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1 Useful Concepts in Molecular Modelling

/: iy ) drdad @ ol (,...aul\

1.1 Introduction /wa

What is molecular modelling?
“Molecular” clearly implies some
connection with molecules. The
oxford English Dictionary defines
“model” as ‘a simplified or
idealized description of a system or
process, often in mathematical
terms, devised to  facilitate
calculations and  predictions’.
Molecular modelling would
therefore appear to be concerned
with ways to mimic the behavior of
molecules and molecular systems.
Today, molecular modelling is
invariably associated with
computer modelling, but it is quite
feasible to perform some simple
molecular modelling studies using
mechanical models or pencil, paper
and hand calculator. Nevertheless,
computational techniques have
revolutionized molecular modelling
to the extent that most calculations
could not be performed without the
use of a computer. This is not to
imply that a more sophisticated
model is necessarily any better than
a simple one, but computers have
certainly extended the range of
models that can be considered and
the systems to which they can be
applied.

Fig1: Example of
Molecular Model

http://www.giantmolecu
le.com/shop/scripts/prod
View.asp?idproduct=6)

Fig2: Example of
Molecular
Modelling(Source:
http://wwwl.imperial.ac

.uk/medicine/people/r.di
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The that
chemists first encounter

‘models’ most

are
molecular models such as the
‘stick’ devised by
Dreiding or the ‘space filling’
models of Corey, Pauling and
Koltun (commonly referred to
as CPK models). These models
enable three-dimensional
representations of the
structures of molecules to be
An  important
advantage of these models is
that they interactive,
enabling the user to pose ‘what
if ...” or ‘is it possible to ...
questions.  These
models continue to play an
important role both in teaching,
and in research, but molecular
modelling is also concerned
with abstract
models, many of which have a
distinguished An
obvious example is quantum
mechanics, the foundations of
which were laid many years
before the first computers were

models

constructed.

are

7

structural

some more

history.

constructed.

There is a lot of confusion over
the meaning of the terms
chemistry’,
‘computational chemistry’ and
‘molecular modelling’. Indeed,
many practitioners use all three
labels to describe aspects of
their research, as the occasion

‘theoretical

demands!

Fig3: space filling model of
formic acid
clnybill aald Space-tilling’ -3¢
(Source:
http:/[www.answers.com/topic/
molecular-graphics)

Fig4: Stick model
(Created with Ball View)
‘Stick” =3¢

S

Fig5: “Ball and Stick” model of
proline molecule (Source:

http://commons. wikimedia. org/

wiki/File:L-proline-zwitterion-
from-xtal-3D-balls-B.png)
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‘Theoretical chemistry’ is often considered
with  quantum  mechanics,
whereas computational chemistry encompasses
only quantum mechanics but
molecular mechanics, minimization,
simulations, conformational analysis and other
computer-based methods for understanding
and predicting the behavior of molecular

synonymous

not also

systems. Most molecular modelling studies

involve three stages. In the first stage a model is

selected to describe the intra- and inter-
molecular interactions in the system. The two
most common models that are used in
molecular modelling are quantum mechanics
and molecular mechanics. These models enable
the energy of any arrangement of the atoms
and molecules in the system to be calculated,
and allow the modeler to determine how the
energy of the system varies as the positions of
the atoms and molecules change. The second
stage of a molecular modelling study is the
itself,
minimization, a molecular dynamics or Monte
Carlo simulation, or a conformational search.
Finally, the calculation must be analyzed, not
only to calculate properties but also to check

that it has been performed properly.

calculation such as an energy

1.2 Coordinate Systems/ st oo/

It is obviously important to be able to specify
the positions of the atoms and/or molecules in
the system to a modeling program. There are
two common ways in which this can be done.
The most straightforward approach is to
specify the Cartesian (X, y, z) coordinates of
all the atoms present. The alternative is to use
internal coordinates, in which the position of
each atom is described relative to other atoms

@ SISO Bl e '3 bl el SU' e L L
¢ oS G 25k S a5l el s Y o
gy LSy ki ag A KOS LT L
e e LA e by i S e

A Gl S g5y el O gl

G e W feid ag ) e dedl ol )y o
sl O ST o ) 2358 L e LY A )
SISO ) (3 ol o b o ST
3 Ui ol S e pad) L2 g i SIS,
il Olee dles SE zoldl sds iy ) ax ol
glosed ey ¢ pllad) 3 Dl y )3 dssat Y
A M pllad) B> el 248 Ldn the modeler
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in the system. Internal coordinates are usually Ul ; 503 S b s 3l ¢ (coordinates
written as a Z-matrix. The Z-matrix contains - _ ) . .

sl il S (oSS ) 3 Y ol
Z-) dsia Ll s sf (Z-matrix) ) Bshas IS s

el 38,5 IS e asly kw e (matrix

one line for each atom in the system.

A sample Z-matrix for the Jolze ISadd ( Z-matrix) e
staggered conformation of ethane

(see Figb) is as follows: (Figo ki) (Ethane) oyl

: ux (Y
e 1C
) ¢ 1541 2 C 154 1
o 1'0 L 1095 2 3 H 10 1 1095 2
: : 4 H 10 2 1095 1 180.0
4 H10 2 1095 1 180.0 3 3
5 H 10 11095 2 600 4 - 5 H 1.0 1 1095 2 60.0
6 H 1.0 2 1095 1-60.0 5 P —— .
7 H 10 1 1095 2 180.0 6 180 - Lhie staggere
) . 6 H 1.0 2 1095 1-60.0
8 H 10 2 1095 1 600 7 conformation of ethane .
7 H 1.0 1 1095 2 180.0
6
8§ H 1.0 2 1095 1 60.0
7

In the first line of the Z-matrix we define 15 ,i )i su4 (Z-matrixys & siall oo JoY1 Jaudi 3
atoml, which is a carbon atom. Atom
number2 is also a carbon atom that is a
distance of 1.54 A° from 1 (columns 3 and 4). 3 ;wy\) 1;J,U\ o A°54¢1 Bl s 6353 Og S 5,5
Atom 3 is a hydrogen atom that is bonded to
atom 1 with a bond length of 1.0 A® The angle
formed by atoms 2-1-3 is 109.5°, and the 1095 a4;2-1-3 «i,di 0,5 . A° 10 J 4
torsion angle (defined in fig7) for atoms 4-2-1- , ) e i )

3 is 180% Thus for all except the first three LA (FigZ S5 @ Sl Al 2y R
atoms, each atom has three internal o\l x ok 1USay 23 180 gobs 4-2-1-3
coordinates: the distance of the atom from one

LL:\ &* (Atom2) 25,000 .05 5 5,5 sa4 ¢ Atoml,)

15,4 ahaze oo g en 3,5 & (Atom3) 3 8501 (4

sy ollas] W Lo 6,3 VI W) ¢l
of the atoms previously defined, the angle -~ > Sl B0 L) 8,5 U5 ¢ DY RS '

formed by the atom and two of the previous 4+—| 1}, o 8L :@internal coordinates)

atoms, and the torsion angle defined by the . . ‘ :
! e ) ".U\L@.J.i.w" N - P L A A O S IS R |
atom and three of the previous atoms. Fewer S R =

[8]



internal coordinates are required for the first
three atoms because the first atom can be
placed anywhere in space (and so it has no
internal coordinates); for the second atom it is
only necessary to specify its distance from the
first atom and then for the third atom only a
distance and an angle are required.

It is always possible to convert internal to
Cartesian
However, one coordinate system is usually
preferred for a given application. Internal
usefully describe the
relationship between the atoms in a single
molecule, but Cartesian coordinates may be
more  appropriate
collection of discrete molecules.

coordinates and vice versa.

coordinates can

when describing a

Internal coordinates are commonly used as
input to quantum mechanics
whereas using
mechanics are usually done in Cartesian
coordinates. The total number of coordinates
that must be specified in the
coordinate system is six fewer than the
number of Cartesian coordinates for a non-

programs,

calculations molecular

internal

linear molecule. This is because we are at
liberty to arbitrarily translate and rotate the
system within Cartesian space
changing the relative positions of the atoms.

without

O e ) Lasad o) o) Y Bl ¢ aplldl ),
Joel e BY) a1 oY) s L as Ll o, d e
sl @ oS ol (S LV s, o8 JyW end e,
U ¢ Lpt S s ¥ &l 1) sladll (3 0
A L gyl e WS, Ay ¢ (R
Bla Ul s & ey L5V 8,3 e Ladas ol BLL

2l 5,0 Laib 3050

Jidnternaly alsis o] e Lod Lty Sl
s S S (Cartesiany 45K oWl
S8 e e ) LB Aty e S3le Lz ¢ 23
2 e LA Gy B Caes O adt il llus=W
ol =Y Sy ¢ a1y (moleculey s 3 s
Y 0S5 W6 (Cartesian  coordinates) i Sl

LN ol ST Al Sy plasna) ¢ La
lbadl) OF g 3 « (quantum mechanics) <
Sy 3 sale o5 a SO plasealy 2l
@ g O 2 o oLy sae Ul a5 )
S @ bsae e Bl i o Il plad)
LGL Y . (non-linear)y Jox é o554 a5, K
UL T 1 LN W AU [ PP S S PN

RCHI PR VU001 Cuﬁ\
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What is a Torsion angle?

A torsion angle A-B-C-D is
defined as the angle between
the planes A, B, C and B, C, D.
A torsion angle can vary
though 360° although the
range -180° to +180° is most
commonly used.

%ol WY Lyl 2l

L4, ABCD oy Va5 &
BCD 4 ABC sl i i g
T ST PN PN
o3 180+ 53 420 15,5 180

1.3 Potential Energy Surfaces/diolS/| @lbll @b/

the
Oppenheimer approximation is invariably
to operate. This enables the
and nuclear motions to be
separated; the much smaller mass of the
electrons means that they can rapidly adjust
to any change in the nuclear positions.
Consequently, the energy of a molecule in its
ground electronic state can be considered a

In molecular modeling Born-
assumed

electronic

function of the nuclear coordinates only. If
some or all of the nuclei move then the energy
will  usually
positions could be the result of a simple
process such as a single bond rotation or it

change. The new nuclear

could arise from the concerted movement of a
large number of atoms. The magnitude of the
accompanying rise of fall in the energy will
depend upon the type of change involved.
For example, about 3 kcal/mol is required to
change the covalent carbon-carbon bond
length in ethane by 0.1A° away from its
equilibrium value, but only about 0.1kcal/mol
is required to increase the non-covalent
separation between two argon atoms by 1A®°
from their minimum energy separation. For
small isolated molecules, rotation about single
bonds usually involves the smallest changes

Born- a4 b alasal Wils 5 2 ¢ &g A axdad 8
i &l Oppenheimer
pagsdly ap SV O feaks ey g 3
e 555 A odin OF o5, 2oVl by SIY) s
¢ Qg iy Gl 3w ol e s e S
iiby s AV el B s Bl el (Ss
OB 3\l ST of Lam kil 13 L hs a0l oUW
05 O skl &y il w1 sall S5 3ol pay L)
single bond ) 3,4l Lyl 1 01y a5 e Aoy dlos) A
sAs e b pliane i > s Law OF S& ol (rotation
2 by imla LBl e oz L e S
e el ¢ JE e e ol S g 5 s wU)
— Wy b sl 3 keal/moly Jse [ 6,8 s 3

Ol 30— S-0s— S e covalent bond

approximation)

¢ L&) aed oo I i, A 0.1 52 1) (ethane)
0.1) S [ 6,98 45 0.1 dp> Lo LUy ST,
o¥,5 ov non-covalent ) aeldl ssL ) (keal/mol

i)l aels e iy Al Argon()y.—ﬂl\y
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in energy. For example, if we rotate the
carbon-carbon bond in ethane, keeping all of
the bond lengths and angles fixed in value,
then the energy varies in an approximately
sinusoidal. The energy in this case can be
considered a function of a single coordinate
only (i.e. the torsion angle of the carbon-
carbon bond), and as such can be displayed
graphically, with energy along one axis and
the value of the coordinate along the other.

Changes in the energy of a system can be
considered as  movements on a
multidimensional ‘surface’ called the energy

surface.

15 O ¢ Ayl S e I ol l) Ay L g5V
ol e g shy Lssle (single bonds) 83 ,4ll Ll )
Ly e L3 13 ¢ JUN L Jo iU (3 ol i)
pe Jsb e i e OBY) B 3 00 S_0s S
e S s Bl 0B ) Lyl Lty
aaby I ode 3 Bl lae) S L & (sinusoidal)
v bl 8ol N G )5 ey Lads single coordinate

S ws s ¢ Ll ede e Sy (0550550
& (coordinate) Uiyl sy Jo¥I 52 Jsb s
Al bl 3 3 ol ) lzel (Say L 2V s Job
e Bl s NP RN ”CJ@J\” e oS S

1.4 Molecular Graphics/ 4 in/ wlogu,

Molecular graphics (MG) is the discipline and
philosophy of studying molecules and their
properties through graphical representation.
IUPAC limits the definition to representations
on a "graphical display device".

Computer graphics has had a dramatic impact
upon molecular modelling.

It is the interaction between molecular graphics
and the underlying theoretical methods that has
the accessibility of
modelling methods and assisted the analysis
and interpretation of such calculations.

enhanced molecular

Over the years, two different types of molecular
graphics display have been used in molecular
modelling. First to be developed were vector
devices, which construct pictures using an
electron gun to draw lines (or dots) on the
screen, in a manner similar to an oscilloscope.
Vector devices were the mainstay of molecular
modelling for almost two decades but have now

[11]
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been largely superseded by raster devices. These
divide the screen into a large number of small
"dots", called pixels. Each pixel can be set to any
of a large number of colors, and so by setting
each pixel to the appropriate color it is possible
to generate the desired image.

Molecules are most commonly represented on a
computer graphics using stick' or 'space filling'
representations.
these two basic types have been developed, such
as the ability to color molecules by atomic
number and the inclusion of shading and
lighting effects, which give 'solid' models a more
realistic appearance.

Computer-generated models do have some
advantages compared with their
mechanical ~ counterparts.  Of  particular
importance is the fact that a computer model can
be interrogated to provide
quantitative  information, simple
geometrical measures such as the distance
between two atoms to more complex quantities
such as the energy or surface area. Quantitative
information such as this can be very difficult if
not impossible to obtain from a mechanical
model. Nevertheless, mechanical models may
still be preferred in certain types of situation due
to the ease with which they can be manipulated

Sophisticated variations on

when

very easily

from

and viewed in three dimensions.

A computer screen is inherently two-
dimensional, whereas molecules are three-
dimensional = objects.  Nevertheless, some

impression of the three-dimensional nature of
an object can be represented on a computer
screen using techniques such as depth cueing (in
which those parts of the object that are further
away from the viewer are made less bright) and
through the use of perspective. Specialized
hardware three-
dimensional stereo images to be viewed. In the
future ‘virtual reality’ systems may enable a
scientist to interact with a computer-generated
molecular model in much the same way that a

enables more realistic

[12]
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mechanical model can be manipulated.

Even the most basic computer graphics program
provides standard facilities for the
manipulation of models, including the ability to
translate, rotate and ‘zoom’ the model towards
and away from the viewer. More sophisticated
packages can provide the with
quantitative feedback on the effect of altering
the structure. For example, as a bond is rotated
then the energy of each structure could be
calculated and displayed interactively.

some

scientist

For large molecular systems it may not always
be desirable to include every single atom in the
computer image; the sheer number of atoms can
result in a very confusing and cluttered picture.
A clearer picture may be achieved by omitting
certain atoms (e.g. hydrogen atoms) or by
representing groups of atoms as single “pseudo-
The that
developed for displaying protein structures

atoms’. techniques have been
nicely illustrate the range of computer graphics
representation possible. Proteins are polymers
constructed from amino acids, and even a small
protein may contain several thousand atoms.
One way to produce a clearer picture is to
dispense with the explicit representation of any
atoms and to represent the protein using a
‘ribbon’. are
represented using the

developed by ] Richardson.

Proteins also  commonly

cartoon drawings

[13]
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1.5 Surfaces/abw/ wibluwo

Many of the problems that
are studied using molecular
modelling involve the non-
covalent

between

molecules.
such
facilitated by examining the
van der waals, molecular or
accessible surfaces of the

interaction
two or more
The study of

interaction is often

molecule. The van der
waals surface is simply
constructed from the

overlapping van der waals
spheres of the atoms, Fig 8.
It corresponds to a CPK or
space-filling model. Let us
now consider the approach
of a small “probe” molecule,
represented as a single van
der waals sphere, up to the
van der waals surface of a
larger molecule.

The finite size of the probe
sphere means that there will
be regions of ‘dead space’,
crevices
accessible to the probe as it
rolls about on the larger
molecule.

that are not

This is illustrated in fig 1.4. The amount of
dead space increases with the size of the
probe; conversely, a probe of zero size would
be able to access all of the crevices. The
molecule surface contains two different types

of surface element.

corresponds to those regions where the

accessible surface

- /
-
*

. ~ ’
LS " f - . -
* - ’
/
van der Waals surface

Fig 8: The van der Waals surface is
shown in red. The accessible surface

is drawn with dashed lines and is
created by tracing the center of the

probe sphere (in blue) as it rolls along

the van der Waals surface.(Source:

http://en.wikipedia.org/wiki/ Accessibl

The contact surface

e_surface)
wan der Waals’
. sutface
—- .*, /
i \_' f U
i e
. -

Frobe sphere

Molecdar suface

Fig9 : (Source:

http://www.ccp4.ac.uk/.../newsletter38/03

surfarea.html(

probe is actually in contact with the van der

[14]
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waals surface of the ‘target’. The re-entrant
surface
crevices that are too narrow for the probe
molecule to penetrate. The molecular surface
is usually defined using a water molecule as

the probe, represented as a sphere of radius
1.4 A°.

regions occur where there are

The accessible surface is also widely used. As
originally defined by Lee and Richards this is
the surface that is traced by the center of the
probe molecule as it rolls on the van der
waals surface of the molecule (Fig.1.4). The
center of the probe molecule can thus be
placed at any point on the accessible surface
and not penetrate the van der waals spheres
of the atoms in the molecule.

&> re-entrant surface —JI aikw gl 'Cub)' Ju
SES I PEN IO J N S R S
Sl n 608 e phonily o8 3 o STiom) Lo UL 3
WA ol iy 635 g 3 Jod gin S

.‘\-7.-)5

3 o Iy L,a.)\ accessible surface | pisins
oo el el (L;Lp‘ﬁ\ Richards sLee i % )
I 3 06 o Jm U U] @l e 557 e 5f s
e s A S e i Sa WLy L (Fig1.4) s(s -l
okl = 0 093 accessible  surface I (3 aki (s

sl A Johs L ol gy S

1.6 Computer Hardware and Software/ sisuedf cibiana sy i iga/

The workstations that are commonplace in
many laboratories now offer a real alternative
to centrally maintained 'supercomputers' for
molecular modelling calculations, especially
as a workstation or even a personal computer
can be dedicated to a single task, whereas the
supercomputer has to be shared with many
other users. Nevertheless, in the immediate
future there will always be some calculations
that the power that
supercomputer can offer. The speed of any
computer system is ultimately constrained by
the speed at which electrical signals can be
transmitted. This means that there will come a

require only a

time when no further enhancements can be
made wusing machines with
single-processor architectures,
parallel computers will play an ever more
important role.

“traditional’

serial and

Moy ol ol o gl (3 85 5o ) L) STUT a5
o 'supercomputers' il & 5L (ol sl
O 8 et ¢ il bl duledl olleally o
O o 3 g gl et a8 Sl o f el
(T i 328w I 2 055G BBleall O el
s Ll Sl O S A Ll (3 o3 ey
V) Lpedd O) S Y I 8 s o)) UL
ke swl (sl de e O] s BVl oyl
il o ey a3l S oYl g i ) ae
> o ) S Y ey gl
TN WS SRt QWSS P T POREH R FIWE - JPPRN]
<y sl e T ST 10 Cali g a1l ol

ey

(a\u\}e" u\.g C)\'.‘
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To perform molecular modelling calculations = — Lol 4 ) s dadl) dpled) lhaad) olsl oy
one also requires appropriate programs (the
software). The software used by molecular
modelers ranges from simple programs that L 230 >y i wgs o5 &) Al ol ) B A
perform just a single task to highly complex i L

packages that integrate many different Sl G Al ok 285 ) el St el
methods. There is three items of software __le lgalisnl & &l e g Sl A Sl aakel)
have been so widely used: the Gaussian series
of programs for performing ab intio quantum

mechanics, the MOPAC/AMPAC programs | MOPAC s ¢ V_Q\ s 1intio

for semi-empirical quantum mechanics and
MM2 el g i =) s S S AMPAC
the MM2 program for molecular mechanics. Gt e el 4 V_Q T
A A LS

el 3 e Ul 0l -l 5L (el ) dlis

ab i) Gaussian o sl gesl 2 Al 1 1o ml g Bl

1.7 Units of Length and Energy/ 4a/ls skl <ilaa

Z-matrix is defined using the angstrom as |, LU ;1 S g e sl Zematrix iy s o=
the unit of length (1 A°= 10 * m=100pm). . . . .
The angstrom is a non-SI (International ** >y (B e S 100 = 5 10710= oy 2211
System of wunits) unit but is a very PRTASCEMIRNERE R, Sy ¢ olas Sl Sl ool ans
convenient one to use, as most bond . . L | T i | )
lengths are of the order of 1-2 A°. One (%~ 121 e g -
other very commonly non-SI unit found in 1 >iadl (x5 3 pdsa 5 6,1 54>y Sus Of LS
molecular modelling literature is the

- - [ S0 4 - ¢ A5 .
kilocalorie (1 kcal=4.1840 kJ). Other systems Bl A Sl el D ol U Lgll) il a5 i o giiet
of units are employed in other types of sy .(Js>skS” 41840 = 4, > 5 = 1) kilocalorie
calculation, such as the atomic units used Dol 3 pdid i ) T anlasl L
in quantum mechanics. o e Lot = o e ’

SIS 3 psennd ) B0 i 1 e (oLl

1.8 Mathematical Concepts/ 4usl S abdlio)

A full appreciation of all the techniques of .z Y J,,T oo el I kLl («L:ZJ\ £
molecular modelling would require a

mathematical treatment. However, a proper B2l ) alil) oy B jme gt UL g ) el

Y Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry/
(3 AV LS 5 88 g o ) oS sloeeS” ) iz ol LS 5L gl G b e 2 AD itio I
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understanding does benefit from some
knowledge of mathematical concepts such as
vectors, matrices, differential equations,
complex numbers, series expansions and
lagrangian multipliers and some very
elementary statistical concepts.

<Yl 2l imatrices @b sia L) ¢ vector sl S
sdaall - N s ¢ differential equationsil—a>Lad)

olisla sy ¢ ol v gl dde ¢ complex numbers

[17]
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2 Computational

Quantum

Mechanics

oS LSt e g

2.1 Introduction / i

There are number of quantum theories for
treating molecular systems. The one which has
been widely used is molecular orbital theory.
However, alternative approaches have been
developed, some of which we shall also describe,
albeit briefly. We will be primarily concerned
with the ab initio and semi-empirical approaches
to quantum mechanics but will also mention
techniques such as Huckel theory, valence bond
theory and Density functional.

Akt i aY Al Sk e sae dls
LS Vlamzed S Y1 3 2l A A g e ey
ab — 0 alie Vol S 2 gl o oy £
LaS". SIS semi-empirical —I s initio
iy ki« Huckel &k e olaadl aw M\;.u
iwabs Jl S & a5 4 valence bond @il 5SS

Density functional

The starting point for any discussion of quantum sy L) o o Schrodinger w354 aslas O

mechanics is the Schrodinger equation. The full ,
time-dependent form of this equation is:

H?

eq.2,1 ;2 P
A

Eq. (2,1) refers to a single particle (e.g. an
electron) of mass m which is moving through
space (given by a position vector
r = xi+ yj + zk ) and time (t) under the
influence of an external field V (which might
be the electrostatic potential due to the nuclei
of a molecule). & is Planck’s constant divided

Ay 0

by 2m and i is the square root of -1. ¥ is the
which the
particle’s motion; it is from the wavefunction

wavefunction characterizes

[19]
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that we can derive various properties of the
particle. When the external potential V is
independent of time then the wavefunction
can be written as the product of a spatial part
and time part: ¥(r,t) =(r) T(t). We shall
only consider situations where the potential is
independent of time, which enables the time-
dependent Schrodinger equation to be written
in the more familiar, time-independent form:

eq.2,2 2

By(r)

E is the energy of the particle and we have
used the abbreviation V* (pronounced “del
squared’):

eq.2,3 e

LS Sl (w3l aks e b Vo W alsSd 0,55 L
ral—jy bl S s ISR S RV

GlseY G oYW AU ol 2 W (r,t) = 9 (#) T(t)

LS BT

sl ey Lt 3L das e WS 0SS Lokis

L el s e (G 0h s b aag U xisy Ll
el

— ;—mﬁzﬂr(r) + V(r)(r).

Sha Y e Jlenisl ¢ By L pnd) B A E

(“del squared’ sy V2

o2 o2

V=

It is usual to abbreviate the left-hand side of eq. fj A (1 1) ) sl o (6 o) g
(1,1) to H W, where H is the Hamiltonian

operator:
eq.2,4 .
H —
This reduces the Schrodinger equation
to H¥ =E¥. To solve the Schrodinger

equation it is necessary to find values of E
and functions W. The Schrodinger equation
falls into the category of equations known as
partial differential eigenvalue equations in
which an operator acts on a function (the
eigenfunction) and returns the function
multiplied by a scalar (the eigenvalue). A
simple example of an eigenvalue equation is:

; + ==+
o | Oy

02z

f,a_:}j L ssle
Hamiltonian operator: A ol ez W

2
"y

" 9m

Gl sda b AW = E¥ ] jaisy s dsles et U
i )y xing,d sl ai. W3 E ) Aad olg] £
C A R SYald S Lol 3y el oYl
e’y s(eigenfunction) by Je UL sl Py o
Dbl e bews Jle (@30 20 @) scalar — &g a2e

E RV OO
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Eq.2,5

d
) =ry

The operator here is d/dx. One eigenfunction
of this equation is y=¢ **with the eigenvalue r
being equal to a. Eq.1,5 is a first-order
equation. The  Schrédinger
second-order differential

differential

equation is a

equation as it involves the second derivative

> dlal) odd Eigen I aiby. d/dx s Ls Jeall
15 W5l azs . 2 gles (a0 iy T 815 =€ By
A ) g ol ez Y Jolidl s A )
sl by Je W dLJ\ EERAY JMJ cL}L’:J\ dl..'au.:.ﬁ\

of W. A simple example of an equation of this g s e
type is
Eq.2,6
d*y
dxz Y
The solutions of eq26 have the (y=Acoskx+Bsinkx |52 6 il J" oy

form v = A cos kx + B sin kx, where A, B and k
are constants. In the Schrodinger equation W
is the eigenfunction and E the eigenvalue.

2.1.1 Operators / o gazdi

The most commonly used operator is that for
the energy, which is the Hamiltonian operator
itself, F. The energy can be determined by
calculating the following integral:

Eq.2,7

[T w « AwdT
E="%

[Fwswar

(W*) : the wavefunction may be a complex
number.

E: scalar and so can be taken outside the
integral.

If the wavefunction is normalized then the
denominator in eq.2,7 will equal 1.

iy W CRng s Wbl 3020 ABK O co

Agzesd » B Eigen )

oKs et Y1 Jall s wll) O elals fada O)

el s Ot Dot e @l ol

= J‘F*H‘FdT=I‘F*E‘FdT

PPN CIRTE W UE TRV 7
b 2 Il 3T 3L S e 2 2 O S
1 sslweq2,7 dslall T A O da b
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The Hamiltonian operator is composed of two : L] S ot o Osthals Jrie Ll
parts that reflect the contributions of: kineticand o R ) .
potential energies to the total energy. The kinetic Jrir Sl Q) Jo gl Bl 5 2572 B0

energy operator is: ten a5 A Gl

Eq.2,8
_ w2

Zm

A.nd the .operator for tbe .pofential energy i .Ul i b 5, )l oo = e ty
simply involves multiplication by the . C ) B <.
appropriate expression for the potential iy slsom o 833 3 03 S il U SUISY
energy. For an electron in an isolated atom or s aSSl P S e Ll i~ S sl }‘,; fe Leiy
molecule the potential energy operator -

: 7 : Sl Dy SOV o ST 8y 0
comprises the electrostatic interactions u\_’”‘g ¥ 0 Yow =) U\_J Sl uj,.{d ¥
between the electron and nucleus and the .. ; g sy 85y Ay O3 S il L =V
interactions between the electron and the

. D AW el Aoz Bl |rie O (U 554 )
other electrons. For a single electron and a G ol o m Ehosst) B Jake O (Sl
single nucleus with Z protons the potential
energy operator is thus:

Eq.2,9

Ze*
V==

dreTr

Operator for linear momentum along the x ; e 3 Al 1 L) 4.8 )T PRIRtT o Jat
direction : ) ) .
(X o2Vl

Eq.2,10

| =

d
[ dx

The expectation value of this quantity can __ 5 3= o AaSl ol o ) das e Jsaadd ug; 3
thus be obtained by evaluating the following

integral: : ‘}u\ J"&;’U
Eq.2,11
[« %%?d?
P Ty swdr

[22]



2.1.2 Atomic Units /&)1 ol

The atomic units of length, mass and energy

are as follow:

1 unit of charge equals the absolute
charge on an electron,
lel =1.60219 x 1071

1 mass unit equals the mass of the
electron, m,_ = 9.10593 X 107 kg

1 unit of length (1Bohr) is given by
= h?

g

It is the radius of the first orbit in
Bohr’s treatment of the hydrogen
atom. It also turns out to be the most
probable distance of 1s electron from
the nucleus in the hydrogen atom.

1 unit of energy (1 Hartree) is given

by
E.=e?/4nsya, = 4.35981 x 10718

It corresponds to the interaction
between two electronic charges
separated by the Bohr radius. The
total energy of the 1s electron in the
hydrogen atom equals -0.5 Hartree.

2.2 One-electron Atoms

fz4?r ‘m e® = 5.29177 X 10~ m.

AW sl Jo on w3ty Jlall g Al 3,400 ol )

09 S i) bl 2l (s glud susly Wi @

le] = 1.60219 x 107 (

203 SV ST (6 glud Bty STy S by @
m, = 9.10593 X 107 kg

thly Ay gl e g3sf 1) Jgkllsasy ol @

=h*y .
%o f%‘ma.e‘ =5.29177 X 10™m.

A U 2356 @ Yl g s )
o e S BLL 0 o ) Ll J gy

e g bl 835 381 e 09 ) I

oy (S5 1) Bl susy ol o
E, =e’/4msya, = 4.35981 % 1078

Logbads (155 S o Cp ST o 38152 ) LS
@ oS Is S Blall ¢ sas (sl . 25 plad

In an atom that contains a single electron, the
potential energy depends upon the distance
between the electron and the nucleus as given
by the Coulomb equation.

[23]
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It is more convenient to transform the s S
Schrodinger equation to polar coordinates r, 0 . e . .

and ¢, (wavefunction) where: Sl 2y 5 Walas Jop2 Aasdle S ey
r: the distance from the nucleus Dl (B se U3) B g Oer dpdad)
0: the angle to the z axis

.. 8l j’ o Bl T
¢: the angle from the x axis in the xy plane

z yl 2yl 0 0
xy s fll 3 x sl e Byt D

Eq.2,12
ii!'Ir;'eim = Rni (ijimtg’ qﬁj
Y(0,p) : angular function called a spherical S9,S Guls o ¥ 35 4k 5:Y(0,0)
harmonic ielad dab 9 R(r)
R(r) : radial function 2,10 5 g ) (,_Q\ sdemn
n: principal quantum number: 0, 1, 2,... (n-1),...,1,0 ;M\ (,_Q\ R |
I: azimuthal quantum number : 0, 1,..., (n-1) L(1-1)...0...-(1-1),-1 : ool V‘Q‘ sie m
m: magnetic quantum number : -1, -(I-1), ...0...(l- i
1),1
Eq.2,13
— 2z\3 (n—1-1)! e Py lp2i+1
R, (r)=— {E) m exp (—EJF‘ Ly (o)
p= EZT‘fﬂaﬁ, Where ﬂa,} IS the BOhI' I'adiU.S. 'J’A‘}" C[,_A;, LSA -n_q_ﬂ C,_:;_ "P = EZT}"’ﬂ-ﬂD
L3i1(p) is a special type of function called a o . po1
Laguerre Polynomial Laguerre o &S o0 18 ¢ 5 2 Lt (P)
Polynomial
Eq.2,14
With:
?,.(¢) = —exp (ime)
/2
@i+ = mD
01 (0) = > 0+ D1 P,"" (cos@)
#,.(¢): The solutions to the Schrodinger _ (*““;' A5y il Jdde (¢)

equation for a particle on a ring. . ol b Ioml
Pl,l ™ (cos8): Series of function called the the associated ) #\— w5, £ (cos 8)

associated Legendre polynomials. (Legendre polynomials.
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O
» |
<

The common graphical representations of s, p and d orbitals/
S/P/d )“u ‘SJ;“:“U g;“}“"J’S‘ J‘«‘m‘
Src: http://butane.chem.uiuc.edu/pshapley/GenChem2/Intro/orbit.gif

The energy of each solution is a function of the
principal quantum number only; thus orbitals
with the same value of n but different 1 and m
are degenerate. The often
represented as shown in fig 2.1. These graphical
representations are not necessarily the same as
the solutions given above. For example, the
‘correct’ solutions for the 2p orbitals comprise

orbitals are

one real and two complex functions:

e
RS

kb S Q\;M\wjg;a&yasw 8]
055G Im ded Lin aed i U ol i of UL,
o3y S 3 e on LS Sl e L Uy ik
Jo s W 55l ed il JSaY o 21
Ol el S JU e e odlsl 5, STl

Do Gy de Ay e 0S5 2p

2p(+1) = 4/3/4mR(r)sinf e*?
2p(0) =+/3/4w R(r)cos B
2p(—1) =4/3/4nR(r)sin fe ¢

R(r): The radial part of wavefunction

/3/4n: A normalization factor for the angular
part.

2p (0): function corresponds to the 2p: orbital
that is pictured in Fig 2.1.

sl A e eleidl s A R()
(Sol sl ol s ole 2\ /3 /40

Fig 2.1 (3 5 5all 2p, s ae 31535 35 :2p (0)
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The linear combinations below are the 2px and 2Py ey 2pX Ak 35 5 ol N 4‘;4_;_\ oLl o

2py orbitals shown in Fig 2.1.

Fig 2.1 (3 cpo e 5l

2p, = 1/2[2p(+1) + 2p(—1)] = v 3/47 R(7) sin f cos ¢
2p, = —1/2[2p(+1) — 2p(—1)] =+/3/4n R(r)sinf sin ¢

These linear combinations still have the same .. i g 6L 4 e JI L 4‘;;;_\ L) ) oda

energy as the original complex wavefunctions.

ENEAN 4:5}‘

2.3 Polyelectronic Atoms and Molecules/ s 31y Ol saas O 5 S}

Solving the Schrodinger equation for atoms
with more than one electron is complicated by
a number of factors. The first complication is
that the Schrodinger equation for such systems
cannot be solved exactly (solutions can only be
approximations to the real true solutions).

A second complication with multi-electron
species is that we must account for electron
spin.

Spin is characterized by the quantum number
s, which for an electron can only take the value
Y. The spin angular momentum is quantized
such that its projection on the z axis is either
+h or —h. These two states are characterized by
the quantum number ms , which can have
values of +1/2 or -1/2, and are often referred to
as ‘up spin’ and ‘down spin’ respectively. The
spin part defines the electron spin and is
labeled o or (3. These spin functions have value
of 0 or 1 depending on the quantum number
ms of the electron. Each spatial orbital can
accommodate two electrons, with paired spins.
In order to predict the electronic structure of a
Polyelectronic atom or a molecule, the Aufbau
principle is employed, in which electrons are
assigned to the orbitals, two electrons per
orbital. For most of the situations that we shall
be interested in the number of electrons, N,

Oy or ST ol S Ay 8 il o Bles O]
) e iy 2l Sldae Ales 2 >y
Aoy dslal g8 sl S wl s LY asal
Dol Lo a5 J sl olg] Sy el ods
533zl C\j_s‘y\ — W Al ()l BaL
O AW I ol e st al e 05 STY)

OF 05 S S & 08 WShsam el o J 5 o
1/2 (6 sl iad Il

+h bl o7 0 o i o ) o ) U3 4ol
o S« & vﬁ‘ S QW) 0Ll e —h. o
" el Ll LU, -1/2 41 +1/2
) s 30 il Ol WS T el O jlae
Bl a DISEUINTEN RS-
SAe ot Ay ol i ded sda ) il g (s alus
SO s
2) S e s S e O S S
s A o, a5y SN &) 5 Sl (el 58
Gl Gl sl Ll e e 0 (b SO sl
ey ) ) by S s e S5 )

29 (U

.IMs OJJ
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will be an even number that occupy the N/2
lowest-energy orbitals.

Electrons are indistinguishable. If we exchange
any pair of electrons, then the distribution of
electron density remains the same. According
to the Born interpretation, the electron density
is equal to the square of the wavefunction. It
therefore follows that the wavefunction must
either remain unchanged when two electrons
are exchanged, or else it must change sign. In
fact, for electrons the wavefunction is required
to change sign: this is the antisymmetry
principle.

Eq.2,15

< ()

N ol 5 SV sty W e 02 Gl SV ol
T 33— s N/2— L;;Y\ Bla)l e Jriy O g

o T35 T b Ll 135 ke e iy SV )
) s . as iy BUS) 5 OB (b y SO
i b WU xS (5 glas O 9 SN BUS™ O O 4
JCRFR VP oW P E-RNO JUPE TR TRV ITRO T
QA i g Al Yy by SN e ) s
o U SIW 2l gl 2 ) WY O w31 )
Bl e fods O ya e By @) i

() =00 (+) - 0.0 ()-

2.3.1 The Born-Oppenheimer Approximation/ sl 5—0 s &yl

The electronic wavefunction depends only on
the positions of the nuclei and not on their
Under the

approximation the total wavefunction for the

momenta. Born-Oppenheimer
molecule can be written in the following form:

Eq.2,16

D s @lse e Lo 4y SOV B ) W) ez
ST Se Sl 0 n B sy s e
D AU KN e sl adlay) A Sl

y . (nuclei,electrons) = ¥ (electrons)¥(nuclei)

The total energy equals to the sum of the
nuclear energy and the electronic energy. The
electronic energy comprises the kinetic and
potential energy of the electrons moving in the
electrostatic field of the nuclei, together with
electron-electron repulsion:

Eq.2,17

i3l apy A dlall g s e wlall (Ll (sl
Blally 257 A Bl (s SV Bl a2y SN
(sl S i (38 ) b SIY e dhez

03 A =05 SISl e ) L

E.,. = E(electrons) + E (nuclei)
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2.3.2 General Polyelectronic Systems and Slater Determinants / <1342 3 dolall sdadll O f.ﬁ‘ﬂ\ dokasl

Ol

A determinant is the most convenient way to ; i ) IV LS 2 f{y\ i3 b)) 4a >l>i\ ol
write down the permitted functional forms of

AR AR SN RO PN NP PEUE AU NI SEN

a Polyelectronic wavefunction that satisfies the
antisymmetry principle. In general, if we have | L 3wy S N Ll 0™ 13 cple ISy bl

N electrons in spin orbitals X1,Xz,..., X~ then an . L 2 e . sl
acceptable form of the wavefunction is: g2 S L A J5s OB X0 X X A A

Eq.2,18
X1(1) Xx2(1) - XN(1)
wo 2 |X1(2) X2(2) . XN(2)
B : :
X1(N) X2(N) .. XN(N)

X1(1): indicates a function that depends on the . Sy sladll dila 2iby Je J:X1(1)
space and spin coordinates of the electron

labeled ‘1". SN
: T . . ) 1
%: ensures that the wavefunction is Lol T deior ol Al O ez TN
V! :
normalized. By O S SRt S-S RVURE AN | J&:J\ s

This functional form of the wavefunction is . v, .
. . . de ldwe bg i day =J) ds ) diuds \.L.\LM.,\M“\

called a Slater Determinant and is the simplest ¢ T $J S J >
form of an orbital wavefunction that satisfies the Bl
antisymmetric principle. ) ) . )
) o ) e I3 (638 ¢ 30D s i o pler Sl O 13
(If any two rows of determinant is identical, J @ ¢ RS R )
then the determinant vanishes) (>4= elan]

When the Slater determinant is expanded, a total PR

g . CLE_\&_A N! o 4o a2 ¢ O sus y o ]
of N! terms results. This is because N! different Cahs el & oF B
permutations of N electrons. e 0y S N I il s NI g 23
zzzef;a;rrf;}:fgsfor the three-electron system the :;A oty fﬁl B3 43 (Uéd samdl O

X1(1) X2(1) X3(1)

w=__|¥1(2) Xx2(2) X3(2)
P lx1(3) x2(3) X3(3)
Expansion of the determinant gives the following S 4 5Ll o okl sluzal o

expression:
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X1(1)x2(2)X3(3) — X1(1)x3(2)X2(3) + Xx2(1)x3(2)X1(3)
—X2(1)X1(2)%3(3) + X3(1)X1(2)X2(3) — X3(1)X2(2)X1(3)

This expansion contains six terms (= 3!). The
six possible permutations of three electrons
are: 123,132,213,231,312,321. Some of these
permutations involve single exchanges of
electrons; others involve the exchange of two
electrons. For example, the permutation 132
can be generated from the initial permutation
by exchanging electrons 2 and 3 (If we do so
we will obtain the wavefunction with a
changed sign —W).By contrast, the permutation
312 requires that electrons 1 and 3 are
exchanged and then electrons 1 and 2 are
exchanged. (This gives rise to an unchanged
wavefunction).

In general an odd permutation involves an
odd number of electron exchanges and leads
to a wavefunction with a changed sign; an
even permutation involves an even number of
electron  exchanges and returns the
wavefunction

i el 5y S s Sl & I

ol eda ae (645.123,132,213,231,312,321:
N L IO (KPR RC) ST
St of K8 S .y SOV e ol Dol e =Y
s e i N N e 132 10 s
e i 2l a3 133 0y SIY1 2 0,y STY)
s WSy (W ML e e B Sl A
s s 35 1wl Y s 312 4

(5 prie pE i gr WIS o L 1) 25 1 U SSIY)
o 3 e 3 Jals Je 5s 4l Al (ks le Sy
$shs ¢l A A s ) o ol S
Sl g S e g5 e ol e 2511 Al

The Slater determinant can be reduced to a
shorthand notation. In one system of the
various notation systems, the terms along the
diagonal of the matrix are written as a single-
row determinant

Gl o W2 deses U] Sllsas 2l Sg
S8 J b e 85 gl s gudd Rgbfvjca.é.l:ﬁd\ V)
3 ke 32 CraS W saal

Eq.2,19
X1(1) X2(1) X
X1(2) Xx2(2) X
X1(3) Xx2(3) X

3(1)
3(2)|=1x1 x2 X3
3(3)

The normalization factor is assumed. It is
often convenient to indicate the spin of each
electron in the determinant; this is done by
writing a bar when the spin part is  (spin
down); a function without a bar indicates an

el 05 S L W s, 31 it s 0
G o8 Al ey ol (30, S0) g8 J 58 )l
Bt 0,5 e bl 35 ol Ly als”
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spin (spin up). Thus, the following are all | | | 5y O Ll e 1 0 SG Lee T e a8 UL J 58y
commonly used ways to write the Slater . o o .
determinantal wave function for the Be atom | o—% b= (W8 (Bl L 0o 055 aib I o (el

(which has the electronic configuration 18> | 35§ 1> 01 &) Sl saz 40 deaszd) G L)) S
2s?) 162062
(157257 1 1 SV Lom 9) ek

Eq.2,20
¢ (1) 6,.(1) ¢,.(1) 6,.(1)
1 ‘i‘n[gj !'313[2] ¢23[2] !'32_.?[2}
V2% by, (3) ﬁH(EJ $,.(3) Ejz_q-(Ej
¢.(4) 6,.(4) #.(49) 6, (4)

W=

= |¢13 ﬁjﬁ' ¢23 ﬁ!s

= |15 1s 25 25|

An important property of determinants is that | 5 ¢ f _5 4 of P OBl tegd) Sliall s
a multiple of any column can be added to | o s ' - L s
another column without altering the value of ! el e ok Ogy 2T 0 pele ) iz O S

the determinant. This means that the spin |a_Lii 5 31l Sy oy p cond Ol Al S 00 on
orbitals are not wunique; other linear 05 L) o “;‘
combinations give the same energy. S Bl Jans O s Y

2.4 Molecular Orbital Calculations / &3 it bl

2.4.1 The Energy of a General Polyelectronic System/ ! saai (3 5 2SIy ala:l) 28al1

For N n-electron system, the Hamiltonian takes ICa ) e 0 salald) dss ¢ 0 Sl Nl J:.—T o
the following general form:

Z(\.sd\
3 2 1 1 1 1
H= —%Z Vi v —+—+
= a T iz T3
A, B, C, etc: indicates the nuclei. S e ;&1 ..A,B,C
1, 2, 3, ...: indicates the electrons. .
The Slater determinant for a system of N 0y AN e d 1, 2,3
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electrons in N spin orbitals can be written:

gLt el J#
X1(1) X2(1) XN (1)
X1(2) X2(2) XN(2)
Xll[N] Xszj XN:(N‘J

Each term in the determinant can thus be
written Xi(1)Xj(2)Xk(3)...Xu(N-1)Xv(N) where

ij,k,...,u,vis a series of N integers.
As usual, the energy can be calculated from

(1)Xj(2)Xk(3)... Xu(N- —S 308) 3 d> S als” S
LSS N edlads o gk, u0 e 1)Xo(N)
tope Bl Ol S Bl

E

[ wHY

[ wy

J PHY = J J drydry - dry {[Xz' (DX;(2)%,(3) -]

x (—%Z Vi /) = (g et (1) + (1frﬂ]+---)

X [X,(1)x,(2)x,(3) .. ]I

7= [ ] trstrs 2 0 @00 B @R ]

If the spin orbitals form an orthonormal set
then only products of identical terms from
the determinant
integrated over all the space.

(If the spin orbitals are normalized, integral
will equal 1)

(If the term involves different electrons, it
will equal zero, due to the orthogonality of
spin orbitals).

will be non-zero when

The numerator in the energy expression can
be broken down into a series of one-electron
and two-electron integrals. Each of these
individual integrals has the general form:

B slae e ez i i) o)l 04 J- 8
o s 22U L) (term > &) 294k Ol dalaia

S s i (s glus Y sud
(Al LS (6 sy (LolT e 2101 ol bl 1S 13))
Ao (§ gl 6Bl Uy S e W el ) b )

(A O e bl oy

LSS e Bhdee 1 & 5 5Ll (3 o) s S5
LS ST L0 SN e ) NSy s gl 0 SO
) Sl s el oYl sdin e 5 e
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j j dridys - [terml]operator[term2]

[term1] and [term?2] each represent one of the
N! terms in the Slater determinant. To
simplify this integral, we first recognize that
all spin orbitals involving an electron that
does not appear in the operator can be taken
outside the integral. For example, if the
operator is 1/ria, than all spin orbitals other
than those that depend on the coordinates of
electron 1 can be separated from the integral.
The orthogonality of the spin orbitals means
that the integral will be zero unless all indices
involving these other electrons are the same
in [term1] and [term2].

For integrals that involve two-electron
operators (i.e. 1/ri), only those terms that do
not involve the coordinates of the two
electrons can be taken outside the integral.

oA a2 e B IS [term2] s [term1] ) 2ol
e s o Vim0l e (oS e Lo
s O oKe e JRll e Y 0y S e sl U
O ¢ Jxadl oo 1/ria O 13 (JE) Jw o, JolSH) e
Sl >] e Gaazy @1 e L ) ol S
S Bl o), JolS) e aghaad S 10 SIY
J—" STV i 6 sl JulSII OF om 253
3 i p 2V Uy S o eas ol 3 5
Jterm2] s [term1]

Sy SV r o) Jrte ez ) NS a3
a3 N o (terms) 39 A) ods Lds ((1/ry) Jle
o T O e ol S o Y S
QS

It is more convenient to write the energy
expression in a concise form that recognizes
the three types of interaction that contribute to
the total electronic energy of the system.

First, there is the kinetic and potential energy
of each electron moving in the field of the
nuclei. The energy associated with the
contribution for the molecular orbital Xi is
often written Hi“¢ and M nuclei. For N
electrons in N molecular orbitals this
contribution to the total energy is (the actual
electron may not be ‘electron 1'):

e e se Sy dy ) Bl 8 le 3,lS J«ﬂ-’\“ o
Ay SIY) alall L] (3 s ) BN ST g1
Uil

09 S IS o ) slally 8™ A1 el s d N
S plenly 2l U wlll LSS L W s 5 Jeels & ey
& O3 AN Sl a5 M Hieore 1S Xi s 54!
o 0l L) e el s g oyl N

((‘electron 17 5,5 pally ud  Jadll 0 5 SV

ESors —Z f driX, (13( L%

]
Za _ core
Za)?ﬁ[l] ; H;;

The second contribution to the energy arises
from the electrostatic repulsion between pairs
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of electrons. This interaction depends on the
(Ji).The  total
Coulomb contribution to the electronic energy
of the system is obtained as a double
summation over all electrons, taking care to
count each interaction just once:

electron-electron distance

O Bl e aeldl U ez .U 5 SV e 15
Pl Jeal e Jsad) o ()05 A= 05 S0
e T g ol gy SIY) plad Bl eyl S

3y 30 U S s e o A e i SN S

N
I 1
Efeutemb = Z dridry X (le}[Ej - X}-(EJXE- (1)
J=i 12
N L
= Z drydpy X, (1)X, (1:]T X,(2)x,(2)
jzi

The third contribution to the energy is the
exchange “interaction’.

If two electrons occupied the same region of
space and had parallel spins then they could be
considered to have the same set of quantum
number. Electrons with the same spin thus tend
to 'avoid' each other, and they experience a
lower Coulombic repulsion, giving a lower
energy. The total exchange energy is calculated
by the following equation:

ST sl s wlall U L)

Oy cladll (3 el i by SIY) oo ol Jol 13)
YIS I - PN Ll e gt
' () Gl 213 by 2SIy
Lt a3V or ol s el ko dgiSy and) Lgniam
sl I3 e )l Ul iy g5 B oy
U

W

e ) s

N

Eaxchﬂnga
totel

i=1 j =i+l

zi Z ﬂ dyydyy X,(1)X,(2) (E)Xitzjjg.uﬁi Z

N
1

K;;
i=1j =i+1

K;;: Energy due to the exchange.

The prime on the counter ,j'indicates that the
summation is only over electrons with the
same spin as electron i.

JaLdl dalaze R.BUa:KE.}.
e B ga ekt OF e Jus 7 sl G b 2l 0]
A OL.:.Q\;[\WCARL,M (J5%) Dpew I3 QU)J:.Q\;[\

2.4.2 Calculating the Energy from the Wavefunction: The Hydrogen Molecule / :ix i d\Wi e Bl Clecs)

o g b 56

In the most popular kind of quantum

mechanical calculations performed on

molecules each molecular spin orbital is

S SO et Slheall o Bns S £ &
S5 s e 3 ST ) e oy e s 2 )

[33]




expressed as a linear combination of atomic | 1, i ol lual) Lo gL a3 by 55 ol Jas
orbitals (the LCAO approach)’>. Thus each o 5 )
molecular orbital can be written as a| @7 S S S O S 1Sy L Gr A

summation of the following form: AU Sl e

Eq.2,21

where ¢; is a molecular orbital represented as | - Sl ek § yo s M o A e e
the sum of k atomic orbitals ¢,, each .
p =g Cpi Ll Jolas. o g puze .b—‘j‘)f cqﬁﬂag).ﬂ\
o O Dl Ll 3 o, Sl e medl o o
and u represents which atomic orbital is | 3oY i 3Uall 3 G Sae slislias Sl s, Sy
b G5 o 05S @l (Ogl ell) g e

Do gl 5 ST e e Y

multiplied by a corresponding coefficient ¢;,

combined in the term.* There are two
electrons with opposite spins in the lowest
energy spatial orbital (labeled 1og), which is
formed from a linear combination of two
hydrogen-atom 1s orbitals:

Eq.2,22
lg, = A(1s, + 1s5)

To calculate the energy of the ground state of v s b s b A el A Bl Gl J-»T o

the hydrogen molecule for a fixed o .
Y ol =SS ol e s sl aldl sl dslnald

internuclear distance we first write the
wavefunction as a 2 X 2 determinant: 232 ddweS Ao jl\

Eq.2,23
_x1(1)  x2(1)

v= X1(2) x2(2)

= X1(1)x2(2) — X1(2)X2(1)

(See paragraph 2.1.1 operators) In atomic | s, il ol @ osbl) (Jazl 2,11 plaill x> )
units the Hamiltonian is thus:

2 LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in
quantum chemistry.(Ref:Wikipedia)/(._Q\ shaS” 3 A A ol Oled 4y 3,40 ol ) e V'Q‘ S5 » LCAO
3 Ref: http://en.wikipedia.org/wiki/Linear combination of atomic orbitals molecular orbital method : .2l
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Eq.2,24a

H=_;v21_;?22_é_é_z_ﬂ_23+ 1

= < Tha Tger Tha Tor Tig
Eq.2,24b
=H; +H; + (1/m;)

1 and 2: indicate the electrons. sl e Ju A B
A and B: indicate the nuclei. .QU)J&J\;{\ e Ju:1, 2
Za and Zs:nuclear charges =1. A als ) s ZpoZa
The energy of this hydrogen molecule: HECE PRV IS t1Z
Eq.2,25

7w« Awdr
E="x%

[27w = wdr

The normalization constant for the wavefunction 83 S a1l e s e
of the two electrons hydrogen molecule is 1/32

and so the denominator in Eq.2, 25 is equal to 2.
Substitution of hydrogen molecule wavefunction | 2 25 alslall (3 cor o0l o6 & 2o L Al L5
into Eq.2, 25

2 (53lei 2,25 Wslald 3 a5 T2 g2 G g 0!

Eq.2,26
E= %ﬂ dridro{[X1(1)X2(2) — X2(1)X1(2)][H, + H,
+ (L/1y)][X1(1)x2(2) — ¥2(1)X1(2)]}

Eq.2,27
E= ﬂ dT1dT2x1(1)X%2(2)(A, )x1(1)x2(2)

- J dTr1dT2Xx1(1)x2(2)(H,)x2(1)x1(2) + -
+ ﬂ dr1dr2x1(1)%x2(2)(A,)x1(1)x2(2)

- J dT1dT2X1(1)x2(2)(H;)x2(1)x1(2) + -~

! )xzujm(zj

EE

+ J(f dT1dT2X1(1jXE(2)(

[35]




- ﬂ dT1dT2X1(1jXEEEJ(

! )X2(1jx1(2j+---

EE.

Each of these individual terms can be
simplified if we recognize that terms dependent
upon electrons other than those in the operator
can be separated out. For example, the first

term in the expansion, Eq.2,25,is:

3o sl 0T Ll 1) oo de I > S JIpel Sk
Ly S Sy by S s Silezes (terms
s e Sl g oSy ) 3 8

P Eq.2,25 dslall e J 531 2

Eq.2,28

ﬂ dT1dT2x1(1)x2(2)(H,)x1(1)x2(2)

The operator H is a function of the coordinates
of electron 1 only, so terms involving electron 2
can be separated as follows:

3 ks 1oy SO Uiy 2k, o [ Rl of
:QL:S\.(Z 05 SV daladd) Sldlaall Lab LS

Eq.2,29

H dT1dT2x1(1)Xx2(2)(A,)x1(1)x2(2)

=Jdexz(2]H[EJIdT1X1m (_

1]

e ESTEY

14 Mg

If the molecular orbitals are normalized, the
integral [ dT2x2(2)x2(2)=1.

S 0 (sl T i 56 A Ol e 2518 U 3

1 sl [dT2x2(2)x2(2)

Eq.2,30

14

1

220 et

e

d» indicates integration over spatial coordinates.
do integration the spin
coordinates. The the spin
coordinates =1.

Now we can substitute the atomic orbital
combination for 1og:

indicates over

integral over

A WY LSS e Jodo iy
Sl ) i oY LSS e Jeds iy
N S sl A 3l OUIAY) e

gt ek 10y Jldew! oY) LS
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Eq.2,31
1772 1 1
[ (47— )0

= Hzfdvl{lsﬂ[lj-l- 1s,(1)}

e LR

14 g

The integral in Eq.2,31 can in turn be factorized
to give a sum of integrals, each of which
involves a pair of atomic orbitals:

et (NS de gz U Eg.2,3 LS e Sl

Eq.2,32
[ dostasy ) + 155 (03 (=5 T3 ) s (D + 1550
= [ @ 15y (-5 7, —i—é) 15,(1)
+ J dv, 1s, (1) (—% v - Ti— Ti) 15, (1) + -

If we apply the same procedure to the second
termin Eq.2,27 :

il 3 DA e ool Y e Gedeny L3 13)
:Eq.2,27

Eq.2,33
H dT1dr2x1(1)x2(2)(H,)x2(1)x1(2) =
Eq.2,34

f dTle(l)[I:I)XE(ljf dT2X2(2)X1(2)

f dT2x2(2)X1(2) = 0

Eq.2,34 equals zero because the molecular
orbitals are orthogonal.

Sdalais s A Ol e OY Jio Eg.2,34 sl s glus

2.4.3 The energy of a Closed-shell System/ ddlall ddkl\ otk 28U

In a closed-shell system containing N electrons
in N/2 orbitals, there are two spin orbitals

associated with each spatial orbital iy and

A e N/2 3 09, N (65 alee 22 ol (3

I ety IS ey e J5a ol e e o) Sl

i g SY) A Ol (SeB 5 Pt B
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Yif. The electronic energy of such a system can

be calculated in a manner analogous to that for
the hydrogen molecule. First, there is the
energy of each electron moving in the field of
the bare nuclei. For an electron in a molecular
orbital Xi, this contributes energyH °"*. If there
are two electrons in the orbital then the energy
is 2HS®™ and for N/2 orbitals. The total
contribution to the energy will be:

Ien Vgl o s,debl sy BBl ol AbLE 5
el o 55,2 8 e 308 sy 0 S ST B
O I3) L HETE Bl 053 X e 3 0y
HEore2 Bl 0S5 ) (3 by sSOYI e on) s

Pl plen] L) 05805 e N/2

Nf2Z

Z 2 H:Gi org

i=1

The Coulomb interaction between each pair of
electrons in the same orbital must be included,;
there is no exchange interaction because the
electrons have paired spins. The total energy is
thus given as:

& Uy S g5 IS o oS ST AT
OV U5 Usls dor g ¥ Sy lasY) o ) s
Sl 056 i g e (J5%) Dl L) 0y S0y

:\21 EH VY

NfZ

Ni2Nf2

E=2 Z 2HZ™® + ZZ [2}5}- - K"J')

i=1

i=1 =1

2.5 The Hartree-Fock Equations/ 2 #— yya Y3l

In most electronic structure calculations we are
usually trying to calculate the molecular
orbitals. But for many-body problems there is
no ‘correct’ solution; so the variation theorem
provides us with a mechanism to decide
whether one proposed wavefunction is “better’
than another. (The best wavefunction is the
one with the lowest energy). The Hartree-Fock
equations are obtained by imposing this

condition on the expression for the energy.

ol ssle ol s o SV Al olles s 3
Yl Bl o diiteld adlly Sy e A o s
T e B W I 1 (e s s
o B all A A ST b s e sl
S A s el a0 A o) s s e Ll
— S eVl Je Jsad) S (oY) Bl el
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The Fock operator (f;) takes the form:

lal) 5 5Ll (3 b sl i Jlts) IV e H g
P Sl ) fi( s sas Al

N
£ =H () + ) (D) - K (1)
=1

The Fock operator for a closed-shell system, has
the following form:

P el azkal) ardal) allad ) fi( 45 i Al

Njiz

£ =B (1) + ) (2],(1) — K, (1)
=1

The Hartree-Fock equations then take on the
standard eigenvalue form:

ALY 2 aad) Sy 8 -6 5 s Vsl dxls

‘ fiX;= &X;

2.5.1 Hartree-Fock calculations for Atoms and Slater’'s Rules/ jMw 48! #y &1l & d—cs 5yl cluc!

The Hartree-Fock equations are usually solved
in different ways for atoms and molecules. For
atoms, the equations can be solved numerically
if it is assumed that the electron distribution is
spherically these
numerical solutions are not particularly useful.

symmetrical. However,
Fortunately, analytical approximations to these
solutions
success. These approximate analytical functions

can be wused with considerable

thus have the form:

oo a6y Pl Sale 8 5l Vol o
3 Lnd, SVolall o oS0 ol il ool 54
St ekt ek e Lol ) a3 ) gl s
oda ol Sy J bl add ol (o  plasin)

A e o b ol a5l sl

‘ 1'!'!I = Rn! [T]YEm(E!‘;’j

Y is a spherical harmonic and R is a radial
function. Slater suggested a simpler analytical
form for the radial functions:

A o A aslhd Bl AR 6y S S5 A Y
elea)) sl ) bl JUE IS

R, (r) = (202 [(2m) A
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These functions are universally known as Slater
type orbitals (STOs). The first three Slater
functions are as follows:

(STOS) D e g 45 Llle sl 1 adis G5 of

Ry, (r) = 267%™

4 5 1/
RES [Tj = Rz'p Ef'j = (?q) re

Ry (r) = Ry, (r) =Rgy(r) = (—) rie”™"

To obtain the whole orbital we must multiply
R(r) by the appropriate angular part. Slater
provided a series of empirical rules for

choosing the orbital exponents ¢, which are

given by:

dyadt Jorl o ccnldd ol s AL R(r) e ot
Al s e Lo e bza), LI e

to e sl (S s Y Y dy

Z is the atomic number and o is a shielding
constant. n* is an effective principal quantum
number, which takes the same value as the true
principal quantum number for n=1, 2, 3, but for
n=4, 5, 6 has the values 3.7, 4.0, 4.2, respectively.
The shielding constant is obtained as follows:
First, divide the orbitals into the following
groups:

20t .o shielding sds 2 G 5 )5 348 o 2
V_Q\zx_pwuwis‘g%cdﬁéwjvf;w
A=l 456=nadl> 3 Ul 1,23-n Jad) i)
sde Jo Jpadl Sy 3.7, 4.0, 4.2 gyt R )

1D e eyl shielding

A e pe) 1 Sl e

| (15); (252p); (3s, 3p); (34); (45, 4p); (4d); (4F); (55, 5p); (5d)

For a given orbital, o is obtained by adding
together the following contributions:
a) Zero from an orbital further from the
nucleus than those in the group;
b) 0.35 from each other electron in the
same group, but if the other orbital is
the 1s then the contribution is 0.3;
c) 1.0 for each electron in a group with the

= s 0 O o Jpadl Sisas s - 3
AU ollgny)
oo M Vg o sl o Y M e e @
s sesm) 8
3 sl s sadl ks (30K IS 0 035 (D
0.3 plew 05 Ts =Y Il 0713 el
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quantum number 1 fewer than the
current orbital;
d) For each electron with a principal
quantum number 1 fewer than the
current orbital: 1.0 if the current orbital
is d or f; 0.85 if the current orbital is s or
p.
The shielding constant
electrons of silicon is obtained using Slater’s
rules as follows. The electronic configuration

of Siis:

for the valence

1 gbs o5 3o g3 a0 sl 3 05,50 1.0 (C
U e
o BT gl oty o5 200 93 0,80 O (d
of 5 d Qb b ol dl- 3 1.0 W )
P sl s JUH Al 0713 0.85
ol s SN ol shielding sas Jo Jsad) Sl
AU el e L sl a0 Sdd 281K
42 51 0,5 (35 SV

‘ (1s?)(25%2p 6][3523}01]

We therefore count 3x0.35 under rule (b), 2.0
under rule (c) and 8x0.85 under rule (d), giving
a total of 9.85. When subtracted from the
atomic number (14) this gives 4.15 for the
value of Z-o.

22,0 (b A e 3x0.35 o U3 e <L
¢ s i Lt d sdeldl Cnkt 8x0.85 5 «c sisldll
o 14 e e et e e - (3 .9.85 (sl

Z-0- W 1 iS 415 s J sad

8 s e s J 50

2.5.2 Linear Combination of Atomic Orbitals (LCAO) in Hartree-Fock Theory/ <!yl 31 31 &l

The most popular strategy, to find solution of
the Hartree-Fock for the molecules, is to write
each spin orbital as a linear combination of
single electron orbitals:

e b-5 5 ln BJJLA&J\%‘;J (A ff\!\ o) )
s 33 e J3E S AT s ol )
3,4l 09 SN el

v,

The one-electron orbitals ¢, are commonly
called basis functions and often correspond to
the atomic orbitals.

K: number of basis functions.

At the Hartree-Fock limit the energy of the
system can be reduced no further by the
addition of any more basis functions; however,

Wl sl JU g, A 0 SN ool e O3 e
AL el e Jw b QL'@
el sl ) s K
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it may be possible to lower the energy below | (L) asid u-<‘° WA sl I e ails sl BLs)

the Hartree-Fock limit by using a functional

form of the wavefunction that is more extensive W € Ly Jsad Pl D= )bl A o

than the single Slater determinant.

For a given basis set and a given functional

Al S ST e N ST a0 ) i

form of the wavefunction (i.e. a Slater o g Bodma Bl Bt € Joloe s 5ast Jadl O
determinant) the best set of coefficients ¢,; is | &> » (M s (sl) ae sl Wl sas Ry

that for which the energy is minimum, at which

point

ileidl oda 3 35V aag Bl 0 S5

oF

for the coefficientsC,;. The objective is thus to o I W PAU U T PN \21 S NPAR) I AN VTN

determine the set of coefficients that gives the

lowest energy for the system.

.C-Ué.;U sl JST u’"";

2.5.3 Closed-shell Systems and the Roothaan-Hall Equations/ Jw— 33y <Y¥slas y dalall ddall alls

We shall initially consider a closed-shell
system with N electrons in N/2 orbitals. The
derivation of the Hartree-Fock equations for
such a system was first proposed by
Roothaan [Roothaan 1951] and
(independently) by Hall [Hall 1951].Unlike
the integro-differential form of the Hartree-
Fock equations, Roothaan and Hall recast the
equations in matrix form, which can be
solved using standard techniques and can be
applied to systems of any geometry.

The standard form for the expression for the
Fock matrix in the Roothaan-Hall equations:

@ 03 SN a2l ailll pllas Lol JKaue imd g
M il o s 5,0 o¥las L) 18] &l N/2
Uiy 5 Roothaan [Roothaan 1951] J—5 oy cellad)
integro- JS—& &M% .Hall [Hall 1951] (e
Jlay 0L Sy, slel (83— 5 bl oYl differential
b S 2 Wha e S U] Vsl 2ls
itz ol e Lol Sy bl 0Ll aldsszal,

S e
Vsl xe 3 By b waa i d sl Ll ISSad

Uﬁ_&?ﬁ)

= HE™ +i i&g |(uvlio) = 2o
A

=1 g=1
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2.5.4 Solving the Roothaan-Hall Equations /J s#—0U 5, <Yl Jo

The Fock matrix is a KxK square matrix is
symmetric if real basis functions are used.

The  Roothaan-Hall equations
conveniently written as a matrix equation:

be

can

J 3 3 bline B gime x 0 KK 85 5000 055
clentos B loY (sl ) 518
L bsleS” O 2 Je J a0l s, oVsles LS K6

3\3}.4...,4_»

FC=SCE

The elements of the KxK matrix C are the

coefficients Cui:

C:L-l CL: ELK
Cc = “?2,1 'F":,z 'E?:,K
Cg1 Cka2 Crx

E is a diagonal matrix whose elements are the
orbital energies:

:)\A\QGLJ;@LAI@\JO?%R}MJQ@E

g 0 .. 0
0 s

E= =2 0
0 0

Ex

A common scheme for the
Roothaan-Hall equations is as follows:
1. Calculate the integrals to form the
Fock matrix, F.
Calculate the overlap matrix, S.
Diagonalise S.
Form S,
Guess,
initial density matrix, P.
6. Form the Fock matrix using the
integrals and the density matrix P.
7. Form F’'=512F 512,
8. Solve the secular equation |F-EIl=0

to give the eigenvalue E and the

solving

G e

or otherwise calculate, an

:L'Bj.é.qa_&\ LslS colus ng_a'-f iy JT e

QS s S0l ) Vsl b aladl Llasll
Fedpine Ko ) bl Cluzs
S s paal) | Ol

S e

S J&w

(S O S N

P ca.rut.w%“

B paall BLSTy Jelall plaszaly & B 502e | Sa5 .6

P
F'=S12F S1° J:g‘;; 7
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eigenvectors C’ by diagonalising F’'.

9. Calculate the molecular orbital
coefficients, C from C=S12.C’".

10. Calculate a new density matrix, P,
from the matrix C.

11. Check
calculation has

for convergence. If the

converged, stop.
Otherwise repeat from step 6 using
the new density matrix, P.

This procedure requires an initial guess of

the density matrix, P.

The result of a Hartree-Fock calculation is a

set of K molecular orbital, where K is the

number of basis functions in the calculation.

The N electrons are then fed into these

orbitals in accordance with the Aufbau

principle, two electrons per orbital, starting

i) Jo Jyad) i e IF-EII=0 L0 >~ .8
F e pe C il Olgmadl 5 Bl
C=S512.C o C e S5 ) Jolas Slut 9
. Cabsaall o, Peib sial) 50 11T Oluas! .10
A Ol L 0T L= 3.0 )W 35y o il (11
SR PSR RPN PG Y PPN
P 3 shaall sad ) LSl pliasiaa) mo 0 55kl s
P i paall BUSY Ll el ol ) s e,
ek e aesaz o il Bl Besl s )
dgled b 3 2wl sl ) osae sk es ‘S
o) b Ol saeld Gy el )l ¢ e 0y S0 N p i

Blall ol g3 Sl e leliz) et gl Il by SO n

with the lowest energy orbitals. The
remaining orbitals do not contain any RN
elec.trons; these are known as the virtual Sl 05 S sl s 5 Y ol mkadl ol O
orbitals. i

sl Y
2.5.5 A Simple lllustration of the Roothaan-Hall Approach/ J 52— zgd b e 5
Example: HeH+. HeH+.: s

Objective: how the Roothaan-Hall method
can be used to derive the wavefunction, for a
fixed internuclear distance of 1 A°.

There are two basis functions, 1sa (centered
on the helium atom) and 1ss (on the
hydrogen).

Each wavefunction is expressed as a linear
combination of the two 1s atomic orbitals
centered on the nuclei A and B:

Jrl e Ja=0U 4 b plasnal 348 3 1m0 13U
AT (cgls o sl st ls BLL (i 1 A1) &J—ra;s
55 e 555 ) Tsa ciwloY) (sl ) e o) Sls
(O ) Tsss (p st

Is i, dl ol lual) ados 331 58 o oo s S 3748
By A s a5

Y, =l +cp 15,
Yy =cpuls, +cplsg

Solving the Roothaan-Hall:

-1 and 2- Calculate the integrals (here there is 2

g Ly bl Glast =251 1 sa-00, ) 1>
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electron integrals) to form the Fock matrix, F,
and calculate the overlap matrix, S:

The diagonal elements of the overlap matrix, S,
are equal to 1.0 as each basis function is
normalised; if the off-diagonal elements have
smaller, but non-zero, values that are equal to
the overlap between 1sa and 1ss for the
internuclear distance chosen. The matrix S is:

F2 b 2 sian [S25 Jo o (09 A1 Jalos 0 0
S aSLaal) il Ol

Sy (sl ¢ S aSladl B paal) ole ki 0|
zo ol ol Ji- &3 Gl 2 anlf ik
On Shladl (sl ot rol 18Y b dad UE Ll
L S @ sa.2ll L5l Joels dias L.l 1sp 5 1sa

1.0

0392
5= (0.392 )

1.0

The core contributions can be calculated

HGE‘?"E
v
as the sum of three 2x2 matrices comprising the
kinetic energy (T) and nuclear attraction terms
for the two nuclei A and B (Va and Vs). The
elements of these three matrices are obtained

by evaluating the following integrals:

W semaS B wlb bl Y ol S
Oldla sy (T) iS A Bl iaf (2x2) b yinas
SSel (VB sVa ) B s Al oo oY 555l QAL
et P e MW Slgiall jole e Jpad

A Ll

1, = [ duo,) (—;VE

Voo = [, (0 (- 22) 9.1
Vi oo = f v, 0,(0(~ = 22) 8,1)

iE

)cby[l]

The matrices are:

fA b saall

r— (1.412 u.ns1j = (:ﬁﬁ}f;

0081 0.760

—D.?EB] A

o758 _ (—0.525

a2 —0.308]

—1.227

H core is the sum of these three:

R_’,"))\_ﬂ\ IRTS c‘\ st H core

—0.985

Hcgpg — (_2.45? 1103

—0.985

As far
concerned, with two basis functions there are a
total of 16 possible two-electron integrals. There
are however only six unique two-electron

as the two-electron integrals are

integrals, as the indices can be permuted as

o o) e OlesVL 83 e le g SOY OSSO L
S Jlat 16 g 32 s Ol @ Yslall
(8 9 ASIW By b alas e Lo Hla Sy o g SIW
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follows:

AW e e o i sl s (S ls

(i)(1s; 1s,|1s,1s,) = 1.056

(ii) (15415, |1s,15;) =(1s,15,4|1s5515, )=(1s,155]|15,15,) = (1sz15,|1s,1s,) = 0,303
(iii) (154155 |15,155) = (15, 1s;|1s51s,) = (1sgls,|ls,1sp) = (1sgls,|1s51s,) =0.112

(iv) (15415, |15515,) =(1s5 1s5]|15,15,)=0.496
(vi) (1sglsgl1s51s5) = 0.775

1s,1s5) = ( 1splsgpllspls,)=0.244

To reiterate, these integrals are calculated as
follows:

AW e e oS i ST

~0,(2)0,(2)

LT

(ol = [[ doyos0, (0, (1)

Having calculated the integrals, we are now
ready to start the SCF calculation. To formulate
the Fock matrix it is necessary to have an initial
guess of the density matrix, P. The simplest
approach is to use the null matrix in which all
elements are zero. In this initial step the Fock
matrix F is therefore equal to H <.

The Fock matrix must be transformed to F’ by
pre- and post- multiplying by S/

3 edd sl ul e OV 42 ¢ LS Ol ay
G ) Db B shas 18lo T e SCFl Clus
O P b sial) BT LY e Sla 0,5 0f 5 5 )
o Gl e 18U Bl plisal gk L]
B35 s5ld W Bkl ol 3 ko s olis

Heore ¢ F

ol dny e B S mghan b (4

:S12
s-1/2 — (—1.055 —0.217
—0.217  1.065
F’ for the first iteration is thus: )l J_i, J jy )
v (—2401 —0.249
F= (—0.249 —1.353]

Diagonalisation of F gives its eigenvalues and
eigenvectors, which are:

DU Al 5 3 Rl Jany B et O

—2.458
0.0

0.0

E —1.292

(

0975
0.220

—0.220
0975

Je=( )
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The coefficients C are obtained from C=512 C’
and are thus:

P C=512 Q0 M e € el e J gt (S5

c= (0.99 1

—0.446
0.022 )

1.087

To formulate P the density matrix P we need to
identify the occupied orbital(s). With a two-
electron system both electrons occupy the
orbital with the lowest energy. At this stage the
lowest-energy orbital is:

RAJEAN (CH SRR VNN PR PP S U i P
o U g SV LS e 0 S plss e
fo hkedd W wlall al> U sl (3 3oV sl

| ¥ = 0991 1s, + 0.022 1s,

The orbital is composed of the s orbital on the
helium nucleus; in the absence of any electron-
electron repulsion tend to
congregate near the nucleus with the larger
charge. The density matrix corresponding to

the electrons

this initial wavefunction is:

Aol J 3 Qe S e paddl Bls 3l Gl
A ol ) Uy SN 0 8- 0 5 S0
AL adlad) 8 paal) BUST O s ST e 315 e

t i oY) i Sl

p— (1.964 0.044)

0.044 0.001

The new Fock matrix is formed using P
and the two-electron integrals together
with Heore,

The complete Fock matrix is:

O3 S =V eSS 5 P oplisszaly s &6 35020 Cally

.Hcorecﬂ
t ot Al 2 b 3 shas O)

(—1406

—0.690
—0.690 )

—0.618

F =

The energy that corresponds to this Fock matrix
is -3.870 Hartree. In the next iteration, the
various matrices are as follows:

3 55 n 3870 4 5 siac Glas B Bl (5 gl
AU S e p e sl ol siall (U1 ) S

F=(To3er —oase) E=(o0 _azs)

T LR
. . 1436 —0.738

p=(;_§gg g.ﬁig) Z(—u.?as —0.644)
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Energy =-3.909 Hartree

The calculation proceeds as illustrated in the
table below, which shows the variation in the
coefficients of the atomic orbitals in the lowest-
energy wavefunction and the energy for the
SCF iterations.
converged to six decimal places after six
iterations and the charge density matrix after
nine iterations.

first four The energy is

The final wavefunction still contains a large
proportion of the 1s orbital on the helium atom,
but less than was obtained without the two-
electron integrals.

o) J gl 3 ond) S st agled) a el azs
L aslall (3,4 ol ) febes @ gl o U
Bl & SCF S5 ay,l J oY wlally 2 5l il
Ay @b ginall BUS Gty ST B iy By i STLT
S s

o 5 d (e s J15 Y A ae Sl dlll o)
sl & il o BT Sy o sld 5,40 Ts eyl
0 SV olSS 00y e

Iteration C(1sa) C(1ss) Energy
1 0.991 0.022 -3.870
2 0.931 0.150 -3.909
3 0.915 0.181 -3.911
4 0.912 0.187 -3.911

Table: wvariation in basis set coefficients and
electronic energy for the HeH+ molecule.

o g SO By old] o] oy B 55 i gt
.HeH+

2.6 Basis Sets / ol sl i

A basis set in chemistry is a set of functions
used to create the molecular orbitals, which
are expanded as a linear combination of such
functions with the weights or coefficients to
be determined. Usually these functions are

atomic orbitals 7ype equation here, in that

they are centered on atoms. Otherwise, the
functions are centered on bonds or lone pairs.
Pairs of functions centered in the two lobes of
a p orbital have also been used.

L e s gast b clalSUl 3 Bl Ole sadtl 0]

JSs e ) e ol e sl ol e Al

g ) alally 015531 e sl gl sdn i adas 38 5
et 3 ol sale il ) eda OS5 L Lgule J ek
5SS e 05T Ll OB Ny ol 3 5SS e 0SS
ST 1Y 0 B 1Y e T Ll ) e

Wlewin) Ual 45y 0 p Sl o mb o 05Y) e
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2.6.1 Creating a Basis Set/ i g sl s34
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3 Monte Carlo Simulation Methods:/

3.1 Introduction:/ doséa/

The Monte Carlo simulation method
occupies a special place in the history
of molecular modeling, as it was the
technique used to perform the first
computer simulation of a molecular
system. A Monte Carlo simulation
generates configurations of a system by
making random changes to the
positions of the species present,
together with their orientations and
conformations where appropriate.
Many computer algorithms are said to
use a ‘Monte Carlo” method, meaning
that some kind of random sampling is
employed. In molecular simulations
‘Monte Carlo’ is almost always used to
refer to methods that use a technique
called importance sampling.
Importance sampling methods are able
to generate states of low energy, as this
enables properties to be calculated
accurately. We the
potential energy of each configuration
of the system, together with the values
of other properties, from the positions
of the atoms. The Monte Carlo method
thus samples from 3N-dimensional
space of the positions of the particles.
There is no momentum contribution in
a Monte Carlo simulation, in contrast
to a molecular dynamics simulation.
How then can Monte Carlo simulation
be used to calculate thermodynamic
quantities, given that phase space is

can calculate

3 ol UG 8 o 382 ag b f
el S LS g dsdaddl G
ala e Y1 iy sl BT ki sz
ol ol S ST e S Wy LA b
AL LS P P P e
Jadly Blgm s oo o ] L B2l
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o WA et Gl plasany dae
S 3 Wi Sl oo p g Jom 4
Lils Led T s gy ag
1A pdsid &) s ALY e bz
ol ds

oo Bl g Je 5,00 ol w3 b
el ey 1y Bl Rl YU
Blall Clex LSgy Bo Ly 05 O
B e o bl S5 ST e 2alS)
Wb oAl Wl e 0 s el
sV 3N cladl o ol S s
G APles ot A Y. Ologand| (a8l ol
B2 e Laddl ey ()8 cope sS12
B2 pszas OF S8 (ST AL & s olalys
OV 1y iyl A laS Dled ST (s
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6N-dimensional?

To resolve this difficulty, let identical
particles of mass m can be written:

el ol ) LS She il ol 4
UM SECVER ¢ VRPN

1

=
h=

1
Quvr :ﬁ

I-[[P"""-.r"""'-'

N JI dp‘l"' d?'NeXp[-T]

The factor N! Disappears when the
particles are no longer
indistinguishable. H(P¥,7"* Is  the
Hamiltonian that corresponds to the
energy of the system? The value of the
Hamiltonian depends upon the 3N
positions and 3N momenta of the
particles in the system

o A

M}juMN! bl Sl S
ol (P AN N (N) o byt
&’&Léfbu@im‘?imgwcﬂ@\ﬂ
g ot =5 3N Je s 810 3N
aladl

-

)J\&LG

The canonical function of an ideal gas:

P IC UG EIUNS TR

AF R T )
e (2;{3{5 TJ?:)""“"

Qwwr = oL

-5
h-=

This is often written in terms of the de
Broglie thermal wavelength, A:

de ) pllaas Ol o 8 (3 SO VIS

:Broglie thermal wavelength

e

Where A= |/ h? 20k, Tm

Any deviations from ideal gas behavior
are due to
system as a consequence of these

interactions within the

interactions. So we have this partition
function :

SV U TP [ IV SR S T R RS
coMeladl odd dmnS alldl ol ool
D L) A2y ) ada Lyl S

Py .
o BEXCESE
'Q,‘.,-‘r; = Q.‘-."r’]" NVT
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1 oo o v
Where Q57" = & [ driexp [_ g ]
¥

r\l'__'u

3.2 Calculating Properties by Integration:/ ol ailas

SolSill

To calculate the partition function for a
system of N atoms using this simple
Monte Carlo integration method would
involve the following steps:

1. Obtain a configuration of the
system by randomly generating
3N Cartesian coordinates, which
are assigned to the particles.

sl N ol )3 e allad) 3w ol
e 5l ST sk faed) LS L]

2 ol o
ot S s e J a1
Sy o0 BN J s g b

2. Calculate the potential energy of oL e G ERJILERY
the configuration, V(rN). ol Al Yo sl ol -2
3. From the potential energy,
calculate the Boltzmann factor, | -V(rY) L}JJS‘N;‘
exp (- V(rV)KsT). S Bl e Ole e ol -3
4. Add the Boltzmann factor to the ‘ o Sy Sl o )
accumulated sum of Boltzmann | .(- V(IN)KsT) Sls
factors and the potential energy , : .
| |kl Al L) ol e wls) -4
contribution to its accumulated Bl oA Cu AL oLy Jole wils)
sum and return to step]. SAN A ) sl wUa)) il y OLe 3 5
5. After a number, N wa of R . ;
! N 1) | > gl
iterations, the mean value of the & s ol 2
potential energy would be | OB ) S o N s ous ux -5
calculating using: Bl 0,5 2SI Bl 2 Lo oo
:(\.bu.wb,
(i < Bemn Ve () esp [V () /T
- ! E\:l.:. exp [_L,r I: ],."\-' :I 'AET]

Unfortunately, this is not a feasible
approach
thermodynamic properties due to the
large number of configurations that
have extremely small Boltzmann factors
caused by overlaps
between the particles.

for calculating

high-energy

NIV S VU PR S K VNS W PN
S 3 3y e Byl ailad
B 8l Jelsall e e ) ol S
ow B Bl =l e 22U 0L )

clagend!
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3.3 Some Theoretical Background to the Metropolis
Method: / .uasg sio d5 b/ 4 kil 45 oo

The Metropolis algorithm generates a

Markov chain of states. A Markov
chain satisfies the following two
conditions:
1. The outcome of each trial
depends only upon the

preceding trial and not upon
any previous trials.

2. Each trial belongs to a finite set
of possible outcomes.

G55 b A g 50 B ) A
o2 O s ks (3525 ol
_ o)
RPN Bt o R VO |
Al 2 (6 e oy 220
oo 2o i sast (] s i 4 S 2
oz il

Condition (1) provides a clear
distinction between the
dynamics and Monte Carlo methods,
for in a molecular dynamics simulation
all of the states are connected in time.

Suppose the system is in state m. we

denote the probability of moving to

molecular

state n as [, the various can be
considered to constitute an NxN matrix
[I(the transition matrix),where N is the
number of possible states. Each row of
the transition matrix sums to 1 (i.e. the
sum of the probabilities T,
given m equals 1).The probability that
the system is in a particular state is
represented by a probability vector p:

P=(Py P2s weeees Pyys Py oo Py )

for a

Thus p, is the probability that the
system is in state 1 and p,, the
probability that the system is in state
m. If p(1) represents the initial
(randomly chosen) configuration, then

Slalsll) o w2 30 Y bl
1 3, S s oy 2

O W N P ROWENY]
sl

G A m Al g el Of o il

Lo jlas) S e N A ) i) Jlezs
w20 NXN [Kidd il TI_mn Jze
S N ¢ (@Jsy) @52y T1
B B piaall e a5 e oYU e
II_mn oVl ¢ o2 6l 1 sl

@ pladl 0 O Jlaamt (1 (s yley M sl
PP il Jleas alig e Wl

1P eeees Pyys Prys oo Py ) P=(

@ el 055 of Jlazt s p_1 LWLy
& el 055 of Jle p_m 5 1Lk
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the probability of the second state is
given by:
P@2)=p(1)I1

330 a5 s pely 13 m

k] ey

P2)=p()II

The probability of the third state is:
Piay™P2 l’n:p(]')nn

The equilibrium distribution of the system
can be determinate by considering the
result of applying the transition matrix an
infinite number of times. This limiting
distribution of the Markov chain is given
by

N

.......

One feature of the limiting distribution is
that it is independent of the initial guess
p(1).The
distribution for a molecular or atomic
system is one in which the probabilities of
proportional to the
Boltzmann factor. We can illustrate the use
of the probability distribution and the
transition matrix by considering a two-

limiting or equilibrium

each state are

level system in which the energy levels are
such that the ratio of the Boltzmann factors
is 2:1.

The expected limiting distribution matrix
enables the limiting distribution to be

achieved:
1—[=[D.5 D.S l‘]
1 a
We can illustrate the use of this transition

matrix as follows. Suppose the initial
probability vector is (1,0) and so the
system starts with a 100% probability of
being in state 1 and no probability of being
in state 2.Then the second state is given by:

pn 2l AU Jless)

P(z=p2ym=pcly T
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P@=10)("" %) =05 o0s)

The third state is p(3)=(0.75 ,
0.75).Successive  applications of the
transition matrix give the limiting

distribution (2/3,1/3).
When the limiting distribution is reached
then applications of the transition matrix
must return the same distribution back:
Primie=Piimic
Thus, if an ensemble can be prepared that
is at equilibrium, then one Metropolis
Monte Carlo step should
ensemble that is still at equilibrium. A
consequence of this is that the elements of
the probability vector for the limiting
distribution must satisfy:
Em I A
This can be seen to hold for our simple
two-level example:

s 1317 2 -en 1)

We will henceforth use the symbol (p) to
refer to the limiting distribution.

Closely related to the transition matrix is
the stochastic matrix, Whose elements are
labelede,,,. This the
probability of choosing the two states m

return an

matrix  gives
and n between which the move is to be
made. It is often known as the underlying
If the
probability of accepting a trial move from
then the probability of
making a transition from m to n(w,,,) is
given by multiplying the probability of
choosing states m and n(z,,) by the

matrix of the Markov chain.

m to n is p,,,

probability of accepting the trial move
(;L-"r.'!r'.):
T =0 P

It is often assumed that the stochastic
(i.e. the
probability of choosing the states m and n
is the same whether the move is made
from m to n or from n to m). If the

matrix o is symmetrical
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probability of sate n is greater than that of
state m in the limiting distribution (i.e. if
the Boltzmann factor of n is greater than
that of m because the energy of n is lower
than the energy of m) then in the
Metropolis recipe, the transition matrix
element m,
equals the probability of selecting the two
the first place
,,,,, (P, = P, ). If the Boltzmann weight
of the state n is less than that of state m,
then probability of permitting the
transition is given by multiplying the
stochastic matrix element «_,, by the
ratio of the probabilities of the state n to
the previous state m.
This can be written:

. fOr progressing from m to n

states in (i.e. Ty,

(P /Pm) (P < Pm)
These two conditions apply if the initial
and final states m and n are different. If m
and n are the same state, then the
transition matrix element is calculated
from the fact that the rows of the stochastic
matrix sum to 1:
T =1-2, T

~mzn tmn

Let us now try to reconcile the metropolis
algorithm as outlined in section with the
more formal approach that we have just
developed. We recall that in the
Metropolis method a new configuration n
is accepted if its energy is lower than the
original state m.

If the energy is higher, however, then we
would like to choose the move with a
probability according to Equation (8.24).
This
Boltzmann factor

exp(-A&(r™ ) [k T (A (r™ ) = [ &) -
I;:I::I‘:\r:lf'!'!])

To a random number between 0 and 1. If
the Boltzmann factor is greater than the

is achieved by comparing the

random number then the new state is

el Cpo b oo wle et (s
;o Jdsd b=l (0_mny n, mald) Lz

D (p_mn) WU

T_mn = 0_mn p_mn
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accepted. If it is smaller than the new state
(m) then the new state is rejected. Thus if
the energy of the new state (n) is very close
to 1, and so the move is likely to be
accepted. If the energy deference will be
very close to 1, and so the move is likely to
be accepted. If the energy difference is
very large, however, then the Boltzmann
factor will be close to zero and the move is
unlikely to be accepted.
The metropolis method is derived by
imposing the condition of microscopic
reversibility: at equilibrium the transition
between two states occurs at the same rate.
The rate of transition from a state m to
state. n equals the product of the
population (p,) and the appropriate
element of the transition matrix (m,,, ).
Thus, at equilibrium we can write:

s Pon =Tomass P
The Ratio of the transition matrix elements
thus equals the ratio of the Boltzmann
factors of the two states:

“heexp[-(5(rM)-§ (M) ) /K T]

Tmn

3.4 Implementation of the Metropolis Monte Carlo Method:

A Monte Carlo Program to simulation an
atomic fluid is quite simple to construct.
At each iteration of the simulation a new
configuration is generated. This is usually
done by making a random change to the
Cartesian coordinates of a single randomly
chosen particle using a random number
generator. If the random number
generator produces numbers (£) in the
range 0 tol, moves in both positive and
negative directions are possible if the
coordinates are changed as follows:
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X.".EI'.'=X.:CL1 +(2 &= 'l)'ﬂ]?!!..:.'c

Voew=Yorat(2 §— 1)810,

Zyow=Loat(2 §— 1) 00
A unique random number is generated for
each of the three directions X, Y and
Z.48r,,.,. is the maximum possible
displacement in any direction. The energy
of the new configuration is then
calculated; This need not require a
complete recalculation of the energy of the
entire consequence, the neighbor list used
by a Monte Carlo simulation must contain
all the neighbors of each atom, because it
is necessary to identify all the atoms which
interact with the moving atom (recall that
in molecular dynamics the neighbor list
for each atom contains only neighbors
with a higher index). Proper account
should be taken of periodic boundary
conditions and the minimum image
convention =~ when  generating new
configurations and calculating is higher in
energy than its predecessor then the
Boltzmann factor, exp(-A&(r™)/ksT), is
compared to a random number between 0
and 1. If the Boltzmann factor is greater
than the random number then the new
configuration is accepted; If not then it is
rejected and the initial configuration is
retained for the mnext move. This
acceptance condition can be written in the
following concise fashion:

Rand(0,1) = exp(-A&( 7y (kg T)

The size of the move at each iteration is
governed by the maximum
displacement, d7,,,..
This is an adjustable parameter whose
value is usually chosen so that
approximately 50% of the trial moves are
accepted. If the maximum displacement is
too small then many moves will be
accepted but the states will be very similar
and the phase space will only be explored
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very slowly. Too large a value d7,,, and
many trial moves will be rejected because
they lead to unfavorable overlaps. The
maximum displacement can be adjusted
automatically while the program is
running to achieve the desired acceptance
ratio by keeping a running score of the
proportion of moves that are accepted.
Every so often the maximum displacement
is then scaled by a few percent: if too
many moves have been accepted then the
maximum displacement is increased; too
few and &7, .. is reduced.

As an alternative to the random selection
of particles it is possible to move the atoms
sequentially (this requires one fewer call to
the random number generator per
iteration). Alternatively, several atoms can
be moved at once; If an appropriate value
for the maximum displacement is chosen
then this may enable phase space to be
covered more efficiently.

As with a molecular dynamics simulation,
a Monte Carlo simulation comprises an
equilibration phase followed by a
production phase. During equilibration,
appropriate thermodynamic and
structural quantities such as the total
energy(and the partitioning of the energy
among the various components), mean
square displacement and order parameters
(as appropriate) are monitored until they
achieve stable values, whereupon the
production phase can commence. In a
Monte Carlo simulation from the canonical
ensemble, the volume will change and
should therefore also be monitored to
ensure that a stable system density is
achieved.
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3.4.1 Random Number Generators:

The random number generator at the heart
of every Monte Carlo simulation program
accessed a very large number of times, not
only to generate new configuration but
also to decide whether a given move
should be accepted or not. Random
number generators are also used in other
modeling applications; for example, in a
molecular dynamics simulation the initial
velocities are normally assigned using a
random number generator. The number
produced by a random number generator
are not, in fact, truly random; the same
sequence of numbers should always be
generated when the program in run with
the same initial conditions (if not, then a
serious error in the hardware or software
must be suspected!). The sequences of
numbers are thus often referred to as
‘pseudo-random’” numbers are they
possess the statistical proprieties of ‘true’
sequences of random numbers. Most
random number generators are designed
to generate different sequences of numbers
if a different seeds. One simple strategy is
to use the time and/or date as the seed; this
is information that can often be obtained
automatically by the program from the
computer’s operating system.

The numbers produced by a random
number generator should satisfy certain
statistical proprieties. This requirement
usually supersedes the need for a
computationally very fast algorithm as
other parts of a Monte Carlo simulation
take much more time (such as calculating
the change in energy). One useful and
simple test of random number generator is
to break sequence of random numbers into
blocks of k numbers, which are taken to be
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coordinates in a k-dimensional space. A
good random number should give a
random distribution of points. Many of the
common generators do not satisfy this test
because the points lie on a plane or
because they show clear correlations
[Sharp and bays 1992].
The linear congruential method is widely
used for generating random numbers.
Each number in the sequence is generated
by taking the previous number,
multiplying by a constant (the multiplier,
a), adding s second constant (the
increment, b), and taking the remainders
when dividing by third constant (the
modulus, m). The first value is the seed,
supplied by the user. Thus
¢[1]=seed

&[i(I=MOD{( £[i-1] Xa+b),m}
The MOD function returns the remainder
when the first argument is divided by the
second (for example, MOD (14.5) equals
4). If the constants are chosen carefully, the
linear congruential method generates all
possible integers between 0 and m-1, and
the period (i.e. the number of iterations
before the sequence starts to repeat itself)
will be equal to the modulus.

Fig 8.3:
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The period cannot of course be greater
than m. The linear congruential method
generates integral values, which can be
converted to real numbers between 0 and
1 by dividing by m. The modulus as often
chosen to be the largest prime number that
can be represented in a given number of
bits (usually chosen to be the number of
bits per word; 2°11 is thus a common
choice on a 32-bit machine).

Although popular, by virtue of the ease
with which it can be programmed, the
linear congruential method does not
satisfy all of the requirements that are now
regarded as important in a random
number generator. For example, the points
obtained from a linear congruential
generator lie on (k-1)-dimensional planes
rather than uniformly filling up the space.
Indeed, if the constants a, b and m are
chosen inappropriately then the linear
congruential method can give truly
terrible results, as shown in figure 8.3.0ne
random number generator that is claimed
to perform well in all of the standard tests
is that of G Marsaglia, which is described
in Appendix 8.1.
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3.5 Monte Carlo Simulation of molecules:

The Monte Carlo method is most easily
implemented for atomic systems because it
is only necessary to consider the
translational degrees of freedom. The
algorithm is easy to implement and
accurate results can be obtained from
relatively short simulations of a few tens
of thousands of steps. There can be
practical problems in applying the method
to molecular systems, and especially to
molecules which have a significant degree
of conformational flexibility. This is
because, in such systems, it is necessary to
permit the internal degrees of freedom to
vary. Unfortunately, such changes often
lead to high-energy overlaps either within
the molecule or between the molecule and
its neighbors and thus a high rejection
rate.

3.5.1 Rigid Molecules

For rigid, non-spherical molecules, the
orientations of the molecules must be
varied as well as their positions in space. It
is usual to translate and rotate one
molecule during each Monte Carlo step.
There are various ways to generate a new
orientation of a molecule. The simplest
approach is to choose one of the three
Cartesian axes (x, y or z) and to rotate
about the chosen axis by a randomly
chosen angle {w, chosen to lie within the
maximum angle variation,{w,, ... [Baker
and Watts 1969]. The rotation is achieved
by applying routine trigonometric

relationships. For example, if the vector
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(xi, yj ,zk) describes the orientation of a
molecule then the new vector (X'i, y'j, z'k)
that corresponds to rotation by ¢{w about
the x axis calculated as follows:

R CE ()
d

—gindw  ecosdw Z

Fig. 8.4: The Euler angles @, 8 et i) .

The Euler angles are often used to describe
the orientations of a molecule. There are
three Euler angles; @.fand . @ is a
rotation about the new x axis. Finally, ' is
a rotation about the new z axis (Figure
8.4). If the Euler angles are randomly
changed by small amounts dg, dy’ then a
vectorV,, is moved according to the
following matrix equation:

View=AV 14
Where the matrix A is

(

cosd P cosdy — sin 5@ cosdd sin 5y sin d @ cosdyy — cosdP cosdd sindy
—cosd @ sin dy — sin 5@ cos §8 cos —sind @ sin dif — cosd@ cosdf cos dy
sin Q) cosdd —cosdPsin 58

)

sin 48 sin S
sin 48 cosdy
cos

It is important to note that simply

sampling displacements of the three Euler
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angles does not lead to uniform
distribution; it is necessary to sample
from cos? rather than @ (figure 8.5).

Fig. 8.5:

The preferred approach is to sample
directly in cos@ as follows:

E" .T!E"'p'.‘:m G.’d+2(‘f - 1)5‘;?" max
cosQ ?:é",':=c'r-}5® crfd+2(“f - 1)5{{10‘9'5'}
'1{" nw:=r1{" old +2(‘f — 1)5'1{" max

max

The alternative is to sample in @ and to
modify the acceptance or rejection criteria
as follows:

Go= ms% 0 ms% (@+ )
go= Sill% Dcos E (O+1)
Qo= Sill__% 0 Sing (O+1)
qo= cos__—{ @ Sill% (D+)

The Euler angle rotation matrix can then
be written

!1': L r!'i - '-i': - r!'; 2(@']—@3 + quaw} z(qlqﬁ - QGQJ}
A= 2('(]'1@3—(?0@3:} q:—qi—q:—q; 2('@15}3 _f}'gﬁfj:)

1 1 1

2(q,0,+a,9,) 2(a,0,-0q,9) d-d-q-q

To generate a new orientation, it is
necessary to rotate the quaternion vector
to a new (random) orientation. As it is a
four-dimensional vector, the orientation
must be performed in four-dimensional
space. This can be achieved as follows
[Vesely 1982]:
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1. Generate pairs of random numbers
(£, &) between -1 and 1 until
S=g7+EE <1

2. Do the same for pairs ¢; and ¢; until
31=3+85 <1

3. Form the random wunit four-
dimensional vector (§1,€2,
& v.,-"l (1—-5,/5) &, w.,-': (1-5,/5,)

To achieve an appropriate acceptance rate

the angle between the two vectors that

describe the new and old orientations
should be less than some value; this
corresponds to sampling randomly and

uniformly from a region on the surface of
a sphere.

The introduction of an orientation
component as well as translational moves
is made. Trial and error is often the most
effective way to find best combination of
parameters.

3.5.2 Monte Carlo Simulations of Flexible Molecules: /

Monte Carlo Simulations of flexible
molecules are often difficult to perform
successfully unless the system is small, or
some of the internal degrees of freedom
are frozen out, or special models or
methods are employed. The simplest way
to generate a new configuration of a
flexible molecule is to perform random
changes to the Cartesian coordinates of
individual atoms, in addition to
translations and rotations of the entire
molecule. Unfortunately, it is often found
that very small atomic displacements are
required to achieve an acceptable
acceptance ratio, which means that the
phase space is covered very slowly. For
example, even small movements away
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from an equilibrium bond length will
cause a large increase in the energy. One
obvious tactic is to freeze out some of the
internal degrees of freedom, usually the
‘hard” degrees of freedom such as the
bond lengths and the bond angles. Such
algorithms have been extensively used to
investigate small molecules such as
butane. HOW-ever, for large molecules,
even relatively small bond rotations may
cause large movements of atoms down the
chain. This invariably leads to high-energy
configurations as illustrated in figure 8.6.
The rigid bond and rigid angle
approximation must be used with care, for
freezing out some of the internal degrees
of freedom can affect the distributions of
other internal degrees of freedom.

Figure 8.6

3.6 Models Used in Monte Carlo Simulation of Polymers/

A polymer is a macromolecule that is
constructed by chemically linking
together a sequence of molecular
fragments. In simple synthetic
polymers such as polyethylene or
polystyrene all of the molecular
fragments comprise the same basic unit
(or monomer). Other polymers contain
mixtures of monomers- Proteins, for
example, are polypeptide chains in
which each unit one of the twenty
amino acids. Cross-linking between
different chains gives rise to yet further
variations in the constitution and
structure of polymer. All of these
features may affect the overall
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proprieties of the molecule, sometimes
in a dramatic way. Moreover, one may
be interested in the proprieties of the
polymer under different conditions,
such as in solution, in a polymer melt
or in the crystalline state. Molecular
modeling can help to develop theories
for understanding the proprieties of
polymers and can also be used to
predict their properties.

A wide range of time and length scales
are needed to completely describe a
polymer’s behavior. The timescale
ranges from approximately 107'* S (i.e.
the period of a bond vibration) through
to seconds, hours or even longer for
collective phenomena. The size scale

ranges from the 124 of chemical
bonds to the diameter of a coiled
polymer, which can be several
hundreds of dngstroms. Many kinds of
model have been used to represent and
simulate polymeric systems and
predict their proprieties. Some of these
models are based upon very simple
ideas about the nature of the intra-and
intermolecular interactions within the
system but have nevertheless proved to
be extremely useful. One famous
example in Flory’s rotational isomeric
state model [Flory 1969]. Increasing
computer performance now makes it
possible to use techniques such as
molecular dynamics and Monte Carlo
simulations to study polymer systems.

Most simulations on polymers are
performed wusing empirical energy
models (through with faster computers
and new methods it is becoming
possible to apply quantum mechanics
to larger and larger system). Moreover,
there are various ways in which the

[68]




configurationally and conformational
degrees of freedom may be restricted
so as to produce a computationally
more efficient model. The simplest
models use a lattice representation in
which the polymer is constructed from
connected interaction centers, which
are required to occupy the vertices of a
lattice. AT the next level of complexity
are the bead models, where the
polymer is composed of a sequence of
connected  ‘beads’.  Each  bead
represents an ‘effective monomer’ and
interacts with the other beads to which
it is bonded and also with other nearby
beads. The ultimate level of detail is
achieved with the atomistic models, in
which each non-hydrogen atom is
explicitly represented (and sometimes
all of the hydrogen as well). Our aim
here to is give a flavor of the way in
which Monte Carlo methods can be
used to investigate polymeric systems.
We divide the discussion into lattice
and continuum models but recognize
that is a spectrum of models from the
simplest to the most complex.

3.6.1 Lattice Models of Polymers

Lattice Models have provided many
insights into the behavior of polymers
despite the obvious approximations
involved. The simplicity of a lattice
model means that many states can be
generated and examined very rapidly.
Both two-dimensional and three-
dimensional lattices are used. The
simplest models use cubic or
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tetrahedral lattices in models are
usually very simple, in part to reflect
the simplicity of the representation but
also to permit the rapid calculation of
the energy.

More complex models have been
developed in which the Ilattice
representation in closer to the ‘true’
geometry of the molecule. For example,
in figure 8.8 we show the bond
fluctuation model of polyethylene, in
which the ‘bond’” between successive
moments on the lattice

Figure 8.7

Figure 8.8

Figure 8.9

Represent three bonds in the actual
molecule [Baschnagel et al. 1991]. In
this model each monomer is positioned
at the center within the lattice and five
different distances are possible for the
monomer-monomer bond lengths.

Lattices can be used to study a wide
variety of polymeric systems, from
single polymer chains to dense
mixtures. The simplest type of
simulation in a ‘random walk’, in
which to chain is randomly grown in
the lattice until it contains the desired
number of bonds (Figure 8.9), In this
model the chain is free to cross itself
(i.e. excluded volume effects are
ignored). Various proprieties can be
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calculated from such simulations, by
averaging the results over a large
number of trials. For example measure
of the size of a polymer in the mean
square end-to-end distance, (R;) is
related to the number of bonds (n) and
the length of each bond (1) by:

(R)=nl®

The radius of gyration is another
commonly calculated property; this is
the root mean square distance of each
atom (or monomer) from the center of
mass. For the random walk model the
radius of gyration (s°) is given in the
asymptotic limit by:

(s"F

(R,)/6

The ability of the chain to cross itself in
the random walk may seem to be a
serious limitation, but it is found to be
valid under some circumstances. When
excluded volume effects are not
important (also known as ‘theta’
conditions) then a subscribe ‘0" is often
added to proprieties such as the mean
square end-to-end distance,
((R2),).Excluded volume effects can
be taken into account by generating a
‘self-avoiding walk” of the chain in the
lattice (Figure 8.10). In this model only
one monomer can occupy each lattice
site. Self-avoiding walks have been
used to exhaustively enumerate all
possible conformations for a chain of a
given length one the lattice. If all states
are known then the partition function
can be determined and thermodynamic
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quantities calculated. The ‘energy’ of
each state may be calculated using an
appropriate interaction model. For
example, the energy may Dbe
proportional to the number of adjacent
pairs of occupied lattice sites. S
variation on this is to use polymers

Figure 8.10

Consisting of two types of monomer (A
and B), which have up to three
different energy values: A-A, B-B and
A-B. Again, the energy is determined
by counting the number of occupied
adjacent lattice sites. The relationship
between the mean square end-to-end
distance and the length of the chain (n)
has been investigated intensively; with
the self-avoiding walk the result
obtained is different from the random
walk, with (R:) being proportional to

1% in the asymptotic limit.

Having grown a polymer onto the
lattice, we now have to consider the
generation of alternative
configurations. Motion of the entire
polymer  chain  or  large-scale
conformational changes is often
difficult, especially for densely packed
polymers. In variants of the verdier-
Stockmayer algorithm [Verdier and
Stockmayer 1962] new configurations
are generated using combinations of

’

‘crankshaft’; ‘kink jump’ and ‘end
rotation” moves (figure 8.11). Another
Widely used algorithm in Monte Carlo
simulation of polymers (not just in

lattice models) is the ‘slithering snake’
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model. Motion of the entire polymer
chain is very difficult, especially for
densely packed polymers, and one way
in which the polymer chain is very
difficult, especially for densely packed
polymers, and one way in which the
polymer can move is by wriggling
around obstacles, a process known as
reputation. To implement a slithering
snake algorithm, one end of the
polymer chain is randomly chosen as
the ‘head” and an attempt is made to
grow a new bead at one of the available
adjacent lattice positions. Each of the
remaining beads is then advanced to
that of its predecessor in the chain
illustrated in figure 8.12. The procedure
is then repeated. Even if it is impossible
to move the chosen ‘head” the
configuration must still be included
when  ensemble  averages  are
calculated.

Figure 8.11

Figure 8.12

3.6.2 Continuous’ Polymer Models/

The simplest of the continuous
polymer models consists of a string of
connected beads (Figure 8.13). The
beads are freely jointed and interact
with the other beads via a spherically
symmetric potential such as the
Lennard-Jones potential. The beads
should not be thought of as being
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identical to the monomers in the
polymer; though they are often
referred to as such (‘effective
monomers’ is a more appropriate
term). Similarly, the links between the
beads should not be thought of as
bonds. The links may be modeled as
rods of a fixed and invariant length or
may be permitted to vary using a
harmonic potential function.

In Monte Carlo studies with this freely
jointed chain model the beads can
sample from a continuum of positions.
The pivot algorithm is one way that
new configurations can be generated.
Here, a segment of the polymer is
randomly selected and rotated by a
random amount, as illustrated in figure
8.13. For isolated polymer chains the
pivot algorithm can give a good
sampling of the
configurationally/conformational
space. However, for polymers in
solution or in the melt, the proportion
of accepted moves is often very small
due to high-energy steric interactions.

Figure 8.13

The most unrealistic feature of the
freely jointed chain model is the
assumption that bond angles can vary
continuously. In the freely rotating
chain model the bond angles are held
fixed but free rotation is possible about
the bonds, such that any torsion angle
value between 0% and 3607 is equally
likely. Fixing the bond angles in this
way obviously affects the proprieties of
the chain when compared to the freely
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jointed chain; one way quantify this is
via the characteristic ratio C,,, which is
defined as:

Ci‘!

i 2 g
_I-.Rr]_ J i

-

nil=

The characteristic ratio approximately
indicates how extended the chain is.
For the freely rotating chain the
characteristic ratio is given by:

14+cos8' 2cos8' 1+cos"8’

= -
. 1—cos8

- | ]
" (l—cos 8" )=

Where 8’ is the supplement of the
normal bond angle (i.e. €'=180°- 8). For
an infinitely long chain the
characteristic ration becomes:

C..

_l+c059'

® {_cos@’
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