¦�Z�� °P���ª� �$ ��EF� j¦XC �J�`
� ^!K
$

Y� O\��� t�!� B��L� OgQ� m�����TPWJX.  

       D����$ ±�w DVcL TPWJXY� TCUV��� d����� O\K$ . S
      �� �H�� ���� GJG¹ O
J ��ª� T!��R�d��w»
   T�P!A�G�� 


���d��w»     ��\��� S d�PWJXY� p� �VPu  .    O�`�� ��`P]�`P$
         S ��$�G�
��� ����ª� pC��V��� �¼ TPWJXY� �`P]�`PR��

 TPWJXY� TCUV��� .   V" �`½ ���V��� �U�     T���k�� m�_� TP!
          �UV�V!� yV_L� � ��\��� S d�WJXC� d��� T"�V�  nª

the modeler  �I �T�_] ��\��� T��r ��
A� TPQP� GJG�
� 
  d�WJXY�� d��U�� �aPbL       T�CUV��� T���� �$ TP]���� T!��R� 

             � T���k�� ��$ D�P!Z
�� D�$ � �_Q] m�_�� �� TPWJXY�
 ���i �� TPWJXY� d�P$��J�� e�Monte Carlo   ´�µ �� �

  j¦XC �J�`
� ^!K
$ .        � d���_�� DP!¹ �$ G� s � �EA��
          �$ G��
!� ��J� �`�� ·¦��v� m�_� DC� �$ {Zu }P�

yP�H D`c� X¾� G� �]� . 
 

1.2 Coordinate Systems/  ^P_�
�� O\]  
 

It is obviously important to be able to specify 
the positions of the atoms and/or molecules in 
the system to a modeling program. There are 
two common ways in which this can be done. 
The most straightforward approach is to 
specify the Cartesian (x, y, z) coordinates of 
all the atoms present. The alternative is to use 
internal coordinates, in which the position of 
each atom is described relative to other atoms 

             G�JG¹  �!" e�GZ�� t��� 
�`J 
� OgR� �$ 
� yz���� �$
    � d��U�� B���$ /       |$�]�� S ���\��� S e��C�R� d�WJXY� ��

TCUV��� .    ��U� ��PZ!� p
��
c$ p
ZJ�r t���.   ����ª� |g���
 T��¿�� À��`JG���� d�Pw�G���I G��JG¹ ����)Cartesian 

coordinates( )x,y,z (   e���C�R� d��U�� BPVY .�  |g���
 �� DJG���   T�P!A�G�� d�Pw�G��h� ��G�
���)internal 
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in the system. Internal coordinates are usually 
written as a Z-matrix. The Z-matrix contains 
one line for each atom in the system.  

coordinates(           �I �T�_�] e�� D�� ���$ ��L ��� � 
   ��\��� S @�Aª� d��U��.   °
`L  d�Pw�G�h�   �e���" TP!A�G��
  n² Tu�Q�$ D`¶  !")Z-matrix( .  Tu�Q��R� n�
¹)Z-

matrix (��\��� S e�� D� �" G��� �k�  !". 

 
In the first line of the Z-matrix we define 
atom1, which is a carbon atom. Atom 
number2 is also a carbon atom that is a 
distance of 1.54 Aº from 1 (columns 3 and 4). 
Atom 3 is a hydrogen atom that is bonded to 
atom 1 with a bond length of 1.0 Aº. The angle 
formed by atoms 2-1-3 is 109.5º, and the 
torsion angle (defined in fig7) for atoms 4-2-1-
3 is 180º. Thus for all except the first three 
atoms, each atom has three internal 
coordinates: the distance of the atom from one 
of the atoms previously defined, the angle 
formed by the atom and two of the previous 
atoms, and the torsion angle defined by the 
atom and three of the previous atoms. Fewer 

n² Tu�Q�R� �$ x�ª� �k_�� S)Z-matrix(�GÁ   e�U��� 1 
)Atom1(    
���� e�� ��� � .e�U��2 )Atom2(    ����J� j� 

    Tu�_$  !" BZL� 
���� e�� 1،54 Aº  e�U�� �$1)   eGV"ª�3 
  �4 .(  ea�U��3) Atom3 (    e�U� T!�
$ pC��GP� e�� j�1 

  x�k�1�0 Aº .    d��U��� 
�`L3�1�2    T�J��² 109�5 
 � TC��    TJ�
!R� TJ��X��� )    D`c�� S �a�KR�Fig7 (  d��U�!�

3�1�2�4   n��_L 180 TC��  .     d��U��� B�PVY �U`��
          TP!A�� d�Pw�G�I Tw�w �gJG� e�� D� � ��ª� Tw���� ����
���

)internal coordinates( :   @G��I �I e�U��� �$ Tu�_R�
        B$ e�U�� �g
!`¶ ��� TJ��X�� � ��Z��� e�Gº� d��U��   �$ p�w� 

A sample Z-matrix for the 
staggered conformation of ethane 
(see Fig6) is as follows: 
 
 
 
1   C 
2   C   1.54   1 
3   H   1.0     1   109.5   2 
4   H   1.0     2   109.5   1   180.0   3 
5   H   1.0     1   109.5   2   60.0     4 
6   H   1.0     2   109.5   1 -60.0     5 
7   H   1.0     1   109.5   2   180.0   6 
8   H   1.0     2   109.5   1   60.0     7 

 
 
 

 
Fig6 : The staggered 

conformation of ethane. 

 

x��$ )Z-matrix (  DA�G
$ D`c
�
 
��Jh� �$(Ethane)) �\]�Fig6 (
 j!J �V�: 

 
1   C 
2   C   1.54   1 
3   H   1.0     1   109.5   2 
4   H   1.0     2   109.5   1   180.0   
3 
5   H   1.0     1   109.5   2   60.0     
4 
6   H   1.0     2   109.5   1 -60.0     
5 
7   H   1.0     1   109.5   2   180.0   
6 
8   H   1.0     2   109.5   1   60.0     
7 
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internal coordinates are required for the first 
three atoms because the first atom can be 
placed anywhere in space (and so it has no 
internal coordinates); for the second atom it is 
only necessary to specify its distance from the 
first atom and then for the third atom only a 
distance and an angle are required. 
 
 
 
It is always possible to convert internal to 
Cartesian coordinates and vice versa. 
However, one coordinate system is usually 
preferred for a given application. Internal 
coordinates can usefully describe the 
relationship between the atoms in a single 
molecule, but Cartesian coordinates may be 
more appropriate when describing a 
collection of discrete molecules. 
 
 
Internal coordinates are commonly used as 
input to quantum mechanics programs, 
whereas calculations using molecular 
mechanics are usually done in Cartesian 
coordinates. The total number of coordinates 
that must be specified in the internal 
coordinate system is six fewer than the 
number of Cartesian coordinates for a non-
linear molecule. This is because we are at 
liberty to arbitrarily translate and rotate the 
system within Cartesian space without 
changing the relative positions of the atoms.  
 

           T�w�w B$ e�U�� ���G¹ ��� ���
�s� TJ��²� � TZ��_�� d��U��
  TZ��_�� d��U�� �$ .      DC� �$ D�ª� TP!A�G�� d�Pw�G�h� °!kL

           n� S 
�`L 
� �`­ ��s� e�U�� 
ª ��ª� ±���� d��U��
    ���Q�� S 
�`$)         d�Pw�G��I n� �gJG�� GC�J s �]Èu �U��

TP!A�� (  � T�_����� �       G�JG¹ {Zu �n������ �Vu TP]���� e�U!
            Tu�_�R� °�!kL É �$� ���ª� e�� �" ��GK�L ��� Tu�_R�

T������ e�U!� {Zu TJ��X���.  
 

TP!A�� d�Pw�G�I �$ DJ�¹ �V¦�� �`VR� �$(internal)  �I 
   TPL��`J� d�Pw�G�I(Cartesian)}`K��� }`K���  .  B�$�

      {Zu G��� ^P_�L �e��" D�QJ � ���   pK$ ��\] ^P�k
�  . �`f
          ��Á  !" d��U�� p� T��K�� ��L 
� TP!A�G�� d�Pw�G�Ê�

    �nXC S GPQ$(molecule)      d�Pw�G��h� �`�� � G��� 
 TPL��`JG��(Cartesian coordinates)  °_�]ª� 
�`L G� 

T!�Q�$ d�WJXC �$ T"�V� �H� G�". 
 

      $ |$�¸� DAGV� TP!A�G�� d�Pw�G�h� ��G�
�� Ë�cJ �`P]�`P
 O`��)quantum mechanics ( d�P!VK�� 
� p� S �

        d�Pw�G�h� S e��" O
L TPWJXY� �`P]�`PR� ��G�
��� TP��_��
TPL��`JG�� .          S �G�¹ 
� °�Í ��� d�Pw�G�h� �G" ��ÎI

            d�Pw�G��h� S ���G�" ��$ D�� T
� j� j!A�G�� ��\���
 jkA EF �nXY TPL��`JG��)non�linear.(  ��]�`$È� �]ª

            EP�bL 
�� À��`JG��� ����Q�� DA�� TJ�µ ��\���  �J�GL
d��U!� TP�_��� Ë�z�ª�.  
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What is a Torsion angle? 

A torsion angle A-B-C-D is 
defined as the angle between 
the planes A, B, C and B, C, D. 
A torsion angle can vary 
though 360º although the 
range -180º to +180º is most 
commonly used. 
 

 
Fig7 

DE����F� ����G CB��  

 ��KoLTJ��²  ����
�s�   ABCD  ��¬�� 
  p�� TK����� TJ��X��ABC  � BCD .

 � �`f�  TJ��X���
�s�     p�� �����
L 
� �
180 TJ�W$ TC�� � +180 TC��. 

 
 

 

 

1.3 Potential Energy Surfaces/ نةنةنةنةأسطح الطاقة  الكامأسطح الطاقة  الكامأسطح الطاقة  الكامأسطح الطاقة  الكام         
 

 
 

In molecular modeling the Born-
Oppenheimer approximation is invariably 
assumed to operate. This enables the 
electronic and nuclear motions to be 
separated; the much smaller mass of the 
electrons means that they can rapidly adjust 
to any change in the nuclear positions. 
Consequently, the energy of a molecule in its 
ground electronic state can be considered a 
function of the nuclear coordinates only. If 
some or all of the nuclei move then the energy 
will usually change. The new nuclear 
positions could be the result of a simple 
process such as a single bond rotation or it 
could arise from the concerted movement of a 
large number of atoms. The magnitude of the 
accompanying rise of fall in the energy will 
depend upon the type of change involved. 
For example, about 3 kcal/mol is required to 
change the covalent carbon-carbon bond 
length in ethane by 0.1Aº away from its 
equilibrium value, but only about 0.1kcal/mol 
is required to increase the non-covalent 
separation between two argon atoms by 1Aº 
from their minimum energy separation. For 
small isolated molecules, rotation about single 
bonds usually involves the smallest changes 
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in energy. For example, if we rotate the 
carbon-carbon bond in ethane, keeping all of 
the bond lengths and angles fixed in value, 
then the energy varies in an approximately 
sinusoidal. The energy in this case can be 
considered a function of a single coordinate 
only (i.e. the torsion angle of the carbon-
carbon bond), and as such can be displayed 
graphically, with energy along one axis and 
the value of the coordinate along the other.  
Changes in the energy of a system can be 
considered as movements on a 
multidimensional ‘surface’ called the energy 
surface. 
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1.4 Molecular Graphics/رسومات الجزيئيةرسومات الجزيئيةرسومات الجزيئيةرسومات الجزيئية 

 
Molecular graphics (MG) is the discipline and 
philosophy of studying molecules and their 
properties through graphical representation. 
IUPAC limits the definition to representations 
on a "graphical display device". 
 

Computer graphics has had a dramatic impact 
upon molecular modelling. 
It is the interaction between molecular graphics 
and the underlying theoretical methods that has 
enhanced the accessibility of molecular 
modelling methods and assisted the analysis 
and interpretation of such calculations. 
 
Over the years, two different types of molecular 
graphics display have been used in molecular 
modelling. First to be developed were vector 
devices, which construct pictures using an 
electron gun to draw lines (or dots) on the 
screen, in a manner similar to an oscilloscope. 
Vector devices were the mainstay of molecular 
modelling for almost two decades but have now 
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been largely superseded by raster devices. These 
divide the screen into a large number of small 
"dots", called pixels. Each pixel can be set to any 
of a large number of colors, and so by setting 
each pixel to the appropriate color it is possible 
to generate the desired image. 
Molecules are most commonly represented on a 
computer graphics using stick' or 'space filling' 
representations. Sophisticated variations on 
these two basic types have been developed, such 
as the ability to color molecules by atomic 
number and the inclusion of shading and 
lighting effects, which give 'solid' models a more 
realistic appearance.  
Computer-generated models do have some 
advantages when compared with their 
mechanical counterparts. Of particular 
importance is the fact that a computer model can 
be very easily interrogated to provide 
quantitative information, from simple 
geometrical measures such as the distance 
between two atoms to more complex quantities 
such as the energy or surface area. Quantitative 
information such as this can be very difficult if 
not impossible to obtain from a mechanical 
model. Nevertheless, mechanical models may 
still be preferred in certain types of situation due 
to the ease with which they can be manipulated 
and viewed in three dimensions.  
A computer screen is inherently two-
dimensional, whereas molecules are three-
dimensional objects. Nevertheless, some 
impression of the three-dimensional nature of 
an object can be represented on a computer 
screen using techniques such as depth cueing (in 
which those parts of the object that are further 
away from the viewer are made less bright) and 
through the use of perspective. Specialized 
hardware enables more realistic three-
dimensional stereo images to be viewed. In the 
future ‘virtual reality’ systems may enable a 
scientist to interact with a computer-generated 
molecular model in much the same way that a 
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mechanical model can be manipulated. 
 
Even the most basic computer graphics program 
provides some standard facilities for the 
manipulation of models, including the ability to 
translate, rotate and ‘zoom’ the model towards 
and away from the viewer. More sophisticated 
packages can provide the scientist with 
quantitative feedback on the effect of altering 
the structure. For example, as a bond is rotated 
then the energy of each structure could be 
calculated and displayed interactively. 
 
 
For large molecular systems it may not always 
be desirable to include every single atom in the 
computer image; the sheer number of atoms can 
result in a very confusing and cluttered picture. 
A clearer picture may be achieved by omitting 
certain atoms (e.g. hydrogen atoms) or by 
representing groups of atoms as single ‘pseudo-
atoms’. The techniques that have been 
developed for displaying protein structures 
nicely illustrate the range of computer graphics 
representation possible. Proteins are polymers 
constructed from amino acids, and even a small 
protein may contain several thousand atoms. 
One way to produce a clearer picture is to 
dispense with the explicit representation of any 
atoms and to represent the protein using a 
‘ribbon’. Proteins are also commonly 
represented using the cartoon drawings 
developed by J Richardson. 
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1.5 Surfaces/مساحات السطحمساحات السطحمساحات السطحمساحات السطح    

 
Many of the problems that 
are studied using molecular 
modelling involve the non-
covalent interaction 
between two or more 
molecules. The study of 
such interaction is often 
facilitated by examining the 
van der waals, molecular or 
accessible surfaces of the 
molecule. The van der 
waals surface is simply 
constructed from the 
overlapping van der waals 
spheres of the atoms, Fig 8. 
It corresponds to a CPK or 
space-filling model. Let us 
now consider the approach 
of a small ‘probe’ molecule, 
represented as a single van 
der waals sphere, up to the 
van der waals surface of a 
larger molecule. 
The finite size of the probe 
sphere means that there will 
be regions of ‘dead space’, 
crevices that are not 
accessible to the probe as it 
rolls about on the larger 
molecule. 
 

 

 

 

 

 

 

 

 

 

Fig 8: The van der Waals surface is 

shown in red. The accessible surface 

is drawn with dashed lines and is 

created by tracing the center of the 

probe sphere (in blue) as it rolls along 

the van der Waals surface.(Source: 
http://en.wikipedia.org/wiki/Accessibl

e_surface) 

 

 

 
Fig9 : (Source: 

http://www.ccp4.ac.uk/.../newsletter38/03
_surfarea.html ( 
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This is illustrated in fig 1.4. The amount of 
dead space increases with the size of the 
probe; conversely, a probe of zero size would 
be able to access all of the crevices. The 
molecule surface contains two different types 
of surface element. The contact surface 
corresponds to those regions where the 
probe is actually in contact with the van der 

          T�K¿��
R� ��_�CÜ� �G" GJ�XL B$ T
PR� d���_R� �G" ���XJ .
  }`K����         ���`f ��QH �V�� n��_J nU�� B¿��
R� O_Y� 
I

   ï�Zc�� D� �I x�H���.  yk� n�
íY�   p"��]  �!" �nX
   yk_�� ���" �$ pQ!
à  .        ��!L �I ���
º� yk_��  EcJ

        B$ t�`
��  !"  B¿��
R� O_Y� 
� ´P� ^r��R�    �J� 
�u yk� 



[15] 
 

waals surface of the ‘target’. The re-entrant 
surface regions occur where there are 
crevices that are too narrow for the probe 
molecule to penetrate. The molecular surface 
is usually defined using a water molecule as 
the probe, represented as a sphere of radius 
1.4 A°. 
 
The accessible surface is also widely used. As 
originally defined by Lee and Richards this is 
the surface that is traced by the center of the 
probe molecule as it rolls on the van der 
waals surface of the molecule (Fig.1.4). The 
center of the probe molecule can thus be 
placed at any point on the accessible surface 
and not penetrate the van der waals spheres 
of the atoms in the molecule. 
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1.6 Computer Hardware and Software/ الكمبيوتر وبرمجياتأجھزة  

 
The workstations that are commonplace in 
many laboratories now offer a real alternative 
to centrally maintained 'supercomputers' for 
molecular modelling calculations, especially 
as a workstation or even a personal computer 
can be dedicated to a single task, whereas the 
supercomputer has to be shared with many 
other users. Nevertheless, in the immediate 
future there will always be some calculations 
that require the power that only a 
supercomputer can offer. The speed of any 
computer system is ultimately constrained by 
the speed at which electrical signals can be 
transmitted. This means that there will come a 
time when no further enhancements can be 
made using machines with ‘traditional’ 
single-processor serial architectures, and 
parallel computers will play an ever more 
important role. 
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To perform molecular modelling calculations 
one also requires appropriate programs (the 
software). The software used by molecular 
modelers ranges from simple programs that 
perform just a single task to highly complex 
packages that integrate many different 
methods. There is three items of software 
have been so widely used: the Gaussian series 
of programs for performing ab intio quantum 
mechanics, the MOPAC/AMPAC programs 
for semi-empirical quantum mechanics and 
the MM2 program for molecular mechanics. 
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1.7 Units of Length and Energy/ الطاقةو الطول وحدات     

 
Z-matrix is defined using the angstrom as 
the unit of length (1 A°≡ 10 -10 m≡100pm). 
The angstrom is a non-SI (International 
System of units) unit but is a very 
convenient one to use, as most bond 
lengths are of the order of 1-2 A°. One 
other very commonly non-SI unit found in 
molecular modelling literature is the 
kilocalorie (1 kcal≡4.1840 kJ). Other systems 
of units are employed in other types of 
calculation, such as the atomic units used 
in quantum mechanics. 

 �J�KL O
J Z-matrix ��G�
���  ���
_�¾�  eG���� !�  x��k
)1�  ���
_¾≡10 - 10    �≡ 100 �
$�`P� ( .  ���
_¾�j� eG�� EF 

 � TK��L  d�G��!� ��G�� ��\�!    �g�`�� �  ��G�
��� �GC TV¦�$  �� 
 ������
LO��\K$ x����r� {�������� p��� 1- 2���
_��¾� .   

    eG��� t��� 
� �V�    @��A�   S �G�
_�L    °�
�  T�CUV���
j���TPWJXY� EF � TK��Ld�G��!� ��G�� ��\�! : TJ����� d��K_�� 

 kilocalorie  )1 TJ���� e�K� ≡ 4�1840 x�C�!P� .(  t�����
  ���J�TV\]� @�A� �$ ��  �G�
_L d�G��      ��$ @��A� Ë��]� S 

d���_�� �D�$�� eG���� ��� TJa�U �G�
_L S O`�� �`P]�`P$. 

 

1.8 Mathematical Concepts/ المفاھيم الرياضيةالمفاھيم الرياضيةالمفاھيم الرياضيةالمفاھيم الرياضية 

 
A full appreciation of all the techniques of 
molecular modelling would require a 
mathematical treatment. However, a proper 

        �JGZL DC� �$ �TPz�J��� TY�KR�� ��PZ�� °Í   B�PÎ d��P�ZL 
 TPWJXY� TCUV���.  � ��U� °Í   Tu�K$ �K�   TP�z�J��� OP��QR� 

                                                 
1 Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry/ 

 °P���� Ab initio.�$ j� ï�r �I G�
_L ��� TP¦�PVP`�� TPL�$�!KR� ��PVP� O`��) TP]��
`�h� �JG�P`J� T"���$ °_µ(  
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understanding does benefit from some 
knowledge of mathematical concepts such as 
vectors, matrices, differential equations, 
complex numbers, series expansions and 
lagrangian multipliers and some very 
elementary statistical concepts. 
 

D�$   ���a
R�vector �  d�u�Q��R�matrices   ds���KR� �
 TP!�z�Q
�� differential equations  eG�ZKR� �����ª�� �  

complex numbers � T!_!�  d�K���
�� � � "���$ d�Q
|]��Fs � OP��QR� �K�TP¦���h� TP��ª�.  
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2 Computational Quantum Mechanics 

/AN�� ��N�O�N�� ��'����P� 

2.1 Introduction / ��&
� 

 
There are number of quantum theories for 
treating molecular systems. The one which has 
been widely used is molecular orbital theory. 
However, alternative approaches have been 
developed, some of which we shall also describe, 
albeit briefly. We will be primarily concerned 
with the ab initio and semi-empirical approaches 
to quantum mechanics but will also mention 
techniques such as Huckel theory, valence bond 
theory and Density functional. 
 

         T�PWJXY� T�V\]ª� TY�KR O`�� d�J�\] �$ �G" t��� .
       �s�VK
�� ���ª� TJ�\��� � jWJXY� ��GR� TJ�\] ¸
KL� . �V�

á �K� Bz� |g��� @�Aª�. ���� |���$ �s�� ��U]ab 

initio ���� semi-empirical  R O�`�� �`P]�`P.  ��V�
   �� �K� ���J� ��U]    TJ�\] D�$ d�P�Z
Huckel    T�J�\] � 

�`L d�G�_�� òuvalence bond�  TJ�\] Tu��`��  TPQPÕ���
Density functional. 

 
The starting point for any discussion of quantum 
mechanics is the Schrödinger equation. The full , 
time-dependent form of this equation is: 

 T���K$ 
I   �b]���¶Schrödinger    ��k]h� TkZ] j�  ï
ª    O`�� �`P]�`P$ S Tc���$ TJ .��    T����KV!� D$�`�� ���V�

�� �$X��� TZ!K
R� 
 

 
eq.2,1 

 
Eq. (2,1) refers to a single particle (e.g. an 
electron) of mass m which is moving through 
space (given by a position vector 

 ) and time (t) under the 
influence of an external field V (which might 
be the electrostatic potential due to the nuclei 
of a molecule). h is Planck’s constant divided 
by 2π and i is the square root of -1. Ψ is the 
wavefunction which characterizes the 
particle’s motion; it is from the wavefunction 

EcJ Eq. (2,1)  OP_C �I )
��
`�h� D�$ ( T!
`�m  ، t��
J
   ���Q�� ¸")    ��a�
$ Tk����� �aG�oJ (
 ������(t)  jC��v� DZ�� Ew�L �¹V  ) TP]�`$I 
�`J G� ���

   �nXY� @��� Tk�L�R� ����g`�� .(h     T�VP� �� Planck   T�
����� 
  !" T$�_Z$2π  . i jKP��
�� �UY� ���� �1 . Ψ T¿��G�� �� 

    d�VP_Y� T��� XPf nU�� TPC�R� .    �� �$ ��
��� �� nU��  T���G
TaPC�R�        d�VP_��!� TQ!
�R� ·¦��v� ��
�
�� �$ ���`½ ���  .
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that we can derive various properties of the 
particle. When the external potential V is 
independent of time then the wavefunction 
can be written as the product of a spatial part 
and time part: . We shall 
only consider situations where the potential is 
independent of time, which enables the time-
dependent Schrödinger equation to be written 
in the more familiar, time-independent form: 

     TPC��v� T!
`�� 
�`L �$G�"V      T��
� �`VoJ ������� Tk�L�$ EF 
�� T��aPC�R� T����G   l���$²� l���`$ �X��Y T���P
�� :

 .    �����
"h� pK� ds��� UA�oL 
� °Í
            T����KR yV_�J ��­ ������� Tk�L�$ EF T!
`�� 
�`L �$G�"
          {�L�$ Eb�� ����� �U�  !" °
`L 
�� ������� Tk�L�R� �b]���¶

������:  
 

eq.2,2 

 
E is the energy of the particle and we have 
used the abbreviation (pronounced ‘del 
squared’): 

E OP_Y� T��r j� . ���
Ah� �U� x�VK
�� á G��
) aV_R�( ‘del squared’  

 
eq.2,3 

 
It is usual to abbreviate the left-hand side of eq. 

(1,1) to Ĥ Ψ, where Ĥ is the Hamiltonian 
operator: 

 O�� T���KR� �$ @�_P�� TgY� ��
�oL �$ �e��")11, ( �IĤ 

Ψ µ��� 
� ´P Ĥ  j�Hamiltonian operator: 

 
eq.2,4 

 
This reduces the Schrödinger equation 
to . To solve the Schrödinger 
equation it is necessary to find values of E 
and functions Ψ. The Schrödinger equation 
falls into the category of equations known as 
partial differential eigenvalue equations in 
which an operator acts on a function (the 
eigenfunction) and returns the function 
multiplied by a scalar (the eigenvalue). A 
simple example of an eigenvalue equation is:  

        �I �b]���¶ T���K$ ��
ó �­     �T����KR� �U� ¿D�
 ��� TVP� ��ÍI °ÍE  ���� Ψ.  TWu DA�� �b]���¶ T���K$ BZL

 ds��KR j¦XY� Dz�Q
��� Tu��KR� ds��KR� T�PL�U�� TVPZ��  � 
  � ��ZJ ´P��G�ãR     TQPÕ�  !" Ew�
���)eigenfunction( ���o�J�
�� T����$scalar ) TPL�U�� TVPZ�� .( !" {P_� x��$ T���K$ : 
TPL�U�� TVPZ��   
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Eq.2,5 

 
 

The operator here is . One eigenfunction 

of this equation is y  with the eigenvalue r 
being equal to a. Eq.1,5 is a first-order 
differential equation. The Schrödinger 
equation is a second-order differential 
equation as it involves the second derivative 
of Ψ. A simple example of an equation of this 
type is  

 �� ��� DabcR� . ��� TQPÕ�Eigen  j�� T���KR� �Uq  :
y    G¦�²r ) TPL�U�� TVPZ�� ( n��_La .  T���KR� jV
�L51, 

 � �I  x�ª� j!z�Q
�� °PL�
� .     °PL�
�� �I �b]���¶ T���K$ jV
�L�
     �� l���� ^
cR� DVcL� �l���� j!z�Q
��Ψ .   T���KR {P_� x��$

Ë���� �U� �$:  

 
Eq.2,6 

 
 

The solutions of eq.2,6 have the 
form , where A, B and k 
are constants. In the Schrödinger equation Ψ 
is the eigenfunction and E the eigenvalue.  

     T����KR� ¿D� U�
J6 2,   D��  �
   
� ´P�A,B,k 
�
��w .    ��b]���¶ T���K$ SΨ     T�QPÕ� j��

���Eigen ���� E�g
VP� j� .  

 

2222....1111....1111 Operators / Q��RS�@�    

 
The most commonly used operator is that for 
the energy, which is the Hamiltonian operator 
itself, Ĥ. The energy can be determined by 
calculating the following integral: 

!� 
�
!P$�� Dbc$ 
I DbcR� �� T��k���ª� ��"�P¶ . �`f
�� �U� m�_
�� x�A �$ T��k�� m�_
��D$�`
:  

 
Eq.2,7 

 
 

 
(Ψ*) : the wavefunction may be a complex 
number. 
E: scalar and so can be taken outside the 
integral. 
If the wavefunction is normalized then the 
denominator in eq.2,7 will equal 1. 

(Ψ*) :°¿��$ �G" 
�`L G� TPC�R� T��G��.  
E :    D$�`
�� �$ ��Û 
� �`f .      T�PC�R� T���G�� �]�� ��I

 T���KR� S ���R� 
Èu TPKP�r eq.2,7  n��_J1.  
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The Hamiltonian operator is composed of two 
parts that reflect the contributions of: kinetic and 
potential energies to the total energy. The kinetic 
energy operator is: 

      ´Pµ�p¦XC �$ 
�
!P$�� Dbc$ ���
J}`KL d�$�g�I : 
 TP���� T��k�� �  Bz��� T��r     !"   T���k�� ��ÎI .  Dabc�$
TP���� T��k���� : 

 
Eq.2,8 

 

 
And the operator for the potential energy 
simply involves multiplication by the 
appropriate expression for the potential 
energy. For an electron in an isolated atom or 
molecule the potential energy operator 
comprises the electrostatic interactions 
between the electron and nucleus and the 
interactions between the electron and the 
other electrons. For a single electron and a 
single nucleus with Z protons the potential 
energy operator is thus: 

       � e����K�� m�z Bz��� T��r Dabc$ DVcJ� T�J¸Y  T�����R� 
h T��k�� d�]�`$ .    �x�X�K$ �anXC �� ea�� S 
��
`�h T�_���� 

     Bz��� T��r Dabc$ DVcJd�"�Q
��    p�� TP`PL�
����g`�� 

��
`�h� � � e����� 
��d��w» p�   
���
`�h� �  d��]��
`�h�
@�Aª�  . h T�_����  
��
`�G��� �  e��]eG���  B�$    ��$ �²

d�]�L�¸�� 
Èu �Dbc$ ��T��k �� T!V
º�  ��
�� �����  !": 

 
Eq.2,9 

 
 

Operator for linear momentum along the x 
direction : 

            e�²���$ S TPkv� T���� TPV� �� jkv� T���� OA² Dbc$
 ��õs�x:  

 
Eq.2,10 

 
 

The expectation value of this quantity can 
thus be obtained by evaluating the following 
integral: 

   !" x���� �`f� TVP� �� B��
 q  TPV`�� �U    OP�PZL x�A �$ 
R���
�� D$�`
 : 

 
Eq.2,11 
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2222....1111....2222 Atomic Units    / / / / TR% �� 
�&U�    

 
The atomic units of length, mass and energy 
are as follow: 
 

• 1 unit of charge equals the absolute 
charge on an electron, 

  
 

• 1 mass unit equals the mass of the 
electron,  
 

 
• 1 unit of length (1Bohr) is given by 

  
 
It is the radius of the first orbit in 
Bohr’s treatment of the hydrogen 
atom. It also turns out to be the most 
probable distance of 1s electron from 
the nucleus in the hydrogen atom. 

 
• 1 unit of energy  (1 Hartree) is given 

by 
 

 
It corresponds to the interaction 
between two electronic charges 
separated by the Bohr radius. The 
total energy of the 1s electron in the 
hydrogen atom equals -0.5 Hartree. 

 ��
�� �����  !" j� T��k��� x�k��� T!
`!� TJ�U�� d�G����:  
  

•        
���
`�I T��c� TZ!kR� TVPZ�� n��_L eG��� T��¶ .

 
  

•  T!
`�� eG��)eG��� T!
� (
��
`�h� T!
� n��_L: 
  

  
•     x�k�� eG��  kKoL )1    ���� �� ��� ���� (  Tk�����

 
  

        pC��GPq� ea�U� ��� ���� S x�ª� ��GR� Ë�K¶ �]I .
         �$ ���PC�L ���ª� Tu�_R� 
�`J 
� �I ���J� x��
J�

1spC��GPq� ea�� S e����� �$ 
��
`�I .  

  
•  T��k�� eG��  kKoL)1 n�L���  (Tk���� 

  
  

   B$ ^u��
J �]I �V� �� 
�w» p� p
��¶ öP]��
`�I �Vg!�QJ 
  Ë�K¶   ���� .   �� T��k�� Ë�V� n��_J1s   S 
��
`�I 

 pC��GPq� ea���0.5n�L���  .  

 

2.2 One-electron Atoms 

 
In an atom that contains a single electron, the 
potential energy depends upon the distance 
between the electron and the nucleus as given 
by the Coulomb equation. 

S e�U��  !" n�
¹ ��� `�I
��
 G��� T��k�� X`L�L �
 T�$�`�� !" Tu�_R� p� 
��
`�h� � e�����µ°_ T���K$ 
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It is more convenient to transform the 
Schrodinger equation to polar coordinates r, θ 
and φ, (wavefunction) where: 
r: the distance from the nucleus 
θ: the angle to the z axis  
φ: the angle from the x axis in the xy plane 
 

°$����.  
�$�ª� ��� T$��$ � DJ�¹T���K$ �¾���¶ d�Pw�G�Ê� 

 TP�kZ��r،θ � φ )TaPC�$ T��� ( ´P�:  
r : Tu�_R� �$ e��]  
θ : TJ��² !� ���Vz 
φ : TJ��² �$ ��º� x S e�¦�k�� xy  

Eq.2,12 

 
 

Y(θ,φ) : angular function called a spherical 

harmonic 

R(r) : radial function 

n: principal quantum number: 0, 1, 2,… 

l: azimuthal quantum number : 0, 1,…, (n-1) 

m: magnetic quantum number : -l, -(l-1), …0…(l-

1), l 

Y(θ,φ) :n��� ^���L  V_L TaJ��² TQPÕ�  

R(r) :TP"�K¶ TQPÕ�  
n :j_P¦��� O`�� �G" :…,2,1,0 

l :�G" �V_�� O`�� :(n-1),…,1,0  

m :�G" O`�� j_Pr��bR� :l,(l-1)…0…,-(l-1),-1 

  

 
Eq.2,13 

 
 

, where  is the Bohr radius. 
 is a special type of function called a 

Laguerre Polynomial 
 

, ، ´P�  ���� Ë�K¶ j�.  
      V_�L �¦�Õ��� �$ XP­ Ë�] j�Laguerre 

Polynomial  

Eq.2,14 

 
With: 

 

 
 

: The solutions to the Schrödinger 
equation for a particle on a ring. 

: Series of function called the 
associated Legendre polynomials. 

 :x�!�� R �¾���¶ T���KOP_Y.  

 :T!_!�    "G�L �¦��Õ� )the associated 

Legendre polynomials.(   
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The energy of each solution is a function of the 
principal quantum number only; thus orbitals 
with the same value of n but different l and m 
are degenerate. The orbitals are often 
represented as shown in fig 2.1. These graphical 
representations are not necessarily the same as 
the solutions given above. For example, the 
‘correct’ solutions for the 2p orbitals comprise 
one real and two complex functions: 
 

 T��r 
I D� D� j� TQPÕ� �GK��  O�`��  j_�P¦���  {�Zu �
��
����     
I d���GR�   �q  TVP� }Q] n    TVP� �$� l,m    
��`
u
TQ!
à .  D¿�V
L �$ ����F� d���GR�    S p�$ �� �V�  O�� D`c�� 
2�1 .�U�  TP]�P��� x�`¶ª�  e������� }P�   �q }Q]  x��!�� 

 ��"� e���UR� .   � x��R� DP��  !" ��   x�!'  T�P����R d���G
2p G��� �$ 
�`
L jZPZ� � p
QPÕpLGZK$ :  

 

 
 

 
 
R(r): The radial part of wavefunction 

: A normalization factor for the angular 
part. 
2p (0): function corresponds to the 2pz orbital 
that is pictured in Fig 2.1. 

R(r) :� �$ j"�Kc�� �XY�TPC�R� T��G�.  
:n��X�� �X�!� n���� °P_�L D$�" .  

2p (0) : ��G$ B$ ^u��
L TQPÕ�2pz S ���R� Fig 2.1.  

 

Fig 2.1:  
The common graphical representations of s, p and d orbitals/ 

DP�V
���� ���R� j$��GR t�
c s,p,d  

Src: http://butane.chem.uiuc.edu/pshapley/GenChem2/Intro/orbit.gif 
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The linear combinations below are the 2px and 
2py orbitals shown in Fig 2.1. 

    ��G�R ���KL ���]�� TP¿kv� d�PZu��
��2px   ��G�$� 2py 
 S �J��C�R�Fig 2.1.  

 

 
 

 
These linear combinations still have the same 
energy as the original complex wavefunctions. 

          TPC�R� T��G�� T��r }Q] �gJG� x�² �$ TP¿kv� d�PZu��
�� �U�
TP!Hª� T�¿��R�.  

 

2.3 Polyelectronic Atoms and Molecules/ �������� 
�R% �� V&P�� Q���N�W
     

 
Solving the Schrödinger equation for atoms 
with more than one electron is complicated by 
a number of factors. The first complication is 
that the Schrödinger equation for such systems 
cannot be solved exactly (solutions can only be 
approximations to the real true solutions). 
A second complication with multi-electron 
species is that we must account for electron 
spin. 
Spin is characterized by the quantum number 
s, which for an electron can only take the value 
½. The spin angular momentum is quantized 
such that its projection on the z axis is either 
+ħ or –ħ. These two states are characterized by 
the quantum number ms , which can have 
values of +1/2 or -1/2, and are often referred to 
as ‘up spin’ and ‘down spin’ respectively. The 
spin part defines the electron spin and is 
labeled α or β. These spin functions have value 
of 0 or 1 depending on the quantum number 
ms of the electron. Each spatial orbital can 
accommodate two electrons, with paired spins. 
In order to predict the electronic structure of a 
Polyelectronic atom or a molecule, the Aufbau 

principle is employed, in which electrons are 
assigned to the orbitals, two electrons per 
orbital. For most of the situations that we shall 
be interested in the number of electrons, N, 

  D� TP!V" 
I ��K$T� �¾���¶ �  d��U  d��  �$ ����  
��
`�I
  TP!V" j� �G���� eGZK$   ����  �G" °�_� �$  D�$��K��. 

T!`cR� ��ª� j�   �`f s �]�    R ^P�� D� ��ÍI T���K �¾���¶ 
R  TV\]ª� �U� D� .)�`f    x�!� ��ÍI TP�J�ZL  {�Zu !�  x��!�

 T�P���� TPZPZ��( .T!`cR� TP]����  B�$ ª�  Ë���]  e�G�K
R� 
�
��
`�h ��P!" °Í �]� �� m�_� xXF 
��
`�h�.  

XPV
J   p�_�� �� xXb�� � �GK O`�� s   ���� �`f Ê�  
���
`� 
�
UA�J  n��_L TVP�1/2.  

         ��i  !" �r�Z�I D�$ n��X�� OAX�� xXF GKoJz    ���J� �� +ħ 
  ��–ħ. .  XPV
L 
�
���� 
�L�� �GK� O`�� ms     
� ��`­ ��� �

 TVP� UA�J+1/2 ��  -1/2. � ��cJ �$ ����FO��� �gP�I"   B�$
 T"�_�� m��Z" "  ��"  T"�_�� m��Z" }`"  "   p�_�� �XC �Gí

) �Xb�� �XY� (   xXb�� 
��
`�I) p�_��� (    V_�J�α   �� β .
           �G�" °_µ G��� �� �QH TVP� �U� p�_�� �¦�Õ� n��_L

 
������������
`�h� O�����������ms.  
            p�X�F B�$ �p]���
`�I °"�
_J 
� �`f ��G$ D�)2 

XFx/p�� .( DC� �$ B��L TP���� TP]��
`�s� !� e�U �� Y� �nX 
�GK
R� d�]��
`�h�   O
J �DV"    ����  !"     ����� ��� eG"��

       d���G�R� �I d�]��
`�h� °_]  !" X`L�L ��� .  T�_������
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will be an even number that occupy the N/2 
lowest-energy orbitals. 
 
Electrons are indistinguishable. If we exchange 
any pair of electrons, then the distribution of 
electron density remains the same. According 
to the Born interpretation, the electron density 
is equal to the square of the wavefunction. It 
therefore follows that the wavefunction must 
either remain unchanged when two electrons 
are exchanged, or else it must change sign. In 
fact, for electrons the wavefunction is required 
to change sign: this is the antisymmetry 

principle.  

O\KR  ��� ds���     �G�K� �q�A �$ O
¬  d��]��
`�s� �N �
���      ���� Ø�ª� T��k�� ��G$ DbcJN/2  G�"�   ���X�$ �.  

  

   eXJ�V
$ EF d�]��
`�h� 
I.   ��$ ��² n� DJG�
� ��V� ��I
     �_Q]  Z�J Tu��`�� BJ²�L 
Èu �d�]��
`�h�.  E_Q
� ��Zu�

   TPC�R� T��G�� °K`$ n��_L 
��
`�h� Tu��� 
I �
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Eq.2,15 
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The electronic wavefunction depends only on 
the positions of the nuclei and not on their 
momenta. Under the Born-Oppenheimer 
approximation the total wavefunction for the 
molecule can be written in the following form: 

  TPC�R� T��G�� GV
KL TP]��
`�s�   !" {Zu B���$ @���� }P�� 
 !" �g$X". °C�ç� °J�ZL ���
� �f�g����  �  T���
� �`f 

!� TP��Îh� TPC�R� T��G�� �nX� !"  ��
�� D`c��:  

 
Eq.2,16 

 
 

The total energy equals to the sum of the 
nuclear energy and the electronic energy. The 
electronic energy comprises the kinetic and 
potential energy of the electrons moving in the 
electrostatic field of the nuclei, together with 
electron-electron repulsion: 

  T��k�� ��ÎI n��_J  Ë��V�     � T�J����� T���k��  T���k��
TP]��
`�s�.  T��k�� O�L TP]��
`�s�  �T��k�� TP����  T��k���

T!V
º� �$ d�]��
`�h� T���
R� S    j¦���g`�� DZ���!�@� �
 °�C �I ���CB$ G"��L 
��
`�h�� 
��
`�h�.  

 
Eq.2,17 
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A determinant is the most convenient way to 
write down the permitted functional forms of 
a Polyelectronic wavefunction that satisfies the 
antisymmetry principle. In general, if we have 
N electrons in spin orbitals X1,X2,…,XN then an 
acceptable form of the wavefunction is: 

 �aG�ãR� 
I �� TZJ�k�� ���ª�  � TV¦�$  T��
`x�`¶ª�  T�PQPÕ��� 
T��
R� G!�    d�]��
`�h� e�GK
R� TPC�R� T��    �G�$  ^�koL ���   �G"
�Õ��
��.  ��JG� 
�� ��I ���" D`c� N  d���G�R� S d�]��
`�I 
 TP�Xb��X1,X2,…,XN�� O¦�R� TPC�R� T��G�� D`¶ 
Èu � :  

 
 

Eq.2,18 

                                                 

 
X1(1): indicates a function that depends on the 
space and spin coordinates of the electron 
labeled ‘1’. 

: ensures that the wavefunction is 

normalized. 
This functional form of the wavefunction is 
called a Slater Determinant and is the simplest 
form of an orbital wavefunction that satisfies the 
antisymmetric principle. 
(If any two rows of determinant is identical, 
then the determinant vanishes) 
When the Slater determinant is expanded, a total 
of N! terms results. This is because N! different 
permutations of N electrons. 
For example, for the three-electron system the 
determinant is 

X1(1) :        xX�b�� d�Pw�G�I� ���Q��� TZ!K
$ TQPÕ�  !" xGL
 
��
`�Ê�"1."  

 :ùú�J���M T�a_�$TPC�R� T��G�� 
I �V�J.  
         ��� �L�� �G�o$  V_J TPC�R� T��G!� jQPÕ��� D`c�� �U�

        �G�$ Ö��¶ U¿Q�oJ ��� TPC�R� T��G�� ��GR {_�ª� D`c��  �G" 
�Õ��
��.  

) 
�� ��I     p� ^��kL t��� pQH �$ �Gº�      �I ���� n�òJ � 
 ��Q
A��Gº�(  

        �$ T"�V� ��L�_�� �G�o$ Ba��L �" |
�JN!    y!k��$  .
��� °�_� ���� N! �� �!
à DJG�L N
��
`�I . x���$ :

o�� d�]��
`�I Tw�w �� ��\�� �G�ãR� 
I:  
  

 

 
 

Expansion of the determinant gives the following 
expression: 

TP��
�� TJ¸Y� e���K�� ��G�ãR� ��G
$� �" |
�J:  
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This expansion contains six terms ( . The 
six possible permutations of three electrons 
are: 123,132,213,231,312,321. Some of these 
permutations involve single exchanges of 
electrons; others involve the exchange of two 
electrons. For example, the permutation 132 
can be generated from the initial permutation 
by exchanging electrons 2 and 3 (If we do so 
we will obtain the wavefunction with a 
changed sign –Ψ).By contrast, the permutation 
312 requires that electrons 1 and 3 are 
exchanged and then electrons 1 and 2 are 
exchanged. (This gives rise to an unchanged 
wavefunction).  
In general an odd permutation involves an 
odd number of electron exchanges and leads 
to a wavefunction with a changed sign; an 
even permutation involves an even number of 
electron exchanges and returns the 
wavefunction  

        ��G�� T
�  !" n�
í ��G
$s� �U�( .   D�J���
�� 
I
 T����w���� d�����]��
`�Ê� T�����`VR� T
_������

j�:123,132,213,231,312,321.n�k�L    DJ���
�� �U� �K� 
         �K��� n�k�J p� S �d�]��
`�h� �$ e��Q$ ds���L  !"

     d�]��
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� �`f D�Á
" ! �
�� �GT 132   �$  x�A     T�P��ª� T��G�
�� ̧ �"   DJG��L 

  
��
`�h�2 
��
`�h�� 3)    �!" D����� ���U� ��V� ��I
      T$�K��� EPbL B$ TPC�R� T��G��–Ψ( .    °�!k
L �}`K�����

  T�G�
��312     d��]��
`�h� DJG��L 1� 3   DJG��L É ��$� 
 d�]��
`�h�1� 2)eEb
$ EF TPC�$ T��� °�_J �$ �U�.(  

`c�           ��$ ��Q$ �G" x���L  !" e��QR� T�G�
�� n�k�L ���" D
       TPC�R� T��G�� T$�" EPbL �I n�òJ �­ d�]��
`�h�;   n�k�L � 

          d��]��
`�h� ��$ ���X$ �G" x���L  !" TC��XR� T�G�
��
EPbL 
�� TPC�R� T��G�� GPKJ�.  

 
The Slater determinant can be reduced to a 
shorthand notation. In one system of the 
various notation systems, the terms along the 
diagonal of the matrix are written as a single-
row determinant 

�`f ·P!ZL �Gi ���L�_   �I  T�X
à T"�V� . @G�I �$  ï�r
x�X
Ah�   TQ!
�R��  T��
� O
L    e��C�R� ��G�� x�r  !" n�k� 
u�Q�R�T  ��Q$ �Gi ���.  

 
Eq.2,19 

 
 

 
The normalization factor is assumed. It is 
often convenient to indicate the spin of each 
electron in the determinant; this is done by 
writing a bar when the spin part is β (spin 
down); a function without a bar indicates an 

  
ID$�"    n���ª� °P_�
�� n���z .�����F      °����$ 
��`J �$ 
   �I e��¶Ê�  xXF   
��
`�I D�  SãR�      ^�J�r �" ��� O
J� û�G�

  T��
� �TQPÕ��� ï�u jZu� {J�¶ �$G�"    �X�b�� �X�Y� 
�`Jβ 
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spin (spin up). Thus, the following are all 
commonly used ways to write the Slater 
determinantal wave function for the Be atom 
(which has the electronic configuration 1s2 
2s2 ) 

) �I xXF ª�DQ�(û       �Xb�� �XY� 
�`J �$G�" �$� α)    �I xX�F
 !"ª� (  
Èu  TQPÕ���  
�`L {J�¶ 
�G�  �g��u jZu� .    j�!J �VPu

     T��
`� T$G�
_R� ï�k�� BPÎ  � �L�� �Gi  T��G!R�C�P  a�U�� Te 
��P!J¸��)  �� l��
`�h� �gKJ²�L1s2 2s2( 

 
Eq.2,20 

 
 

 
 

 
 

 
An important property of determinants is that 
a multiple of any column can be added to 
another column without altering the value of 
the determinant. This means that the spin 
orbitals are not unique; other linear 
combinations give the same energy. 

          ��$��" n� °¿��o$ 
� j� d��aG�oV!� TVgR� d�Q��� @G�I
   �I ���oJ 
� �`f �aG�ãR� TVP� DJG�L 
�G� �AM ��$�" .  �U�� 

     eGJ�u �_P� d���GR� xXF 
� #KJ �`f� �     T�Pkv� ^�Pu��
!� 
���� T��k�� jkKL 
� @�Aª�.  

 

2.4 Molecular Orbital Calculations / C����� %�&@� 
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For N n-electron system, the Hamiltonian takes 
the following general form: 

��\] DC� �$ N n��
!P$�q� U�
L � 
��
`�I  D`c��� �U� 

��K��:  

 

 
 

A, B, C, etc: indicates the nuclei. 
1, 2, 3, …: indicates the electrons. 
The Slater determinant for a system of N 

A, B, C...üI :@����  !" xGJ.  
1, 2, 3. :..
��
`�h�  !" xGJ.  
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electrons in N spin orbitals can be written:   T��
� �`f      �$ ��\�� �L�� �Gº� N   � 
���
`�I N   ��G�$ 
��
�� D`c�� °_� �XF:  

 

 
 

Each term in the determinant can thus be 
written Xi(1)Xj(2)Xk(3)…Xu(N-1)Xv(N) where 

i,j,k,…,u,v is a series of N integers. 
As usual, the energy can be calculated from  

     aG� D� T��
� �`f    �� �Gº� S(1)Xj(2)Xk(3)…Xu(N-

1)Xv(N) ´P� i,j,k,…,u,v�� d�_!_L O� ND$�`L .  
�$ T��k�� m�_
�� �`f �e��K���:  

 

 

 

 
 

 
If the spin orbitals form an orthonormal set 
then only products of identical terms from 
the determinant will be non-zero when 
integrated over all the space. 
(If the spin orbitals are normalized, integral 
will equal 1) 
(If the term involves different electrons, it 
will equal zero, due to the orthogonality of 
spin orbitals). 
 
The numerator in the energy expression can 
be broken down into a series of one-electron 
and two-electron integrals. Each of these 
individual integrals has the general form: 
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[term1] and [term2] each represent one of the 
N! terms in the Slater determinant. To 
simplify this integral, we first recognize that 
all spin orbitals involving an electron that 
does not appear in the operator can be taken 
outside the integral. For example, if the 
operator is 1/r1A, than all spin orbitals other 
than those that depend on the coordinates of 
electron 1 can be separated from the integral. 
The orthogonality of the spin orbitals means 
that the integral will be zero unless all indices 
involving these other electrons are the same 
in [term1] and [term2]. 
 
For integrals that involve two-electron 
operators (i.e. 1/rij), only those terms that do 
not involve the coordinates of the two 
electrons can be taken outside the integral. 
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It is more convenient to write the energy 
expression in a concise form that recognizes 
the three types of interaction that contribute to 
the total electronic energy of the system. 
 
First, there is the kinetic and potential energy 
of each electron moving in the field of the 
nuclei. The energy associated with the 
contribution for the molecular orbital Xi is 
often written Hiicore and M nuclei. For N 
electrons in N molecular orbitals this 
contribution to the total energy is (the actual 
electron may not be ‘electron 1’): 

          �V��
J XC�$ D`c� TJ¸Y� T��k�� e���" T��
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The second contribution to the energy arises 
from the electrostatic repulsion between pairs 

  �c�J  ��k!� l���� ��g�h�   �$ T    p�� j`PL�
���g`�� G"��
��
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of electrons. This interaction depends on the 
electron-electron distance (Jij).The total 
Coulomb contribution to the electronic energy 
of the system is obtained as a double 
summation over all electrons, taking care to 
count each interaction just once: 

  d�]��
`�h� �$ ���²� .       p�� Tu�_R�  !" G"��
�� �U� GV
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`�h� D�:   

 

 

 
 

The third contribution to the energy is the 
exchange ‘interaction’. 
If two electrons occupied the same region of 
space and had parallel spins then they could be 
considered to have the same set of quantum 
number. Electrons with the same spin thus tend 
to 'avoid' each other, and they experience a 
lower Coulombic repulsion, giving a lower 
energy. The total exchange energy is calculated 
by the following equation: 
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TP��
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: Energy due to the exchange. 

The prime on the counter indicates that the 
summation is only over electrons with the 
same spin as electron i. 
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In the most popular kind of quantum 
mechanical calculations performed on 
molecules each molecular spin orbital is 

 Ë���� S  TP�K¶ ���ª�   TP��_�� d�P!VK�� �$ TP`P]�`PR  O�`�� 
   !" @�õ ��� d�WJXY�        ^Pu�
� �nXC ��G$ xXF D� �I X$�oJ �
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expressed as a linear combination of atomic 
orbitals (the LCAO approach)2. Thus each 
molecular orbital can be written as a 
summation of the following form: 

    TJa�� d���GR jkA)      T�J�U�� d���GV!� jkv� ��$G]s� TZJ�r
 TPWJXY� d���GR�� .(        j�¦XC ��G$ D� °
`oJ 
� �`VoJ �U`��

V���
�� D`c�� Ë�V�:  
 

Eq.2,21 

 
 

 
where  is a molecular orbital represented as 
the sum of k atomic orbitals , each 
multiplied by a corresponding coefficient , 

and � represents which atomic orbital is 

combined in the term.3 There are two 
electrons with opposite spins in the lowest 
energy spatial orbital (labeled 1σg), which is 
formed from a linear combination of two 
hydrogen-atom 1s orbitals: 

´P�  �� ��GR� jWJXY� ���Vo$ Ë�V�� k   d���G�R� ��$ 
TJ�U�� G��� D� �D$�Kç m���$ T����R�   ��  D��½ μ 

   B$ BVY� O
J ´P�  n�U�� ��GR� S @GR� .t���    ��$ 
��"�] 
d�]��
`�h� B$  e���$ d��P��   S T��`K$ ��  T���k�� Ø�ª� 

!���GV   l�`R�)   V_R�1σg( � �  �$ 
�`
J nU�� ^Pu�L  j�kA 
�$ p�ws d���G$ 1s �e�U pC��GPq� :  

 
Eq.2,22 

 
 

To calculate the energy of the ground state of 
the hydrogen molecule for a fixed 
internuclear distance we first write the 
wavefunction as a  determinant: 

           pC��G�Pq� �nX�Y T�P"�Z�� T���� T��r m�_
�� DC� �$
   @��!� T
����� TP!A�G�� Tu�_V!� .     G�� �s�� °�
`] 
� ���P!"  T���

 �G�V� TPC�R�.  

 
Eq.2,23 

 
 

(See paragraph 2.1.1 operators) In atomic 
units the Hamiltonian is thus: 

)   BkZR� BC��2.1.1 DbcR� .(      T�J�U�� d�G����� S 
�
!$�q�

                                                 
2 LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in 
quantum chemistry.(Ref:Wikipedia)/ �� °���L O`�� �$ TJ�U�� d���GR� � TP�ZL��_ md���GR� S TPWJXY� ��PVP� O`��  LCAO 

3 Ref: http://en.wikipedia.org/wiki/Linear_combination_of_atomic_orbitals_molecular_orbital_method �G�R�:  
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j�:  

 
Eq.2,24a 

 
 

Eq.2,24b 

 
 

1 and 2: indicate the electrons. 

A and B: indicate the nuclei. 

ZA and ZB: nuclear charges =1. 

The energy of this hydrogen molecule: 

A, B :@����  !" xGJ.  
1, 2:d�]��
`�h�  !" xGJ .  
ZA � ZB n��_L @���� T��¶ 1.  

pC��GPq� �nXC T��r:  
  

 
Eq.2,25 

 
 

The normalization constant for the wavefunction 
of the two electrons hydrogen molecule is 1/√2 
and so the denominator in Eq.2, 25 is equal to 2. 
Substitution of hydrogen molecule wavefunction 
into Eq.2, 25 

         l���
`�h T�PC�R� T���G!� ������ n���Ü� °P_�
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�� pC��GPq�1/√2  T���KR� S ��ZR� � 2, 25  n��_L2.  

� DJG�L T���KR� S pC��GPq� �anXY TPC�R� T��G�.2, 25   

 
Eq.2,26 

 
 

Eq.2,27 
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Each of these individual terms can be 
simplified if we recognize that terms dependent 
upon electrons other than those in the operator 
can be separated out. For example, the first 
term in the expansion, Eq.2,25,is: 

            ��G��� 
� ���\�s ��I ����Q�$ aG�� D� x�X
A� �`f) 
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Eq.2,28 

 

 
 

The operator Ĥ is a function of the coordinates 
of electron 1 only, so terms involving electron 2 
can be separated as follows: 

  
I  DabcR�Ĥ      
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`�h� d�Pw�G�h TQPÕ� �� 1    ���I �{�Zu 
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`�h�� TZ!K
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Eq.2,29 

 

 
 

If the molecular orbitals are normalized, the 
integral  =1. 

           D�$�`
�� 
Èu ���J���M T�_�$ �nXY� d���G$ �]�� x�� S
  n��_J 1.  

 
Eq.2,30 

 
 

dv indicates integration over spatial coordinates. 
dσ indicates integration over the spin 
coordinates. The integral over the spin 
coordinates =1. 
Now we can substitute the atomic orbital 
combination for 1σg: 

 EcJdv TP]�`R� d�Pw�G�h� D$�`L @G$  !".  
  EcJdσ    d�Pw�G�h� D$�`L @G$  !" TP�Xb�� .   D�$�`
�� 
I

 n��_J TP�Xb�� d�Pw�G�h� ¸"1.  
x�G�
�� 
Ü� ���`f 1σgg
VPZ� TPZPZ�� �:  
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Eq.2,31 

 
 

The integral in Eq.2,31 can in turn be factorized 
to give a sum of integrals, each of which 
involves a pair of atomic orbitals: 

  �`VoJ  �nXõ  D$�`
��Eq.2,3     �V�
J �d�$�`L T"�V� �I
TJ�U�� d���GR� �$ ��² �g�$ G��� D�:  

 
Eq.2,32 

 
 

If we apply the same procedure to the second 
term in Eq.2,27 : 

             T����KR� S aG���  �!" d�����Ch� }Q] ^P�k
� ��V� ��I
Eq.2,27:  

 
Eq.2,33  

 
Eq.2,34 

 
 

Eq.2,34 equals zero because the molecular 
orbitals are orthogonal. 

 T���KR� n��_LEq.2,34 ���G$ 
ª �QH eG$�K
$ �nXY� d  .
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In a closed-shell system containing N electrons 
in N/2 orbitals, there are two spin orbitals 

associated with each spatial orbital �i:�iα and 

  TZ�r ��\] S   TZ!b$  n�
íN    S 
��
`�I N/2   GC�J ���G$ 
      D`� Tk�L�$ xXb�� d���G$ �$ p�w� t���  �$ G���  R���Gd� 

R�P]�`T �i:�iα   � �iβ.     T�P]��
`�h� T���k�� m�_
�� �`f 
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�iβ. The electronic energy of such a system can 

be calculated in a manner analogous to that for 
the hydrogen molecule. First, there is the 
energy of each electron moving in the field of 
the bare nuclei. For an electron in a molecular 
orbital Xi, this contributes energy . If there 
are two electrons in the orbital then the energy 
is 2  and for N/2 orbitals. The total 
contribution to the energy will be: 

     pC��GPq� �nXC T��r m�_
�s T!w�­ TZJ�k� .  t��� ��s��
      S t��
J 
��
`�I D� T��rx�� e�����  e��~�  .    D�C� ��$

 �nXC ��G$ S 
��
`�IXi T��k�� 
�`L� .  .  
�� ��I
         T��k�� 
�`L ���GR� S d�]��
`�h� �$ p�w� t���2 

�� N/2 ��G$ . 
�`J� T��k�� ��g�I ��ÎI:  

 

 
 

The Coulomb interaction between each pair of 
electrons in the same orbital must be included; 
there is no exchange interaction because the 
electrons have paired spins. The total energy is 
thus given as: 

          S d�]��
`�h� �$ ��² D� p� Ò$���`�� �w»
�� UA� °Í
   ���
"s� pK� ��GR� }Q].        
ª �w»�L x����L GC�J s �`��

  d�]��
`�h�   d��P�� �gJG�)xXF (TC��X$ .   ���ÎI 
�`J
���I T��k��:  

 

 
 

 
 

2.5 The Hartree-Fock Equations/ f�'%�B 
kV�P� Yl�m  

 
In most electronic structure calculations we are 
usually trying to calculate the molecular 
orbitals. But for many-body problems there is 
no ‘correct’ solution; so the variation theorem 
provides us with a mechanism to decide 
whether one proposed wavefunction is ‘better’ 
than another. (The best wavefunction is the 
one with the lowest energy). The Hartree-Fock 
equations are obtained by imposing this 
condition on the expression for the energy. 

         m�_�
�� �e��" x��Á �TP]��
`�Ê�� TP���� d���_� O\K$ S
 �nXY� d���G$.      �$ GJGK!� T�_���� �`�� D¦�_$   ���_Cª�  s
   t��� GC�J  n�  D�"yP�H"  �       T�P�M EPb
�� TJ�\] ��� �aGZL �U�

           j�� T��
ZR� TPC�R� T��G�� �]�� ��I �$ �J�ZL  !" �]G"�_
�
"D�u� " @�Aª� �$) .  � T��G�� 
I     ��� T��G�� j� D�uª� TPC�R

  Ø�ª� T��k�� �!
½.( �`VoJ     n�L��q� ds��K$  !" x���� �
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The Fock operator ( ) takes the form: 

t�uT��k!� TJ¸Y� e���K�� S Ö�c�� �U� x�A�I x�A �$ .  
 t�u �G�o$ UA�J() ��
�� D`c�� :   

 

 
 

The Fock operator for a closed-shell system, has 
the following form: 

 t�u �G�o$ UA�J()  TZ�kR� TZ�k�� ��\�� ���
�� D`c��:  

 

 
 

The Hartree-Fock equations then take on the 
standard eigenvalue form: 

n�L��� ds��K$ UA�L� D`c� t�uTPL�U�� TVPZ��P���ª� T .  
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The Hartree-Fock equations are usually solved 
in different ways for atoms and molecules. For 
atoms, the equations can be solved numerically 
if it is assumed that the electron distribution is 
spherically symmetrical. However, these 
numerical solutions are not particularly useful. 
Fortunately, analytical approximations to these 
solutions can be used with considerable 
success. These approximate analytical functions 
thus have the form: 

  n�L��� ds��K$ D�oL��u      �" TQ!
à ï�k� d�a�U!� �e��" t
d�WJXY� .         S ���PV�� ds���KR� D� �`f �d�a�U!� T�_����

      �Õ��
$ n��� D`c� T"²�$ d�]��
`�h� 
� T���.   ��`�� 
   eGPQ$ ��V¦�� �_P� TPV���� x�!�� �U�.  ��`VoJ �Ú�� �_� 

      yC�] D`c� x�!�� �Uq j!P!�
�� °J�Z
�� ��G�
�� .  �U��
J�Z
�� �¦�Õ�����
�� D`c�� UA�L TP!P!�
�� TP�:  

 

 
 

Y is a spherical harmonic and R is a radial 
function. Slater suggested a simpler analytical 
form for the radial functions: 

Y      � n��� ^u��L j� R   TP"�K¶ TQPÕ� j�  .   �L��� ��
��
TP"�Kc�� �¦�Õ�!� {_�� j!P!¹ D`¶:  
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These functions are universally known as Slater 
type orbitals (STOs). The first three Slater 
functions are as follows: 

         �L��� d���G$ Ë��� ��PR�" �¦�Õ��� �U� ��KoL)STOs .(
��
�� D`c�� �L�� �¦�Õ� ±�w x�� U�
L:  

 

 

 

 
 

To obtain the whole orbital we must multiply 
R(r) by the appropriate angular part. Slater 
provided a series of empirical rules for 

choosing the orbital exponents �, which are 

given by: 

   m�z °ÍR(r)       x���� DC� �$ �°���R� n��X�� �XY�� 
  D$�`�� ��GR�  !" .        G�"��Z�� ��$ T!_�!� �L�� Ö�
¶�

s TP�J��
���$ �P!" x���� �`VoJ nU�� � �ª� ��P
A:  

 

 
 

Z is the atomic number and σ is a shielding 
constant. n* is an effective principal quantum 
number, which takes the same value as the true 
principal quantum number for n=1, 2, 3, but for 
n=4, 5, 6 has the values 3.7, 4.0, 4.2, respectively. 
The shielding constant is obtained as follows: 
First, divide the orbitals into the following 
groups: 
 

Z      � n�� �G" �� σ    �G" j� shielding ������ .n* �� 

       VP� }Q] UA�J ´Pµ �x�aKu j_P¦� O� �G"  T    O�`�� �G�"
 j!KQ�� j_P¦��� �� n=1,2,3 $� �   T���� S � n=4,5,6   U�A�J

 |J�G
��� TP��
�� OPZ��3.7, 4.0, 4.2. �G"  !" x���� �`VoJ 
shieldingx�A �$ ������ :  

 �I d���GR� OP_ZL ��s��TP��
�� d�"�V~�:  
 

 
 

For a given orbital, σ is obtained by adding 
together the following contributions: 

a)  Zero from an orbital further from the 
nucleus than those in the group; 

b) 0.35 from each other electron in the 
same group, but if the other orbital is 
the 1s then the contribution is 0.3; 

c) 1.0 for each electron in a group with the 

        !" x���� �`VoJ��Gi ��G$ T��� Sσ      B�Î x��A �$ 
�d�$�g�hTP��
�� :  

a(   �QH �$   ��GR�  " GK�ª�    �$ @���� �  �sò� �J��C�R�
T"�V~� S. 

b( 0.35          S �G�"�$ �T"�V~� }Q] S 
��
`�I D� �$ 
� ��GR� 
�� ��I �T��� �AÜ1s ��g�h� 
�`J 0.3. 
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quantum number 1 fewer than the 
current orbital.; 

d) For each electron with a principal 
quantum number 1 fewer than the 
current orbital: 1.0 if the current orbital 
is d or f; 0.85 if the current orbital is s or 
p. 

The shielding constant for the valence 
electrons of silicon is obtained using Slater’s 
rules as follows. The electronic configuration 
of Si is : 

c( 1.0 ̀ �       O� �G" �� T"�V~� S 
��
`�I D   n��_J 1 
���� ��GR� �$ D��. 

d(         n��_J j_P¦� O� �G" �� 
��
`�I D`�1   �$ D�� 
 ���� ��GR�: 1.0        ����� ��G�R� 
� T��� Sd �� f �

0.85 ���� ��GR� 
�� ��I s �� p. 
     �G"  !" x���� �`VoJshielding �    d��]��
`�Ê� �����

       ��
�� �����  !" �L�_�� G"��� ��G�
��� 
�`P!P_!� TWu�`
R� .

�`P!P_!� l��
`�h� BJ²�
�� Si�� :  

 

 
 

We therefore count 3×0.35 under rule (b), 2.0 
under rule (c) and 8×0.85 under rule (d), giving 
a total of 9.85. When subtracted from the 
atomic number (14) this gives 4.15 for the 
value of Z-σ. 

     j�Á ���  !" ù����3×0.35  eG"�Z�� °_µ b �2.0   °_�µ
  eG"�Z��c � �8×0.85   eG"�Z�� °_µ d    Ë��V� |
��J ��­ �
  n��_J9.85.    x�� SO_�      ��$ Ë�V~� �U� 14   �J � O


  !" x����4.15�!� TVPZ�  Z-σ.  
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The most popular strategy, to find solution of 
the Hartree-Fock for the molecules, is to write 
each spin orbital as a linear combination of 
single electron orbitals: 

      n�L��� T���KR D� ��Íh �TP�K¶ ���ª� TP�PL��
�h��  t��u
            T�PkA ^�Pu��
� n��G�$ xXF D� T��
� j�  �d�WJX�!�

��QR� 
��
`�h� d���GR.  
 

 
 

The one-electron orbitals  are commonly 
called basis functions and often correspond to 
the atomic orbitals. 
K: number of basis functions. 
At the Hartree-Fock limit the energy of the 
system can be reduced no further by the 
addition of any more basis functions; however, 

  ��KoL    G����� 
��
`�h� d���G$    TP����ª� �¦�Õ���� 
TJa�U�� d���GR�  !" xGL �$ �����F�.  

K :TP���ª� �¦�Õ��� �G".  
  n�L��q� aG� G�"�  �t�u   �PQÛ �`VoJ   ��\��� T��r  x�A �$
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it may be possible to lower the energy below 
the Hartree-Fock limit by using a functional 
form of the wavefunction that is more extensive 
than the single Slater determinant. 
For a given basis set and a given functional 
form of the wavefunction (i.e. a Slater 
determinant) the best set of coefficients  is 
that for which the energy is minimum, at which 
point 

   n� Tu�zI    f �TP���ª� �¦�Õ��� �$ TQPÕ�   T��k�� �PQÛ �`
  �L��q� aG� �¹�       T���G!� jQPÕ���� D`c�� ��G�
��� t�u

��QR� �L�� �aG�o$ �$ �s�� ���� ¸
KL ��� TPC�R�.  
     D$�K$ T"�V� D�u� 
I      D`¶ � e�G�o$ TP���� T"�V~

     TPC�R� T��G!� �Gi jQPÕ�)  �L�� �G�o$ n�(  �   ´�P� j�
 T��k�� 
�`Lª� ��GµTkZ��� �U� S Ø�  

 

 
 

for the coefficients . The objective is thus to 
determine the set of coefficients that gives the 
lowest energy for the system. 

  D$�KR .           ���� D�$�KR� T"�V� GJG¹ �� ���I �Gq� 
I
��\�!� T��r D�� jkKL .  
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We shall initially consider a closed-shell 
system with N electrons in N/2 orbitals. The 
derivation of the Hartree-Fock equations for 
such a system was first proposed by 
Roothaan [Roothaan 1951] and 
(independently) by Hall [Hall 1951].Unlike 
the integro-differential form of the Hartree-
Fock equations, Roothaan and Hall recast the 
equations in matrix form, which can be 
solved using standard techniques and can be 
applied to systems of any geometry. 
The standard form for the expression for the 
Fock matrix in the Roothaan-Hall equations: 

         B$ TZ!bR� TZ�k�� ��\] ���� D`c�� ¸
K] ���N   S 
��
`�I 
N/2 ��G$ .    ���
�I á ��
�
�I  n�L��q� ds��K$ �   �U� D�R t�u

  D��� �$ ���\���Roothaan [Roothaan 1951]� )  D`c��
DZ
_��$ (Hall [Hall 1951] . D`��¶ �����integro-

differential  n�L��q� ds��KR �    x���� 
��w�� ���"� �t�u
       �Tu�Q��$ D`¶ �I ds��KR� TF�PH      �g�!� ��`VoJ ´�Pµ

           ���\] n�  �!" �g$�G�
��� �`VoJ TP���� d�P�ZL ��G�
���
n�
$�PC.  

   ̧ Y� e���K!� j���ª� D`c��        ds���K$ S t��u Tu�Q��R TJ
�w�����x:  
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The Fock matrix is a K×K square matrix is 
symmetric if real basis functions are used. 
The Roothaan-Hall equations can be 
conveniently written as a matrix equation: 
 


�`L    t�u Tu�Q�$ K×K   e�Õ��
$ Tu�Q�$ B��$    x�� S �
]��� �� �¦�Õ�ª� TP���T!VK
_$.  

   
�w�� ds��K$ T��
� �`f���      T����KV� O¦�$ �Á  !" x
Tu�Q�$:  

 
FC=SCE 

 
The elements of the K×K matrix C are the 
coefficients Cvi: 

 �H��"K×K Tu�Q�$ C   

 

 
 

E is a diagonal matrix whose elements are the 
orbital energies: 

E��GR� d���r j� ���H��" 
� ´Pµ Tu�Q�$ �kã� j� :  

 

 
 

A common scheme for solving the 
Roothaan-Hall equations is as follows: 

1. Calculate the integrals to form the 
Fock matrix, F. 

2. Calculate the overlap matrix, S. 
3. Diagonalise S. 
4. Form S-1/2. 
5. Guess, or otherwise calculate, an 

initial density matrix, P. 
6. Form the Fock matrix using the 

integrals and the density matrix P. 
7. Form F’= S-1/2.F S-1/2. 
8. Solve the secular equation |F’-EI|=0 

to give the eigenvalue E and the 

 ds��K$ ¿D� B¦�c�� {k�R�
�w�������
��� �� x��:  
1. �t�u Tu�Q�$ D`¶ �I D$�KR� m�_
��F. 
2. m�_
��DA�GL   �Tu�Q�R�S. 
3.  ·P�cLS. 
4. L DP`c S-1/2. 
5.    �� �pVÛ       Tu�Q��R� T�u��� �m�_
�� @�A� TZJ�k�

 �TP���ª�P. 
6.        Tu�Q�R� Tu���� D$�KR� ��G�
��� t�u Tu�Q�$ DP`cL

P. 
7.  DP`cLF’= S-1/2.F S-1/2. 
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eigenvectors C’ by diagonalising F’. 
9. Calculate the molecular orbital 

coefficients, C from C= S-1/2.C’. 
10. Calculate a new density matrix, P, 

from the matrix C. 
11. Check for convergence. If the 

calculation has converged, stop. 
Otherwise repeat from step 6 using 
the new density matrix, P. 

This procedure requires an initial guess of 
the density matrix, P.  
The result of a Hartree-Fock calculation is a 
set of K molecular orbital, where K is the 
number of basis functions in the calculation. 
The N electrons are then fed into these 
orbitals in accordance with the Aufbau 
principle, two electrons per orbital, starting 
with the lowest energy orbitals. The 
remaining orbitals do not contain any 
electrons; these are known as the virtual 
orbitals. 

8.  ���KR� D�  T|F’-EI|=0       !" x���� DC� �$   T�VPZ��
TPL�U�� E TPL�U�� d�g�
R� � C’ ·P�cL ¸" F’. 

9.  m�_
�� �j¦XY� ��GR� D$�K$C �$ C= S-1/2.C’. 
10 . �Tu�Q�V!� eGJGC Tu��� m�_
��, PTu�Q�R� �$  C. 
11 .    m��ZL ��C� �$ ^Z�
�� .        G�� m�_��� 
� x��� S

  ������ °Í �m��ZL .   v� ���`L °Í ¿sI�   ù��G�
�� d��k
 e�kv� �$6 Tu�Q�V!� eGJGY� Tu��`�� ��G�
�� B$  P. 

JU� °!k
�h�  Tu�Q�R� Tu��`� ��� pVÛ ���CP.  
    n�L��� TP��_�� TP!VK�� T�P
] 
I�     �$ T"�V� j� x��k  ��G$ 

   ´Pµ �j¦XCk       TP��_�� TP!VK�� S TP���ª� �¦�Õ��� �G" ��  .
L ��� ��ZN   
��
`�I  GR� � !ç      p�w� ���� ��� eG"�Z� ��Zu� d���

         T��k�� d��� d���GR� �$ ����G
�� �G����� ��GR�� d�]��
`�h� �$
Ø�ª�.   

        
��
`�I n�  !" n�
¹ s ���� TPZ�
R� d���GR� ��KoL  d���GR�� 
TPz��
uh�.   
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Example: HeH+. 
Objective: how the Roothaan-Hall method 
can be used to derive the wavefunction, for a 
fixed internuclear distance of 1 A°. 
There are two basis functions, 1sA (centered 
on the helium atom) and 1sB (on the 
hydrogen). 
Each wavefunction is expressed as a linear 
combination of the two 1s atomic orbitals 
centered on the nuclei A and B: 

x��$:HeH+..  
�Gq�:    TPQP� Tu�K$   
�w�� TZJ�r ��G�
���     D�C� ��$ x���

 n��_L @��!� TP!A�� Tu�_R �TPC�R� T��G��  !" x����1 A°.  

     �TP����ª� �¦�Õ��� �$ p�w� t���1sA)    e��  �!" eX���$
��P!Pq� (�1sB) pC��GPq�  !".(  

           T�J�U�� d���G�V!� TPkA ^Pu��
� TPC�$ T��� D� �a�KoL1s 
 @���� S eX��ãR�A � B:   

 

 
 

 
Solving the Roothaan-Hall: 
-1 and 2- Calculate the integrals (here there is 2 

 
�w���� D��x�� :�1�2�    D$�KR� m�_
�� )    G�C�J ����
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electron integrals) to form the Fock matrix, F, 
and calculate the overlap matrix, S:  
The diagonal elements of the overlap matrix, S, 
are equal to 1.0 as each basis function is 
normalised; if the off-diagonal elements have 
smaller, but non-zero, values that are equal to 
the overlap between 1sA and 1sB for the 
internuclear distance chosen. The matrix S is: 


��
`�h� D$�K$ �$ p�w� (t�u Tu�Q�$ DP`cL DC� �$ F 
Tu�Q�R� m�_
���T`��c
R�  S:  

  
I     T`��c
R� Tu�Q�R� �H��" �k�S   �   n��_J  G���� D`�
 TP���� TQPÕ�  ��aJ���M T�a_�$  .      ��H��K�� 
� x�� S  ����A

    TVP� �!½ �kZ��   TPFs EF  �bH�  ´Pµ   p� ���c
�� n��_L
1sA � 1sB@���� DA�� T�PK$ Tu�_R . Tu�Q�R� Sj� :  

 

 
 

The core contributions  can be calculated 
as the sum of three 2×2 matrices comprising the 
kinetic energy (T) and nuclear attraction terms 
for the two nuclei A and B (VA and VB). The 
elements of these three matrices are obtained 
by evaluating the following integrals: 

          T�w�w Ë��V�V� TP����ª� d�$�g�h� m�_
�� �`VoJ
u�Q�$d� )2×2 (     T�P���� T��k�� O�L)T (  d��!k��$�

 n����� mUY�� �$ p�ws e����A � B) VA  �  VB( . �`VoJ
          OP�PZL x��A �$ Tw���� d�u�Q�R� �H��"  !" x����

TP��
�� D$�KR�:  
 

 

 

 
 

The matrices are: j� d�u�Q�R�:  
 

      

 
H core is the sum of these three: H core Tw���� �U� BÎ j� :  

 

 
 

As far as the two-electron integrals are 
concerned, with two basis functions there are a 
total of 16 possible two-electron integrals. There 
are however only six unique two-electron 
integrals, as the indices can be permuted as 

   
� �çd�$�`L        ��$ p�w� B$ ����
"s�� e��A�$ p]��
`�h� 
     Ë�V� t��� 
Èu�TP���ª� ds��KR�16   x�V
�� `
��  D�$�

p]��
`�Ê� .       �p]��
`�Ê� eGJ�u D$�K$ T
� {Zu t��� �`��
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follows: ��
�� D`c��  !" d��¶òR� DJG�L �`f �V�:  
 

 
(ii) ( ( =(  
(iii) ( 0.112 
(iv) ( ( =0.496 
(v) ( = =0.244 
(vi)  

 
To reiterate, these integrals are calculated as 
follows: 

�� °_¹ �GP��
!�d�$�`
��
�� D`c��  !" :  

 

 
 

Having calculated the integrals, we are now 
ready to start the SCF calculation. To formulate 
the Fock matrix it is necessary to have an initial 
guess of the density matrix, P. The simplest 
approach is to use the null matrix in which all 
elements are zero. In this initial step the Fock 
matrix F is therefore equal to H core. 
 
The Fock matrix must be transformed to F’ by 
pre- and post- multiplying by S-1/2: 

GK� m�_� D$�`
��    �  
Ü� �Á      �G��!� ��GK
���  �!" S 
m�_� ���SCF .   DC� �$  TF�PHTu�Q�$ t�u    ��]I ��$ 

   ��� 
�`J 
� n������t pVÛ ��ª� �Tu��` � R  Tu�Q�P . 
I
{_�� |¬ �� ��G�
�� R�Tu�Q� ��TF��Q  n��_L ´Pµ BPÎ 
�H��"�� �QH .  S�U� e�kv� ��ª�TP   n��_LTu�Q�$  t�u

F  �Hcore.  

  

 �I t�u Tu�Q�$ DJ�¹ °ÍF’ �� m���� GK�� D�� �$ 

S-1/2:  
 

 
 

F’ for the first iteration is thus: ���F’���`L x�ª :  
 

 
 

Diagonalisation of F’ gives its eigenvalues and 
eigenvectors, which are: 

 ·P�cL 
IF’ À�U�� ��
R� � TPL�U�� TVPZ�� jkKJ :  
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The coefficients C are obtained from C=S-1/2 C’ 
and are thus: 

  !" x���� �`fR� D$�KC x�A �$ C=S-1/2 C’:   

 

 
 

To formulate P the density matrix P we need to 
identify the occupied orbital(s). With a two-
electron system both electrons occupy the 
orbital with the lowest energy. At this stage the 
lowest-energy orbital is: 

  DP`cL DC� �$ P      T��bc�R� d���GR� GJG�
� TC�µ �Á � .
  p�ws� ��\] B$�       B�$ ��GR� p]��
`�h� �
!� D
¹ �
��
`�I
Ø�ª� T��k�� .j� ��GV!� Ø�ª� T��k�� T!��R� �U� S: 

 

 
 

The orbital is composed of the s orbital on the 
helium nucleus; in the absence of any electron-
electron repulsion the electrons tend to 
congregate near the nucleus with the larger 
charge. The density matrix corresponding to 
this initial wavefunction is: 

       �$ ��P!Pq� e��] S ��GR� ���
Js      m�PF x�� S ���G$ �u��L 

��
`�h��
��
`�I    � �I d�]��
`�h� DP½ �   m�Z���� BV�
�

    T��¶ ¸�� B$ e����� �$ .      T���G��� TZ!K
R� Tu�Q�R� Tu��� 
I
j� TP��ª� TPC�R�:  

 

 
 

The new Fock matrix is formed using P 
and the two-electron integrals together 
with Hcore. 
The complete Fock matrix is: 

      ��G�
��� eGJGY� t�u Tu�Q�$ ���
LP � `L p�ws� D$�� 
��
`�I
 B$Hcore.  

j� T!$�`�� t�u Tu�Q�$ 
I:  
 

 
 

The energy that corresponds to this Fock matrix 
is -3.870 Hartree. In the next iteration, the 
various matrices are as follows: 

       t�u Tu�Q�ç ^!K
L ��� T��k�� n��_L-3.870  n�L����  . S
��
�� ���`
����
�� D`c��  !" j� T"��R� d�u�Q�R� �:  
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Energy =-3.909 Hartree 
 

The calculation proceeds as illustrated in the 
table below, which shows the variation in the 
coefficients of the atomic orbitals in the lowest-
energy wavefunction and the energy for the 
first four SCF iterations. The energy is 
converged to six decimal places after six 
iterations and the charge density matrix after 
nine iterations. 
The final wavefunction still contains a large 
proportion of the 1s orbital on the helium atom, 
but less than was obtained without the two- 
electron integrals. 

       Y� S p�R� D`c�� °_µ TP��_�� TP!VK�� �V
_L  ���]�� x�G
   $ d��QL p�J nU���  D$�K     �P]G��� T���k�� S TJ�U�� d���GR�

       ���`L TK��� x�ª T��k��� TPC�R� T��G!�SCF .oL  T��k�� m��Z
     L T
� GK� TJ�c" ���$� T
�     GK� Tu�Q�R� Tu��� T��¶� ���`

���`L TK_L.  
            ��$ eE�� T�_]  !" n�
¹ x�XL s TP¦�g��� TPC�R� T��G�� 
I

  ��G$�1s        x����� á nU��� �$ D�� �`�� ���P!Pq� e�U� 
p�ws� D$�`L 
�G� �P!"�
��
`�I.  

 
Iteration C(1sA) C(1sB) Energy 

1 0.991 0.022 -3.870 
2 0.931 0.150 -3.909 
3 0.915 0.181 -3.911 
4 0.912 0.187 -3.911 

 
Table: variation in basis set coefficients and 

electronic energy for the HeH+ molecule. 
x�GC :��� �nXY TP]��
`�h� T��k��� D$�KR� }�� pPKL S d��QL 

HeH+.  
 

2.6 Basis Sets / 
�n�!v� w�� 

 
A basis set in chemistry is a set of functions 
used to create the molecular orbitals, which 
are expanded as a linear combination of such 
functions with the weights or coefficients to 
be determined. Usually these functions are 

atomic orbitalsType equation here., in that 

they are centered on atoms. Otherwise, the 
functions are centered on bonds or lone pairs. 
Pairs of functions centered in the two lobes of 
a p orbital have also been used. 

 � 
I         �¦��Õ��� �$ T"�V� j� ��PVP`�� S TP���ª� d�"�V~
          D`�¶  !" Ba��R� ��nXY� d���G$ ��c]I DC� �$ T!VK
_R�
           °�Í ��� D$�KR�� 
�²�ª� B$ �¦�Õ��� �U� D�R TPkA ^Pu��L

 �gP!" x���� .       ´Pµ �TaJ�� d���G$ �e��" �¦�Õ��� �U� 
�`L
   eX`L�$ 
�`L d��U�� S .  ��� 
Èu �¿sI�    eX�`L�$ 
�`L �¦�Õ

      eG�P���� ���²ª�  !" �� {������  !" .    eX�`L�R� ���²ª� 
I
 d���G$ ý��u �$ p�ws�  !"p �q�VK
�I ���J� O
J �.  
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3 Monte Carlo Simulation Methods:/    
 أساليب محاكاة مونتي كارلوأساليب محاكاة مونتي كارلوأساليب محاكاة مونتي كارلوأساليب محاكاة مونتي كارلو

 

3.1 Introduction:/ألمقدمةألمقدمةألمقدمةألمقدمة 

 
The Monte Carlo simulation method 
occupies a special place in the history 
of molecular modeling, as it was the 
technique used to perform the first 
computer simulation of a molecular 
system. A Monte Carlo simulation 
generates configurations of a system by 
making random changes to the 
positions of the species present, 
together with their orientations and 
conformations where appropriate. 
Many computer algorithms are said to 
use a ‘Monte Carlo’ method, meaning 
that some kind of random sampling is 
employed. In molecular simulations 
‘Monte Carlo’ is almost always used to 
refer to methods that use a technique 
called importance sampling. 
Importance sampling methods are able 
to generate states of low energy, as this 
enables properties to be calculated 
accurately. We can calculate the 
potential energy of each configuration 
of the system, together with the values 
of other properties, from the positions 
of the atoms. The Monte Carlo method 
thus samples from 3N-dimensional 
space of the positions of the particles. 
There is no momentum contribution in 
a Monte Carlo simulation, in contrast 
to a molecular dynamics simulation. 
How then can Monte Carlo simulation 
be used to calculate thermodynamic 
quantities, given that phase space is 

D
¹ TZJ�r e���i �H�A �]�`$ ����� �]�$ S 
³J��L TPWJXY� TCUV��� ��V� �]��  TP�Z
��

T$G�
_R� � UPQ�
TP������ e���º� ��ª� �$ ��\] 
TPWJXY�.G��J  e���i ����� �]�$ d��J�`L ��\] 
r �"d�EPbL ���CI ^J� TP¦��c" R ���� Ë��]ª�

e��C�R� °�C �I ���C �B$ ���gC�L � D`c
��
���
�s� G�". m����� d�P$²���A 
I x�ZJ� 

 m�!�� ��G�
�s eGJG"'����� �]�$' #KJ �­ �
]��TP¦��c" d��P" �$ Ë�] DVKJ .S  e���º� 

TPWJXY� J �G�
_' �]�$�����'�V¦�� ��J�ZL  
� !" ���
��°P���ª� �� ��� TP�Z
 �G�
_L TP¼� 

�PK�� UA�d��. 

d��PK�� TP¼� ï�r e����  !" GP��L T��k�� �$ 
 ds���R�T�Q��T��k��  ��!� yV_J �U� ·¦���


� 
�`L T��_i T�G�. ���`f� m�_�  T��k��
T�$�`�� D� B$ �J�`L ��\] °�C �I ���C �B$ OP� 

� @�Aª� ·¦��v� �$ ����$ d��U��. TZJ�r 
����� �]�$ d��P" �$ ���Q�� 3N ��K�ª� 

!� ����Vd�VP_Y�. GC�J s OA² T¼�_$ S 
e���i ����� �]�$ ��$ �PZ���  !"� e���i 

d�P$��J� TPWJXY�. �`f �P� É 
� �G�
_L e���i 
����� �]�$ � m�_d�PV`�� TJ����� �
ª ��\]� 

T��_$ T!��R� 6N  �ª���K� 
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6N-dimensional? 
 
To resolve this difficulty, let identical 
particles of mass m can be written: 

 

 

D� � T��K��� �U�T��
� �`fY� d�WJXR� TZ��k
 
 
²�� mÀÜ� D`c���: 

    
 

=  exp[-  

 
The factor N! Disappears when the 
particles are no longer 
indistinguishable.  Is the 
Hamiltonian that corresponds to the 
energy of the system? The value of the 
Hamiltonian depends upon the 3N 
positions and 3N momenta of the 
particles in the system   

 D$�K�� od�WJXC jQ
�ëLN! �$G�"  �Oú� �GoKëL �UK
$ 
��XP½ .	Dë�) P ^ N ,r^ (N ((
�P]�
!$�q 

r 
��\] B$ ^u��
JúT�� oGV
KëL � ãTVP� 
�P]�
!$��  !" 
N 3 B���$   !" � N3 OA² éd�WJXY� S 


��\��� 

 
The canonical function of an ideal gas: ��TQPÕ� j_�`�� ²�b!� ���R� j�:  
 

 
 
This is often written in terms of the de 

Broglie thermal wavelength, ∧: 
�`�U °
`oJ  �$ E�� S
�P�ª�  y!k�ç��� de 

Broglie thermal wavelength:  
 

 
 

Where  
 
Any deviations from ideal gas behavior 
are due to interactions within the 
system as a consequence of these 
interactions. So we have this partition 
function : 

 ��KJn�  ���Á�S �!�t ²�b�� ���R� �I 
DA�� d�"�Q
�� ��\��� �T�P
� qd�"�Q
�� �U .

��JG� ��U� �U� ��TQPÕ� ��TPVP_Z
:   
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Where   

 

3.2 Calculating Properties by Integration:/  خصائصخصائصخصائصخصائص    الالالالحساب حساب حساب حساب
 ببببالتكاملالتكاملالتكاملالتكامل

 
To calculate the partition function for a 
system of N atoms using this simple 
Monte Carlo integration method would 
involve the following steps: 

1. Obtain a configuration of the 
system by randomly generating 
3N Cartesian coordinates, which 
are assigned to the particles. 

2. Calculate the potential energy of 
the configuration, V(rN). 

3. From the potential energy, 
calculate the Boltzmann factor, 
exp (- V(rN)KBT). 

4. Add the Boltzmann factor to the 
accumulated sum of Boltzmann 
factors and the potential energy 
contribution to its accumulated 
sum and return to step1. 

5. After a number, N trial of 
iterations, the mean value of the 
potential energy would be 
calculating using: 

� m�_T��� O_� �� ��\��$ d��� N � ��G�
��
{P_��� D$�`
�� m�!��R ����� �]�  ^P�kL �X!
_J

TP��
�� d��kv� : 

1�x����  !" �� BJ²�
h�l��
`� ��\���  �"
^J�r GP��L j¦��c" x 3N �$   d�Pw�G�h�

TPL��`JG�� ����  �g�PPKL O
Jd��U!�. 

2� m�_� T!V
º� T��k��� ! BJ²�

h�l��
`�V(rN) . 

3�m�_� D$�"  
�$X
��� �$ T�$�`�� T��k�� �
 ���$                        (- V(rN)KBT). 

4� Tu�zI D$�" 
�$X
��� ð!�R� �I � O���
R� D$��K

�$X
��� � T¼�_$��T�$�`�� T��k �I ð!�$ O���
R� 
e��K��� ��ª� e�kv� �I. 

5� GK� �G" TV��º� �N �$ ���`
�� �
Èu 
 {��
$VP�T T�$�`�� T��k�� 
�`J â�_�� 
��G�
��� : 

 

 
 
Unfortunately, this is not a feasible 
approach for calculating 
thermodynamic properties due to the 
large number of configurations that 
have extremely small Boltzmann factors 
caused by high-energy overlaps 
between the particles. 

�Ú�� ��_ ��U� }P� ��¬ �P!V" � m�_
·¦��v� TJ����� °�_� E�� �G" ��C�  �$
d��J�`
�� �$ ¸
KL ��� D$��K���� TJ�b!� eEb� 

��$X
���
�" Tõ����  T��k�� DA�GL  p� TP��K��
d�VP_Y�. 
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3.3 Some Theoretical Background to the Metropolis 

Method: /بعض الخلفية النظرية لبعض الخلفية النظرية لبعض الخلفية النظرية لبعض الخلفية النظرية لطريقةطريقةطريقةطريقة متروبوليس متروبوليس متروبوليس متروبوليس     
 
The Metropolis algorithm generates a 
Markov chain of states. A Markov 
chain satisfies the following two 
conditions: 

1. The outcome of each trial 
depends only upon the 
preceding trial and not upon 
any previous trials. 

2. Each trial belongs to a finite set 
of possible outcomes. 

TP$²���A G��J }P�����
$  �����$ T!_!�
ds��!� .S�
_L T!_!� �����$  pr�c��
pP��
��:  
1. ëL�P
] oGV
K ¿Dã� ãTT��õ�  !" {Zu T���
� 

 an�  !" ��_Pú�� éTZ
��ë_��T��õTZ��� . 

2.   D� T��õL jV
� �I �$ e��Gi T"�V� 
T!V
º� |¦�
���. 

 
 
Condition (1) provides a clear 
distinction between the molecular 
dynamics and Monte Carlo methods, 
for in a molecular dynamics simulation 
all of the states are connected in time. 
Suppose the system is in state m. we 
denote the probability of moving to 
state n as  the various can be 
considered to constitute an N×N matrix 
Π(the transition matrix),where N is the 
number of possible states. Each row of 
the transition matrix sums to 1 (i.e. the 
sum of the probabilities   for a 
given m equals 1).The probability that 
the system is in a particular state is 
represented by a probability vector p: 

P=(  
 
 

Thus  is the probability that the 
system is in state 1 and  the 
probability that the system is in state 
m. If p(1) represents the initial 
(randomly chosen) configuration, then 

�� p� yz���� ï�Q�� x�ª� Ö�c�� p�J d�P$��JG
����� �]�$ °P����� TPWJXY�,  e���i S

� BPÎ TPWJXY� d�P$��JG�ds��� ����� S {�L�L 
°���R�.   

 S ��\��� 
� Ð�
Q�� T���� m �Á ]xG   !"
 �� ���Z
]� x�V
��T����  N´P� ���
"� �`f  ��

 D�$Π_mn R�  TQ!
� D`c
�N×N Tu�Q�$ 
Π) Tu�Q�R� ��Z
]s�TP ( ´P� �N �`­ �G" �� 
 �$ds��� . BÎTu�Q�R� �$ �H D�s� TP��Z
] 

 n��_J1)  ds�V
�s� Ë�V� n�Π_mn 
R  kKm n��_J 1(. S ��\��� 
�`J 
� x�V
�� 

T��� x�V
�� �!�f T�PK$  ��
R�p :   
P=( 

  
  

 ��
����p_1�� ��  S ��\��� 
�`J 
� x�V

T����1  � p_m S ��\��� 
�`J 
� x�V
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the probability of the second state is 
given by: 

P(2)=p(1)Π 

T���� m . ��I)1(p D�f  �� BJ²�
h�l��
`� 
 ��ª�)j¦��c" ��P
A� ( �  kKJ l���� ��P
As� ����

��
�� D`c��� :  
P(2)=p(1)Π   

  
 

  
The probability of the third state is: 

= π=p(1)ππ 
 

The equilibrium distribution of the system 
can be determinate by considering the 
result of applying the transition matrix an 
infinite number of times. This limiting 
distribution of the Markov chain is given 
by  

 =  
One feature of the limiting distribution is 
that it is independent of the initial guess 
p(1).The limiting or equilibrium 
distribution for a molecular or atomic 
system is one in which the probabilities of 
each state are proportional to the 
Boltzmann factor. We can illustrate the use 
of the probability distribution and the 
transition matrix by considering a two-
level system in which the energy levels are 
such that the ratio of the Boltzmann factors 
is 2:1. 
The expected limiting distribution matrix 
enables the limiting distribution to be 
achieved: 

Π=  

We can illustrate the use of this transition 
matrix as follows. Suppose the initial 
probability vector is (1,0) and so the 
system starts with a 100%  probability of 
being in state 1 and no probability of being 
in state 2.Then the second state is given by: 

x�V
��� T����� T���� ��:  
= π=p(1) π π 

�`f� �GÁ 
�  
� ���
"�� ��\��� S  
²��
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 �$ �� ��� s �GK� TP��Z
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]

d��R� . T!_!� �$ ��Gº� BJ²�
�� �GZL TP��
�� T���KR� �
  �����$:  

 
 =  

 �" DZ
_$ �]� �� ��Gº� BJ²�
�� d�XP$ �$ eG���
��ª� pV�
�� ). P (1 
²��
R� �� ��Gº� BJ²�
�� 

JXY� ��\�� ds�V
�s� �gPu 
�`L ��� j� TJ�U�� �� TPW
 D`�T���
�$X
��� D$�" B$ T����
$  . yPz�L ���`f

 ��G�
���� BJ²�
��P��V
�T �$ TP��Z
]s� Tu�Q�V!� � 
 T��k�� d�J�
_$ ´P� pJ�
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"� x�A

 j� 
�$X
��� D$��" T�_��2:1.  
  

oJ Tu�Q�V!� ��Gº� BJ²�
�� B��L 
� ²�¾� �$ ��̀ V
ÀÜ� ��Gº� BJ²�
��:  

Π=  

���`f yPz�L ��G�
�� Tu�Q�R�   TP��Z
]s� �����  !"
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� x�V
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P(2)=(1 0) ) 

The third state is p(3)=(0.75 , 
0.75).Successive applications of the 
transition matrix give the limiting 
distribution (2/3,1/3). 
When the limiting distribution is reached 
then applications of the transition matrix 
must return the same distribution back:  

= π  
Thus, if an ensemble can be prepared that 
is at equilibrium, then one Metropolis 
Monte Carlo step should return an 
ensemble that is still at equilibrium. A 
consequence of this is that the elements of 
the probability vector for the limiting 
distribution must satisfy: 

=  
This can be seen to hold for our simple 
two-level example: 

(2/3   1/3) =(2/3   1/3) 

We will henceforth use the symbol (p) to 
refer to the limiting distribution. 
Closely related to the transition matrix is 
the stochastic matrix, Whose elements are 
labeled . This matrix gives the 
probability of choosing the two states m 
and n between which the move is to be 
made. It is often known as the underlying 
matrix of the Markov chain. If the 
probability of accepting a trial move from 
m to n is  then the probability of 
making a transition from m to n( ) is 
given by multiplying the probability of 
choosing states m and n( ) by the 
probability of accepting the trial move 
( ): 

=  
It is often assumed that the stochastic 
matrix α is symmetrical (i.e. the 
probability of choosing the states m and n  
is the same whether the move is made 
from m to n or from n to m). If the 

T��� )1 (s� x�V
�� n� GC�J ���C�� S�� T��) 
2.( GK����, �  kKL T����  TP]����  ^J�r �" : 

P(2)=(1 0) ) 

T���� T������ j� ),750, ,750) = (3( p .jkKL  
��d�ZP�k
 T���K
R�!� Tu�Q�V� s�� TP��Z
]BJ²�
��Gº�   

(2/3,1/3).  
G�"G�� �I x�H��� �$ �� BJ²�
  ��Gº� , e��"I °Í 
}Q] BJ²�L� Tu�Q�R� d��!r TP��Z
]s@�A� e�$ :  

= π 
��U� j� ��� T"�V~� E�¹ �`VR� �$ 
�� ��I � 

 ��� ������ �]�$ }P�����
$ e�kA É � 
²��
�� S

²��L T��� S ���J� j� T"�V� GPKL 
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 BJ²�
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� °Í ��Gº�Ò!L:   
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 pJ�
_$  !" x��R� DP��  !" ��� T\��$ �`f�
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(2/3   1/3) =(2/3   1/3) 
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probability of sate n is greater than that of 
state m in the limiting distribution (i.e. if 
the Boltzmann factor of n is greater than 
that of m because the energy of n is lower 
than the energy of m) then in the 
Metropolis recipe, the transition matrix 
element   for progressing from m to n 
equals the probability of selecting the two 
states in the first place (i.e.  
= ). If the Boltzmann weight 
of the state n is less than that of state m, 
then probability of permitting the 
transition is given by multiplying the 
stochastic matrix element   by the 
ratio of the probabilities of the state n to 
the previous state m. 
This can be written: 

 = ) 
 = / )      ) 

These two conditions apply if the initial 
and final states m and n are different. If m 
and n are the same state, then the 
transition matrix element is calculated 
from the fact that the rows of the stochastic 
matrix sum to 1: 

=1-  
Let us now try to reconcile the metropolis 
algorithm as outlined in section with the 
more formal approach that we have just 
developed. We recall that in the 
Metropolis method a new configuration n 
is accepted if its energy is lower than the 
original state m. 
If the energy is higher, however, then we 
would like to choose the move with a 
probability according to Equation (8.24). 
This is achieved by comparing the 
Boltzmann factor  
exp(- )(  = -

]) 
To a random number between 0 and 1. If 
the Boltzmann factor is greater than the 
random number then the new state is 

��) (�P!" D�Á ^J�r �" m�z x�V
�� 
��P
A� T����m �n )α_mn (�x�V
�� DZ] x��� 
T���� )p_mn (: 

 
π_mn = α_mn p_mn  
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accepted. If it is smaller than the new state 
(m) then the new state is rejected. Thus if 
the energy of the new state (n) is very close 
to 1, and so the move is likely to be 
accepted. If the energy deference will be 
very close to 1, and so the move is likely to 
be accepted. If the energy difference is 
very large, however, then the Boltzmann 
factor will be close to zero and the move is 
unlikely to be accepted.  
The metropolis method is derived by 
imposing the condition of microscopic 
reversibility: at equilibrium the transition 
between two states occurs at the same rate. 
The rate of transition from a state m to 
state n equals the product of the 
population ( ) and the appropriate 
element of the transition matrix ( . 
Thus, at equilibrium we can write: 

=  
The Ratio of the transition matrix elements 
thus equals the ratio of the Boltzmann 
factors of the two states: 

=exp[-( - ] 

 

 

3.4  Implementation of the Metropolis Monte Carlo Method: 
 
A Monte Carlo Program to simulation an 
atomic fluid is quite simple to construct. 
At each iteration of the simulation a new 
configuration is generated. This is usually 
done by making a random change to the 
Cartesian coordinates of a single randomly 
chosen particle using a random number 
generator. If the random number 
generator produces numbers ( ) in the 
range 0 to1, moves in both positive and 
negative directions are possible if the 
coordinates are changed as follows: 
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= +(2 )  
= +(2 )  
= +(2 )  

A unique random number is generated for 
each of the three directions X, Y and 
Z.  is the maximum possible 
displacement in any direction. The energy 
of the new configuration is then 
calculated; This need not require a 
complete recalculation of the energy of the 
entire consequence, the neighbor list used 
by a Monte Carlo simulation must contain 
all the neighbors of each atom, because it 
is necessary to identify all the atoms which 
interact with the moving atom (recall that 
in molecular dynamics the neighbor list 
for each atom contains only neighbors 
with a higher index). Proper account 
should be taken of periodic boundary 
conditions and the minimum image 
convention when generating new 
configurations and calculating is higher in 
energy than its predecessor then the 
Boltzmann factor, exp(- ), is 
compared to a random number between 0 
and 1. If the Boltzmann factor is greater 
than the random number then the new 
configuration is accepted; If not then it is 
rejected and the initial configuration is 
retained for the next move. This 
acceptance condition can be written in the 
following concise fashion: 

Rand(0,1)  exp(- ) 
The size of the move at each iteration is 
governed by the maximum 
displacement, . 
This is an adjustable parameter whose 
value is usually chosen so that 
approximately 50% of the trial moves are 
accepted. If the maximum displacement is 
too small then many moves will be 
accepted but the states will be very similar 
and the phase space will only be explored 
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very slowly. Too large a value  and 
many trial moves will be rejected because 
they lead to unfavorable overlaps. The 
maximum displacement can be adjusted 
automatically while the program is 
running to achieve the desired acceptance 
ratio by keeping a running score of the 
proportion of moves that are accepted. 
Every so often the maximum displacement 
is then scaled by a few percent: if too 
many moves have been accepted then the 
maximum displacement is increased; too 
few and   is reduced. 
As an alternative to the random selection 
of particles it is possible to move the atoms 
sequentially (this requires one fewer call to 
the random number generator per 
iteration). Alternatively, several atoms can 
be moved at once; If an appropriate value 
for the maximum displacement is chosen 
then this may enable phase space to be 
covered more efficiently. 
As with a molecular dynamics simulation, 
a Monte Carlo simulation comprises an 
equilibration phase followed by a 
production phase. During equilibration, 
appropriate thermodynamic and 
structural quantities such as the total 
energy(and the partitioning of the energy 
among the various components), mean 
square displacement and order parameters 
(as appropriate) are monitored until they 
achieve stable values, whereupon the 
production phase can commence. In a 
Monte Carlo simulation from the canonical 
ensemble, the volume will change and 
should therefore also be monitored to 
ensure that a stable system density is 
achieved. 
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3333....4444....1111  Random Number Generators: Random Number Generators: Random Number Generators: Random Number Generators:    

 
The random number generator at the heart 
of every Monte Carlo simulation program 
accessed a very large number of times, not 
only to generate new configuration but 
also  to decide whether a given move 
should be accepted or not. Random 
number generators are also used in other 
modeling applications; for example, in a 
molecular dynamics simulation the initial 
velocities are normally assigned using a 
random number generator. The number 
produced by a random number generator 
are not, in fact, truly random; the same 
sequence of numbers should always be 
generated when the program in run with 
the same initial conditions (if not, then a 
serious error in the hardware or software 
must be suspected!). The sequences of 
numbers are thus often referred to as 
‘pseudo-random’ numbers are they 
possess the statistical proprieties of ‘true’ 
sequences of random numbers. Most 
random number generators are designed 
to generate different sequences of numbers 
if a different seeds. One simple strategy is 
to use the time and/or date as the seed; this 
is information that can often be obtained 
automatically by the program from the 
computer’s operating system. 
The numbers produced by a random 
number generator should satisfy certain 
statistical proprieties. This requirement 
usually supersedes the need for a 
computationally very fast algorithm as 
other parts of a Monte Carlo simulation 
take much more time (such as calculating 
the change in energy). One useful and 
simple test of random number generator is 
to break sequence of random numbers into 
blocks of k numbers, which are taken to be 
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coordinates in a k-dimensional space. A 
good random number should give a 
random distribution of points. Many of the 
common generators do not satisfy this test 
because the points lie on a plane or 
because they show clear correlations 
[Sharp and bays 1992]. 
The linear congruential method is widely 
used for generating random numbers. 
Each number in the sequence is generated 
by taking the previous number, 
multiplying by a constant (the multiplier, 
a), adding s second constant (the 
increment, b), and taking the remainders 
when dividing by third constant (the 
modulus, m). The first value is the seed, 
supplied by the user. Thus 

[1]=seed 
[i]=MOD{( [i-1] a+b),m} 

The MOD function returns the remainder 
when the first argument is divided by the 
second (for example, MOD (14.5) equals 
4). If the constants are chosen carefully, the 
linear congruential method generates all 
possible integers between 0 and m-1, and 
the period (i.e. the number of iterations 
before the sequence starts to repeat itself) 
will be equal to the modulus.  
 
 
Fig 8.3: 
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The period cannot of course be greater 
than m. The linear congruential method 
generates integral values, which can be 
converted to real numbers between 0 and 
1  by dividing by m. The modulus as often 
chosen to be the largest prime number that 
can be represented in a given number of 
bits (usually chosen to be the number of 
bits per word; -1 is thus a common 
choice on a 32-bit machine). 
Although popular, by virtue of the ease 
with which it can be programmed, the 
linear congruential method does not 
satisfy all of the requirements that are now 
regarded as important in a random 
number generator. For example, the points 
obtained from a linear congruential 
generator lie on (k-1)-dimensional planes 
rather than uniformly filling up the space. 
Indeed, if the constants a, b and m are 
chosen inappropriately then the linear 
congruential method can give truly 
terrible results, as shown in figure 8.3.One 
random number generator that is claimed 
to perform well in all of the standard tests 
is that of G Marsaglia, which is described 
in Appendix 8.1. 
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3.5  Monte Carlo Simulation of molecules: 

 
The Monte Carlo method is most easily 
implemented for atomic systems because it 
is only necessary to consider the 
translational degrees of freedom. The 
algorithm is easy to implement and 
accurate results can be obtained from 
relatively short simulations of a few tens 
of thousands of steps. There can be 
practical problems in applying the method 
to molecular systems, and especially to 
molecules which have a significant degree 
of conformational flexibility. This is 
because, in such systems, it is necessary to 
permit the internal degrees of freedom to 
vary. Unfortunately, such changes often 
lead to high-energy overlaps either within 
the molecule or between the molecule and 
its neighbors and thus a high rejection 
rate. 

 

  

3333....5555....1111  Rigid Molecules Rigid Molecules Rigid Molecules Rigid Molecules    

 
For rigid, non-spherical molecules, the 
orientations of the molecules must be 
varied as well as their positions in space. It 
is usual to translate and rotate one 
molecule during each Monte Carlo step. 
There are various ways to generate a new 
orientation of a molecule. The simplest 
approach is to choose one of the three 
Cartesian axes (x, y or z) and to rotate 
about the chosen axis by a randomly 
chosen angle , chosen to lie within the 
maximum angle variation,  [Baker 
and Watts 1969]. The rotation is achieved 
by applying routine trigonometric 
relationships. For example, if the vector 
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(xi, yj ,zk) describes the orientation of a 
molecule then the new vector (x’i, y’j, z’k) 
that corresponds to rotation by  about 
the x axis calculated as follows:  
 

( )=(  ) ( ) 

 

Fig. 8.4: The Euler angles   . 
 
 
 
 
 
 
The Euler angles are often used to describe 
the orientations of a molecule. There are 
three Euler angles;   is a 
rotation about the new x axis. Finally,  is 
a rotation about the new z axis (Figure 
8.4). If the Euler angles are randomly 
changed by small amounts  ,  then a 
vector   is moved according to the 
following matrix equation: 

=A  

Where the matrix A is 
 

 

 
 

(

) 

 
It is important to note that simply 
sampling displacements of the three Euler 

 



[65] 
 

angles does not lead to uniform 
distribution; it is necessary to sample 
from  rather than   (figure 8.5). 
 
Fig. 8.5: 
 
 
 
The preferred approach is to sample 
directly in   as follows: 

 

 

= +2( )  
= +2( )  

= 2( )  
 
The alternative is to sample in  and to 
modify the acceptance or rejection criteria 
as follows: 

 

 

=  

=  

=  

=  

 
The Euler angle rotation matrix can then 
be written 

 

 

A=( ) 

 
To generate a new orientation, it is 
necessary to rotate the quaternion vector 
to a new (random) orientation. As it is a 
four-dimensional vector, the orientation 
must be performed in four-dimensional 
space. This can be achieved as follows 
[Vesely 1982]: 
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1. Generate pairs of random numbers 

( , ) between -1 and 1 until 

= +  < 1 

2. Do the same for pairs  and  until 
= +  < 1  

3. Form the random unit four-
dimensional vector ( , , 

, . 
To achieve an appropriate acceptance rate 
the angle between the two vectors that 
describe the new and old orientations 
should be less than some value; this 
corresponds to sampling randomly and 
uniformly from a region on the surface of 
a sphere. 
The introduction of an orientation 
component as well as translational moves 
is made. Trial and error is often the most 
effective way to find best combination of 
parameters.  
 

3333....5555....2222  Monte Carlo Simulations of Flexible Molecules:  Monte Carlo Simulations of Flexible Molecules:  Monte Carlo Simulations of Flexible Molecules:  Monte Carlo Simulations of Flexible Molecules: ////    

 
Monte Carlo Simulations of flexible 
molecules are often difficult to perform 
successfully unless the system is small, or 
some of the internal degrees of freedom 
are frozen out, or special models or 
methods are employed. The simplest way 
to generate a new configuration of a 
flexible molecule is to perform random 
changes to the Cartesian coordinates of 
individual atoms, in addition to 
translations and rotations of the entire 
molecule. Unfortunately, it is often found 
that very small atomic displacements are 
required to achieve an acceptable 
acceptance ratio, which means that the 
phase space is covered very slowly. For 
example, even small movements away 
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from an equilibrium bond length will 
cause a large increase in the energy. One 
obvious tactic is to freeze out some of the 
internal degrees of freedom, usually the 
‘hard’ degrees of freedom such as the 
bond lengths and the bond angles. Such 
algorithms have been extensively used to 
investigate small molecules such as 
butane. HOW-ever, for large molecules, 
even relatively small bond rotations may 
cause large movements of atoms down the 
chain. This invariably leads to high-energy 
configurations as illustrated in figure 8.6. 
The rigid bond and rigid angle 
approximation must be used with care, for 
freezing out some of the internal degrees 
of freedom can affect the distributions of 
other internal degrees of freedom.  
 
Figure 8.6 
 
 
 

3.6  Models Used in Monte Carlo Simulation of Polymers/ 

 
A polymer is a macromolecule that is 
constructed by chemically linking 
together a sequence of molecular 
fragments. In simple synthetic 
polymers such as polyethylene or 
polystyrene all of the molecular 
fragments comprise the same basic unit 
(or monomer). Other polymers contain 
mixtures of monomers- Proteins, for 
example, are polypeptide chains in 
which each unit one of the twenty 
amino acids. Cross-linking between 
different chains gives rise to yet further 
variations in the constitution and 
structure of polymer. All of these 
features may affect the overall 
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proprieties of the molecule, sometimes 
in a dramatic way. Moreover, one may 
be interested in the proprieties of the 
polymer under different conditions, 
such as in solution, in a polymer melt 
or in the crystalline state. Molecular 
modeling can help to develop theories 
for understanding the proprieties of 
polymers and can also be used to 
predict their properties. 
A wide range of time and length scales 
are needed to completely describe a 
polymer’s behavior. The timescale 
ranges from approximately  S (i.e. 
the period of a bond vibration) through 
to seconds, hours or even longer for 
collective phenomena. The size scale 
ranges from the 1-2  of chemical 
bonds to the diameter of a coiled 
polymer, which can be several 
hundreds of ngstroms. Many kinds of 
model have been used to represent and 
simulate polymeric systems and 
predict their proprieties. Some of these 
models are based upon very simple 
ideas about the nature of the intra-and 
intermolecular interactions within the 
system but have nevertheless proved to 
be extremely useful. One famous 
example in Flory’s rotational isomeric 
state model [Flory 1969]. Increasing 
computer performance now makes it 
possible to use techniques such as 
molecular dynamics and Monte Carlo 
simulations to study polymer systems.   
 
Most simulations on polymers are 
performed using empirical energy 
models (through with faster computers 
and new methods it is becoming 
possible to apply quantum mechanics 
to larger and larger system). Moreover, 
there are various ways in which the 
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configurationally and conformational 
degrees of freedom may be restricted 
so as to produce a computationally 
more efficient model. The simplest 
models use a lattice representation in 
which the polymer is constructed from 
connected interaction centers, which 
are required to occupy the vertices of a 
lattice. AT the next level of complexity 
are the bead models, where the 
polymer is composed of a sequence of 
connected ‘beads’. Each bead 
represents an ‘effective monomer’ and 
interacts with the other beads to which 
it is bonded and also with other nearby 
beads. The ultimate level of detail is 
achieved with the atomistic models, in 
which each non-hydrogen atom is 
explicitly represented (and sometimes 
all of the hydrogen as well). Our aim 
here to is give a flavor of the way in 
which Monte Carlo methods can be 
used to investigate polymeric systems. 
We divide the discussion into lattice 
and continuum models but recognize 
that is a spectrum of models from the 
simplest to the most complex. 
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Lattice Models have provided many 
insights into the behavior of polymers 
despite the obvious approximations 
involved. The simplicity of a lattice 
model means that many states can be 
generated and examined very rapidly. 
Both two-dimensional and three-
dimensional lattices are used. The 
simplest models use cubic or 
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tetrahedral lattices in models are 
usually very simple, in part to reflect 
the simplicity of the representation but 
also to permit the rapid calculation of 
the energy. 
More complex models have been 
developed in which the lattice 
representation in closer to the ‘true’ 
geometry of the molecule. For example, 
in figure 8.8 we show the bond 
fluctuation model of polyethylene, in 
which the ‘bond’ between successive 
moments on the lattice 
 
Figure 8.7 
 
 
 
Figure 8.8 
 
 
 
Figure 8.9 
 
 
 
Represent three bonds in the actual 
molecule [Baschnagel et al. 1991]. In 
this model each monomer is positioned 
at the center within the lattice and five 
different distances are possible for the 
monomer-monomer bond lengths. 
Lattices can be used to study a wide 
variety of polymeric systems, from 
single polymer chains to dense 
mixtures. The simplest type  of 
simulation in a ‘random walk’, in 
which to chain is randomly grown in 
the lattice until it contains the desired 
number of bonds (Figure 8.9), In this 
model the chain is free to cross itself 
(i.e. excluded volume effects are 
ignored). Various proprieties can be 
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calculated from such simulations, by 
averaging the results over a large 
number of trials. For example measure 
of the size of a polymer in the mean 
square end-to-end distance, ( ) is 
related to the number of bonds (n) and 
the length of each bond (l) by: 
 
 

)=n  
 
The radius of gyration is another 
commonly calculated property; this is 
the root mean square distance of each 
atom (or monomer) from the center of 
mass. For the random walk model the 
radius of gyration ( ) is given in the 
asymptotic limit by: 
 

 

 

( = /6 
 
The ability of the chain to cross itself in 
the random walk may seem to be a 
serious limitation, but it is found to be 
valid under some circumstances. When 
excluded volume effects are not 
important (also known as ‘theta’ 
conditions) then a subscribe ‘0’ is often 
added to proprieties such as the mean 
square end-to-end distance, 

).Excluded volume effects can 
be taken into account by generating a 
‘self-avoiding walk’ of the chain in the 
lattice (Figure 8.10). In this model only 
one monomer can occupy each lattice 
site. Self-avoiding walks have been 
used to exhaustively enumerate all 
possible conformations for a chain of a 
given length one the lattice. If all states 
are known then the partition function 
can be determined and thermodynamic 
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quantities calculated. The ‘energy’ of 
each state may be calculated using an 
appropriate interaction model. For 
example, the energy may be 
proportional to the number of adjacent 
pairs of occupied lattice sites. S 
variation on this is to use polymers 
 
Figure 8.10 
 
 
 
 
Consisting of two types of monomer (A 
and B), which have up to three 
different energy values: A-A, B-B and 
A-B. Again, the energy is determined 
by counting the number of occupied 
adjacent lattice sites. The relationship 
between the mean square end-to-end 
distance and the length of the chain (n) 
has been investigated intensively; with 
the self-avoiding walk the result 
obtained is different from the random 
walk, with  being proportional to 

 in the asymptotic limit. 
 
Having grown a polymer onto the 
lattice, we now have to consider the 
generation of alternative 
configurations. Motion of the entire 
polymer chain or large-scale 
conformational changes is often 
difficult, especially for densely packed 
polymers. In variants of the verdier-
Stockmayer algorithm [Verdier and 
Stockmayer 1962] new configurations 
are generated using combinations of 
‘crankshaft’; ‘kink jump’ and ‘end 
rotation’ moves (figure 8.11). Another 
Widely used algorithm in Monte Carlo 
simulation of polymers (not just in 
lattice models) is the ‘slithering snake’ 
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model. Motion of the entire polymer 
chain is very difficult, especially for 
densely packed polymers, and one way 
in which the polymer chain is very 
difficult, especially for densely packed 
polymers, and one way in which the 
polymer can move is by wriggling 
around obstacles, a process known as 
reputation. To implement a slithering 
snake algorithm, one end of the 
polymer chain is randomly chosen as 
the ‘head’ and an attempt is made to 
grow a new bead at one of the available 
adjacent lattice positions. Each of the 
remaining beads is then advanced to 
that of its predecessor in the chain 
illustrated in figure 8.12. The procedure 
is then repeated. Even if it is impossible 
to move the chosen ‘head’ the 
configuration must still be included 
when ensemble averages are 
calculated. 
 
 
Figure 8.11 
 
 
 
Figure 8.12 
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The simplest of the continuous 
polymer models consists of a string of 
connected beads (Figure 8.13). The 
beads are freely jointed and interact 
with the other beads via a spherically 
symmetric potential such as the 
Lennard-Jones potential. The beads 
should not be thought of as being 
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identical to the monomers in the 
polymer; though they are often 
referred to as such (‘effective 
monomers’ is a more appropriate 
term). Similarly, the links between the 
beads should not be thought of as 
bonds. The links may be modeled as 
rods of a fixed and invariant length or 
may be permitted to vary using a 
harmonic potential function. 
 In Monte Carlo studies with this freely 
jointed chain model the beads can 
sample from a continuum of positions. 
The pivot algorithm is one way that 
new configurations can be generated. 
Here, a segment of the polymer is 
randomly selected and rotated by a 
random amount, as illustrated in figure 
8.13. For isolated polymer chains the 
pivot algorithm can give a good 
sampling of the 
configurationally/conformational 
space. However, for polymers in 
solution or in the melt, the proportion 
of accepted moves is often very small 
due to high-energy steric interactions. 
 
 
Figure 8.13 
 
 
 
The most unrealistic feature of the 
freely jointed chain model is the 
assumption that bond angles can vary 
continuously. In the freely rotating 
chain model the bond angles are held 
fixed but free rotation is possible about 
the bonds, such that any torsion angle 
value between  and  is equally 
likely. Fixing the bond angles in this 
way obviously affects the proprieties of 
the chain when compared to the freely 
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jointed chain; one way quantify this is 
via the characteristic ratio , which is 
defined as: 
 

=  

 
The characteristic ratio approximately 
indicates how extended the chain is. 
For the freely rotating chain the 
characteristic ratio is given by:  

 

 

= -   

 
Where  is the supplement of the 
normal bond angle (i.e. = - ). For 
an infinitely long chain the 
characteristic ration becomes: 

 

 

=  
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