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Control volume V

Volume d V

(1.3.1) S

([Wendt 2009], Fig. 2.1)

Fig. 1.3.1 a, left side: finite control volume V, an
a finite control surface S fixed in space:

The fluid equations the we directly obtain by
applying the fundamental physical principles
to a finite control volume are in integral form.
These integral forms of the governing
equations can be manipulated to indirectly
obtain partial differential equations. The
equations so obtained, in either integral or
partial differential form, are called the
conservation form of the governing equations.

The equations obtained from the finite control
volume moving with the fluid (Fig. 1.3.1 a,
right side), in either integral or partial
differential form, are called the non-
conservation form of the governing equations.

If we consider a infinitesimal fluid element,
which is fixed is space (Fig. 1.3.1 b, left side),
we can directly derive the partial differential
equations. This is again the conservation
form.

If we consider a infinitesimal fluid element,
which is moving is space (Fig. 1.3.1 b, right
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side), we can directly derive the partial
differential equations. This is again the non-
conservation form.

In general aerodynamic theory, wheter we
deal with the conservation or
nonconservation forms of equations is
irrelevant. However, there are cases in CFD
where it is important which form we use.
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As a model for the flow, we will adopt
the picture shown at the right of Fig.
1.3.1 (b).

Namely that of an infinitesimally
small fluid element moving with the
flow. The motion of the fluid element
is shown in detail in Fig. 2.2.1.

Here, the fluid element is moving
through cartesian space. The unit

vectors along the x, y, z axis are i, j, k.

The vector velocity field in this
cartesian space is given by

V =ui +vj +wk

Where the components of velocity are
given respectively by

u=u(x,y,z,t)

v=v(x,y,2,1)

w=w(x,y,2z,t)

= A ahodl pe =il @05 Ol Jasog

Qpl{ldg(z;)

(The Substantial Derivate) S duzzy 2.2

el Jo 2 ) 8 pall doli Ol (model) 3508
25 13.1(b) IS e
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Note that we are considering in general
an unsteady flow, where u, v, and w are
functions of both space and time, t. In
addition the scalar density field is
givenby p = p(x,y,z,1).

Fig. 221 ([Wendt
2009], Fig. 2.2)

At the time ¢, the fluid element is

located at point 1 in Fig. 2.2.1. At this
point and time, the density of the fluid
elementis p, = p(x,,y,,2,,t,)

At a later time ¢, the fluid element has
moved to the point 2 where the density
is p, = p(Xy,¥,,25,1,)

Since p = p(x,y,z,t), we can expand
this function in a Taylor’s series about
point 1 as follows:

Pr=p Tt (8_/)) (x, —x)+ (8_/)} (y, =y + (a—pj (2, —z)+ (a—pj (t, —t,) +(higher order terms)

ox dy

With ignoring the higher order terms
we obtain

0z ot

pz_p1=(a_p] o B N Y a_p Y2~
t, -1, ox )\ t, -1, dy )\t~

Eq. (2.1.1) is physically the average
time-rate-of-change in density of the
fluid element as it moves from point 1
to point 2. In the limit, as 7, approaches
t,, this term becomes

Dt

1, =1, —
22 L, L

D
F’O is a symbol for the instantaneous
t

time rate of change of density.

2.1.1)

N1 2 T %4 a_p a_p
f j+[t2—t1 j(azjf(azjl
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By definition, this symbol is called the
substantial derivate, D/Dt.

D
Fpis the time rate of change of
t

density of the given fluid element. Our
eyes are locked with the fluid element,
D,
not with the point in the space. So F’D
t
is different physically and numerically

from (%—fj which is physically the
1

time rate of change of density at the

fixed point 1.

Returning to Eq. (2.1.1), note that

lim| 22— J =u

n-n\ t, —t,

lim —yz_leEv

1, > t2 —_ tl

lim| 2751 | =y
non\ t, —t,

Thus, taking the limit of Eq.(2.1.1) as
t, —t,, we obtain

Dp_0p %, 9P 0P 1

Dt ot ox  dy 0z

From (2.1.2) we obtain an expression
for the substantial derivate in cartesian
coordinates

D_0,,9,,9.,9 (2.1.3)
Dt ot ox dy 0z

In cartesian coordinates the vector

operator V is defined as

v=id, ji+l€i (2.1.4)
ox " dy 0oz
Hence Eq.(2.1.3) can be written as
D 9

YR (V-V) (2.15)

Eq.(2.1.5) represents a definition of the substantial
derivative operator in vector notation; thus it is
valid for any coordinate system.

ai is called the local derivative which is physically
1

the time rate the time rate of change at a fixed point;

V -Vis called the consecutive derivative, which is
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physically the time rate of change due to the
movement of the fluid element from one location to
another in the flow field where the flow properties
are spatially different. The substantial derivative
applies to any flow-field variable, for example,
Dp/Dt, DT/D¢, ..., where p and T are static pressure
and temperature respectively.

The substantial derivative is essentially the same as
the total differential from calculus. Therefore, the
substantial dervative is nothing more than a total
derivative with respect to time.

V-V (divergence of velocity) is .l dels oo adljudll 2ol 2.3

"% (divergence of velocity) as ) dels

Vo
R A L (2.4)
& Dt

is physically the time rate of change of the volume of a moving fluid element, per unit \4%

volume.
3 (moving) b= (fluid element) xl» s2¢ -+ (control volume) v-<->==5\ ot oo sl e \a%
(per control volume) rﬁxﬂ\ o) - 23

(mass conservation) i3 ki~ 2.4
1 oL y@bmﬁwﬁa}oﬁw
oSl el b AL AT 0L e Jdae el 4] Blias oSl ol s WS (ST 5 Jons”
- A2 (S gl
ﬁ?,{){ﬂ-” = oSl poesdl s asUl aLs)l
:(controlizolume) oSl | el WS L) e
2 fffiv - ﬁ%w
3 e e ¥ S s a0V
oSl ) e ) WS 0L e 2l (21) Aslall
=ﬁﬁ£-dd
A
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ﬁ%)dv + ﬁ PVAAZ0 coooreorerreessirssrireensnn(2.4)
v A
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2(2.2 Jseadl) aedl Sl i) Obw e ko
Sslow (2.4) aslaall w8 JgVl =l
bl G B j20

aliS losp= ¥ (4) 5 (3) wlsbl
ol szl JolSs Lapud yeas Uil
Do alsll alsleo oo

L 8sall (sl iy LSl alslae Jiiss
JJ)O[XI'Jél +JJ;(?3£2 dA, =0
Al Al

Szl poedl 2l ] s A asnll of @asMoy s
- [[pvidA +[[ povada, =0
Al A2

“Pr VA p2 VA =0
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continuity equation) i) ¥ U3e 2.4.1

S o Se 24) Wolall e oty Akl o (3 ) ai Aslan e e w1 L sl
5
.(divergence theorem) Aeldl &, a5 alisznly L;o.d-\ Jﬁ&.ﬂ\ 0 A el J.a&:}\ )50 oy

To obtain the basic equations of fluid motion,

5
f=1f{xy,2) cas s 1
razziodl g f Jloe ole
&, & . F
Vi =i+ 4+ i canea il 1
xi oyt e 1
ke s Z oY o X LA 58 e gy o P Ailko OLSe 15 aze OIS 13 2
AP sl ols el
dp_ AP, dp
'|:'_ — X + ¥ + k 2
YRR A @
&8uall , sorkedl | JolSol g szl Lol aslall dyglai lay 3
{fHv.glav={fodA . .......@
L A
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always the following way is followed:

Choose the appropriate fundamental physical
principles from physics

Apply these physical principles to a suitable model
of the flow.

From this application, extract the mathematical
equations which embody such physical principles.
So, in our case the physical principle is:

“Mass is Conserved”.

afﬁﬂfv+§g(v.wzo
fif (2

.ZUL;»\ Lol 5 g atfjf,u Lol s il 1) T,u J;&L\woﬁ:&&m uu\jajuu

Jd‘;’ =0

o )
— FVPV S O e ( 2.68)
At
rJJL 7 2, 7 3
+—(pu)+—{(pv)i+—(pow) =1.. cvernenne 2. 6D
of ok g Ay g ok g (2.6t)

LZ,Y, X uuLﬁ.‘}I\L}Z\.cJMJ\ Quffgnw,v,udﬁg—

(incompressible flow) bzl ¥ Ol dl O Jl- (3
ou Jdv dw
——t—=
ox dy 0z
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(energy conservation) &l ki~ 2.5

24 IS
Ogilall o @Bl bhs> dslen Aniuwi
e Laddao @bl &S =) JgVl
pomdl U2l aslb)l eSLy Jaso”
daso oalls aJdl Blao Sl
pradl 2l sl @kl Ol
§,0a)l Usley alis)l JLasl cswSell
pxadl U3 gilell (sde agiuoll
Olpw Jame Ll Blae cswSll
oSl pasdl 31 (sl 8Ll

d 2 2 |
gf{ﬁp({w?hg:)dv+ﬁap(fe+?+g:)£.dé:@}(g@d[4‘+ P+

Jine Q5 ¢ onSomdl uoml Joels (U1 e 85l 5,080 o 0l pm 81 Al Lol 3 0L5Y1 Ol
LSl e s 4] 551 A O e
‘0 (stress) Slg=Y) e2e (Viscosity) G}U\ Jabny

o=-pn
<-

a V2 V2 S
#fg[p(e+7+gz)]dV+£fp(e+?+gz)ydéz—jifpy-dé+P+Q

4

2 2 .
ﬁ:fi[p(e+v—+gz)]dV+ﬁp(e+£+v—+gz)y-dé =P+ Q. (2.8)
) ot 2 ' p 2
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razdl SOl iy Ulpaw (sde Guubos

alisl) Jlaul Vg ae Seles (2.8) alslaadl (s JeVl asdl ol wuss ol @b,
(4) 5 (3) abVl juc

8y0all (] alslasl Jish oliug

Y LT
T

E
')

2.5 sl
v 2 - 13,’2 A
-p, (e, +ﬂ+%+g:]}1-‘1ﬂl +p,(e, + P2 +?+gzq)rqﬂq =P+0Q
2= - 2 S
(2.5) a2l Gslol wuiydl ol ) Al Jaas @slasy ailaiwil
Py VA = pvaA; = m
. P 1,]2 : : b 1’32 .
m{q+—+T+g:{1)+P+Q=m{€3+ +T+g:@j
- 2
e p P ) e, , vy
AR S B +7,+— +_L e R S F G e (2.9)
O=0 8Ll il ol oSeu ewiigdl Olisdhill o S
T:=T:, e;=e; o3lpmll @y a8 gamill el g
Py =pP2=p0 wblaail Y obywd! )lael oSeug

28



(2.9) alsleoll Fruamid

2 p 2
'} v '} v
L Fo— A F T = L : N N -3 {7).
.I{':l]-\.l;ﬂ'lF "'g mg .II'}E g "'é\F

adie Jioid adlo clS 5] ¢ dvan | Lo Leils dusgo Pé,08) ol Jls ad
(2.10) aslanll zuai (2) g (1) cashisll o ddic ¢ asan 35>y pac Jl= b

2 2

2 1 ] Vs
PN +;]:f'2+ 2

Py 2g Pg 28

+2, = ool oo i ( 2.11)

heall oow + ac sl oo + 298] Coow = dS) ool 1]

JGo

oo cloll 28,5 fus sasy o il L_"Zj;;z:g
18yl el sl e

8m byl

15 |,I'I5 E_ELD_'._:-_'.L” U\._.!)—L\-L”_' lamg

154mm  dceas)l yee wgVl b

102mm azasll sl UVl b
1000kg\m™ eloll aslis

tolus wglholl

azeanll 8wy duens ac,dl (1)

15] azea ol (o 8=zl 5,08l (L)
cnz i) M ol dl Uyaie

(2.6) Js_al
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e Csleail Ml obywd) (2.5) alis)l has alslze (1)

v, A, =ve Ay =V =0.015 nr/s

015
v, = %= 0.81m/ s
2(0.154)"
v, =&5j= 1.84m/ s
2(0.102)"

Asanll | Jalw wuei @ ai=Vl g acrasll uee saei 0 aa=\UI G

|:2.1|]]| alz) D_LE_.I aslldl alsles {t__;]

el el
PV oy P Py Vs .-
w 2o L g 2g o
£ it mg * g
P—ﬁau Pr= Py +1;_1] +{z,—1z)
Cl pe 2v e

s sim g gl wlsgian (2) g (1) olahaoll
Pr =Pz = Ps
Pz-py =0

Z:—7;=8 ol Las

D yan ailasi dcyw 1l 2w (1) abodl

vy =10, Vo= Wy
m alis)l by Jase
m =p V=1 O00(0.015) = 15.0 kg/s

alslzoll Fuaig

(1.84)°
2(981)

P = (15.0)(9.81) [ +8]=1203W

1.2 kW = a=,l=J1 6,34l
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(momentum conservation) & sl .5 ki~ 2.6

24 S

LSl e e F i >l (Second Newtonian Law) (3l 55 O 50 s O 5 I detny
o Al 8l 4aS™ Ol Jdre 2l 4l @L@ L;«ﬁ.».ﬂ\ P.L;.\ Jls & el das v—ﬂf" Jaxs"
LW e 35 i sz Jola A JUisl oSl

%ﬁﬂpﬁ}dv 4 ~_£};£[£,dg}: ﬁfﬂdv N ﬂgaiﬂl
_. ]

V 4 fi
jﬁ%{pg}:ﬂ-’ + ﬁ-pg{gd&}= ﬁfﬁ(ﬂ-” + ﬁ-gdi\ cerveirnnen(2.12)
A’ i ; B

beall s B ol S . T g - pi peprioll foazo Ssluy O slp=yl ol Lis g i
iy wsde ausl=dl 898 b el Jlg=Vl a8 Jios g Gz 61y (sle Guoisl

B=—pgk sl anm
S-S o 1) elpld (gOVErNing equations) &l oYl jasis 2.7

(without considering chemical reactions) LS e¥eis I S O 93 (viscous flow) @,U\ Ol mdl ¥ole 2.7.1

Viscous flow: a flow which in'clud?s the dissipative, | .. EUSNPAVINN = SUE ol e
transport phenomena of viscosity and thermal

conduction. The additional transport phenomenon | dissipative, transport phenomena of )
of mass diffusion is not included because we are
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limiting our considerations to a homogenous, non-
chemically reacting gas. Combustion for example is
a flow with a chemical reaction. If diffusion were to
be included, there would be additional continuity
equations — the species continuity equations
involving mass transport of chemical species i due
to a concentration gradient in the species.

Moreover the energy equation would have an
additional term to account for energy transport due
to the diffusion of species.

With the above restrictions in mind, the governing
equations for an unsteady, three-dimensional,
compressible, viscous flow are:

(thermal conduction) .... s «(viscosity

Continuity equations
(Non-conservation form — [Wendt 2009], Eq.2.18)

(i i S

Dp -
——+pV-V=0
Dt P
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(Conservation form - [Wendt 2009], Eq. 2.27)

a—p+V(p-\7)=0
ot

Equation [Wendt 2009], (2.18) is the continuity

equation in non-conservation form. Note that:

1. By applying the model of an infinitesimal fluid
element, we have obtained Eq. [Wendt 2009],
(2.18) directly in partial differential form.

2. By choosing the model to be moving with the
flow, we have obtained the non-conservation
form of the continuity equation, namely Eq.
[Wendt 2009], (2.18).

Equation [Wendt 2009], (2.27) is the continuity
equation in conservation form. Note that:

2\ﬁpd“l/+#p‘7-&$ =0
¢ Integral form of the continuity equation: (Wendt2009], Eq.2.23) o 1 S
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1. By applying the model of an finite control volume,
we have obtained Eq. [Wendt 2009], (2.23)
directly in integral form.® Only after some
manipulation of the integral form the partial
differential form, namely Eq. [Wendt 2009],

(2.27), is obtained.

2. By choosing the model to be fixed in space, we
have obtained the conservation form of the

continuity equation, namely Eqgs. [Wendt 2009],

(2.13) and (2.27).

Momentum equations

(Non-conservation form — [Wendt 2009], Egs. 2.36a-c)

8 pedl LS OYlas

Du op dr, 07T, 0T,
x-component: p—=——+-—"+—+—"+ of

Dt ox ox dy 0z

Dv op 9t dr 0T,
y-component: p— = B At N of,

Dt dy Ox ady 0z :

D op dr, 0T, Or
z-component: p—— = I Al -l AL of.

D dz  ox dy 0z
[Wendt 2009],
Fig.2.5: ¥
Infinitesimally
small, moving fluid P
element. Only the , /’L.r“ ?'id y) dx dz
forces in the x eelucity ! g

. . components I
direction are i' aitie (p G| dx) W
. dy | Ty O dy i
shown K y,ql /
Byl L~ f J(!;: s dx) dy dz
— d
T e R R
iz 7 el ':H-._‘___ g X
7 .
P iyl (R AP
Ed
b

Total force in the x-direction: F,

[Wendt 2009], S.28 Def. of body forces and surface

forces:

Body forces, which act directly on the volumetric
mass of the fluid element. Examples: gravitational,

electric and magnetic forces.

¢ Def.: body force on the fluid element acting

x o4l 3Nl sa) & F

eVl s 35530 e ey Alin
A e 3 il Jelin i dpews Gl ]
(fluid element) 2l gumall diaaall
Al ey Al 3l a Al
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in the x-direction= pf (dxdydz).

Surface forces, which act directly on the surface of
the fluid element. They are due to only two sources:
(a) pressure distribution acting on the surface,
imposed by the outside fluid surrounding the fluid
element, and (b) the shear and normal stress
distributions acting on the surface, also imposed by
the outside fluid “tugging” or “pushing” on the
surface by means of friction.

Aadalizall

ths Slo b aln Jelin il Aadaw il g
(sl gl

[Wendt 2009], ¥
Fig.2.6:
Illustration  of

shear and

normal stresses

i

Tt

a

(Conservation form — [Wendt 2009], Egs. 2.42a-c)

o7

yx

dp 0J7,

o7,
x ﬁ'x

d(ou) >
- t———+V: V)y=—"-—+ =+
X-componen o V-(puV) o o

dy

+81w

0z

07
+

y-component: a(;;u) +V-(va7) :_a_+ o o

+V - (pwV) =~

Jor. 0T,
a_p+ Xz + yz

az. A

o7
+ 9%

z-component:

d(pw)
ot ox  dy

0z

Bl Usles

(

Energy equation
(Non-conservation form — [Wendt 2009], Eq. 2.52)
2
) e (1) 2,27, 2
Dt 2 ox dy 0z
_9up) _dp) _9(wp) T,
ox ay 0z ox
dy 0z ox dy
0 0 L -
N vz,) N o(wt,,) N (wt,.) N o(wt,) iV
0z ox dy 0z

)

0z

,,fl = +— +—
7 ox dy

L owr,)  dr,)  00T,) 007,)

(Conservation form - [Wendt 2009], Eq. 2.64)
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2 2
e ]
9 (, 0T df(,dT
= Il A T
pq+8x( axJ+ay( ayj

+i(k a_Tj _d(up) d(vp) I(wp) N our,,)
dz\ 9z ox dy oz ox

owur,) dur,) ovr,) dvt,)
+ + + +

ady oz ox dy
. o(vt,,) . owz,.) . Iwrt,,) . o(wt..) C
0z ox dy 0z

(without considering chemical reactions) &SI OS5 1 Jadl O 33 (inviscous flow) (o J Y1 Ll Y3 2.7.2

Here are the viscous terms of the above equations

dropped.

Al Y3l e Sl 2.7.3

Surveying the above governing equations, several
comments and observations can be made:
1. They are coupled system of non-linear partial

differential equations, and hence are very
difficult to solve analytically. To date, there is no

general closed-form solution to these equations.

2. For the momentum and energy equations, the
difference between the non-conservation and
conservation forms of the equation is just the left-
hand side.

3. Note that the conservation form of the
equationscontain terms on the left-hand side

which include the divergence of some quantity,
such as V‘(p-V), V‘(puV), etc. For this
reason, the conservation form of the governing

equations is sometimes called the divergence form.

4. The normal and stress terms in these equations
are functions of the velocity gradients, as given
by [Wendt 2009], Egs. (2.43a-f).

5. The system contains five equations in terms of six

Ly SUSIR e W [ EIPY Jol 131
AW J s

e dals e de sanan 21
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unknown flow-field variables, p, p,u,v,w,e. In

aerodeynamics, it is generally reasonable to
assume the gas is a perfect gas (which assumes
that intermolecular forces are negligible). For a

perfect gas, the equation of state is
P =pPRT,

where R is the specific gas constant. This provides a
sixth equation, but it also introduces a seventh
unknown, namely temperature, T. A seventh
equation to close the entire system must be a
thermodynamic relation between state variables.

For example,
e=e(Tp)

For a calorically perfect gas (constant specific heats),

this relation would be

e=cT

where ¢, is the specific heat at constant volume.

6. Historically, the momentum equations for a
viscous flow are called the Navier-Stokes
equations. However, in modern CFD literature,
“a Navier-Stokes solution” simply means a
solution of a wviscous flow problem using full
governing equations (including continuity as well as

energy and momentum).

(boundary conditions) i Ji Y1 2.7.4

The boundary conditions, and sometimes the initial
conditions, dictate the particular solutions to be obtained
from the governing equations. (This makes the difference for
example between the flow over a Boing 757 or past a wind
mill, although the equations are the same). For a viscous
fluid, the boundary condition on a surface assumes no
relative velocity between the surface and the gas
immediately at the surface. This is called the no-slip
condition. If the surface is stationary, then

u=v=w=0 at the surface

(for a viscous flow)

For an inviscid fluid, the flow slips over the surface (there is
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no friction to promote its ‘sticking” to the surface); hence, at
the surface, the flow must be tangent to the surface.

V -ii=0 at the surface

(for a inviscid flow)

where 7 is a unit vector perpendicular (that means
orthogonal) to the surface. The boundary conditions
elsewhere in the flow depend on the type of problem being
considered, and usually pertain to inflow and outflow
boundaries at a finite distance from the surfaces, or an
‘infinity” boundary condition infinitely far from surface.

The boundary conditions discussed above are physically
boundary conditions in nature.

In CFD we have a additional concern, namely the proper
numerical implementation of the boundary conditions.

(conservation form) =il S2dl Jo Slarde :CFD e o390 dloty S¥3L JSCs1 2.8

HRICIES] JS2dL (conservation form) (il Sl el Vol s gag LSS0 eaned

oU OF oG oH
2+ =T
ot odx Jdy Oz

[Wendt], Eq. 2.65

ple+V?/2u+ pu—k%—T—uTxx VT, —wT
X )

XZ

v
puv - Tyx
pv o+ p- Tyy
pwy =T,

ple+V?*/2)v+ pv—k(—;ﬁ—urﬂ —VT, —WwT,,

ple+V? 2w+ pw—k%—j—uz’u -Vl —WT,_

P
pu Ppw
pv Ppuw =71,
ow H=ypw-1_
ple+V?2/2) pw’+p=T,
pu
pu’ +p—-7, 0
pu—71, PR
pwu—7, T=14,

o

pluf, +vpf, +w,q‘z)+pc.1
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In [Wendt], Eq. 2.65, the column vectors F, G,
and H are called the flux terms (or flux vectors),
and ] represents a ‘source term’ (which is zero if
body forces are negligible). For an unsteady
problem, U is called the solution vector because
the elements in U (p,pu, pv,etc.) are the
dependent variables which are usually solved
numerically in steps of time. Please note that, in
this formalism, it is the elements of U that are
obtained computationally, i.e. numbers are
obtained for the products p,pu,pv, pw and

ple+V?*/2). Of course, once numbers are
known for these dependent variables (which
includes p by itself), obtaining the primitive

variables is simple:

V-MJH)G)FZQ.U;J\ ol sl Al
Ak A ol )

p=p
u=2"
P
—a
P
w=2Y
P

e_p(e+V2/2)_u2+v2+w2
P 2

For an inviscid flow, [Wendt et. al. 2009], [Wendt et. al. 2009], sl >3 ¥ 0L,

Eq.(2.65) remains the same, except the

elements of the column vectors are | &bl Slgxll OF Y » LS &5 Eq.(2.65)

simplified. Examining the conservation form

o . . . ) coes!
of the inviscid equations summerized in '
Sect. 2.7.2, we find that Sl 3 aer ) W oYolead)  Jaisadl (il WG 13

Ol U 2.7.2
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P pu
2
pou pu-+p
U=1pv F=qpu
pwu
pw 2
) pu(e+V=/2u+ pu
ple+V~12)
pY pw
puy puw
G=1p"+p H =< pw
pwy ow' +p
0
8
J =10,
P
pluf +vpf, +wef )+pq
For the numerical solution of an unsteady
inviscid flow, once again the solution vector
is U, and the dependent variables for which
numbers are directly obtained are products
p,pu,pv,pw and p(e+V?/2). For a
steady inviscid flow, dU /dt =0.
Frequently, the numerical solution to such
problems takes the form of ‘marching’
techniques; for example, if the solution is
being obtained by marching in the x-
direction, then [Wendt et. al. 2009], Eq.(2.65)
can be written as
oF _ . oG N oH [Wendt], Eq. 2.66
ox dy 0oz
Here, F becomes the “solution vector’, and the J skl as Sl w2 F L
dependent variables for which numbers are '

obtained are p,pu, pv, pw and p(e+V?>/2).

From these dependent variables, it is

possible to obtain the primitive variables,
although the algebra is more complex than in

the previously discussed case.

Notice that the governing equations when

written in the form of [Wendt et. al. 20

still

09],
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Eq.(2.65), have no flow variables outside the
single x,y,z, and t derivates. Indeed, the terms in
[Wendt et. al. 2009], Eq.(2.65) have everything
buried inside these derivates. The flow
equations in the form of [Wendt et. al. 2009],
Eq.(2.65) are said to be in strong conservation
form. In contrast, examine the forms [Wendt et.
al. 2009], Eq.(2.42a,b and c) and [Wendt et. al.
2009], Eq.(2.64). These equations have a number
of x,y and z derivates exipliticly appearing on
the right —-hand side. These are the weak
conservation form of the equations.

The form of the governing equations giving by
Eq. (2.65) is popular in CFD; let us explain why.
In flow fields involving shock waves, there are
sharp, discontinuous changes in the primitive
flow-field variables p, p, u, T, etc,, across the
shocks. Many computations of flows with
shocks are designed to have the shock waves
appear naturally within the computational space
as a direct result of the overall flow field
solution, i.e. as a direct result of the general
algorithm, without any special treatment to take
care of the shocks themselves. Such approaches
are called shock capturing methods. This is in
contrast to the alternate approach, where shock
waves are explicitly introduced into the flow-
field solution, the exact Rankine-Hugoniot
relations for changes across a shock are used to
relate the flow immediately ahead of and behind
the shock, and the governing flow equations are
used to calculate the remainder of the flow field.
This approach is called the shock-fitting method.
These two different approaches are illustrated in
Figs. 2.8 and 2.9. In Fig.2.8, the computational
domain for calculating the supersonic flow over
the body extends both upstream and
downstream of the nose. The shock wave is
allowed to form within the computational
domain as a consequence of the general flow-
field algorithm,
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[Wendt et.al.2009], Fig.2.8: Mesh for the
shock-capturing approach

without any special shock relations being introduced.
In this manner, the shock wave is ‘captured within the
domain by means of the computational solution of the
governing partial differential equations. Therefore,
Fig. 2.8 is an example of the shock-capturing method.
In contrast, Fig. 2.9 illustrates the same flow problem,
except that now the computational domain is the flow
between the between the shock and the body. The
shock wave is introduced directly into the solution as
an explicit discontinuity, and the standard oblique
shock relations (the Rankine-Hugoniot relations) are
used the freestream supersonic flow ahead of the
shock to the flow computed by the partial differential
equations downstream of the shock. Therefore, Fig.
2.9 is an example of the shock-fitting method. There
are advantages and disadvantages of both methods.
For example, the shock-capturing method is ideal for
complex flow problems involving shock waves for
which we do not know either the location or number
of shocks. Here, the shocks simply form within the
computational domain as nature would have it.
Moreover, this takes place without requiring any
special treatment of the shock within the algorithm,
and hence simplifies the computer programming.
However, a disadvantage of this approach is that the
shocks are generally smeared over a number of grid
points in the computational mesh, and hence the
numerically obtained shock thickness bears no
relation what-so-ever to the actual physical shock
thickness, and the precise location of the shock
discontinuity is uncertain within a few mesh sizes. In
contrast, the advantage of the shock-fitting method is
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[Wendt et.al.2009], Fig.2.9: Mesh for
the shock-fitting approach

That the shock is always treated as a discontinuity, and
its location is well-defined numerically. However, for a
given problem you have to know in advance
approximately where to put the shock waves, and how
many there are. For complex flows, this can be a distinct
disadvantage. Therefore, there are pros and cons
associated with both shock-capturing and shock-fitting
methods, and both have been employed extensively in
CFD. In fact, a combination of these two methods is
used to predict the formation and approximate location
of shocks, and then these shocks are fit with explicitly in
those parts of a flow field where you know in advance
they occur, and to employ a shock-capturing method
for the remainder of the flow field in order to generate
shocks that you cannot predict in advance.

Again, what does all of this discussion have to do with
the conservation form of the governing equations as
given by Eq. (2.65)? Simply this. For the shock-
capturing method, experience has shown that the
conservation form of the governing equations should be
used. When the conservation form is used, the
computed flow-field results are generally smooth and
stable. However, when the non-conservation form is
used for a shock-capturing solution, the computed
flow-field results usually exhibit unsatisfactory spatial
oscillations (wiggles) upstream and downstream of the
shock wave, the shocks may appear in the wrong
location and the solution may even become unstable. In
contrast, for the shock-fitting method, satisfactory
results are usually obtained for either form of the
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equations-conservation or non-conservation.

Why is the use of the conservation form of the
equations so important for the shock-capturing
method? The answer can be see by considering the flow
across a normal shock wave, as illustrated in Fig. 2.10.
Consider the density distribution across the shock, as
sketched in Fig. 2.10(a). Clearly, there is a discontinuous
increase in p across the shock. If the non-conservation
from of the governing equations were used to calculate
this flow, where the primary dependent variables are
the primitive variables such as p and p, then the
equations would see a large discontinuity in the
dependent variable p. This in turn would compound the
numerical errors associated with the calculation of p.
On the other hand, recall the continuity equation for a
normal shock wave (see Refs.[1,3]):

Pl = Pl (2.67)

From Eq. (2.67), the mass flux, pu, is constant across the

shock wave, as illustrated in Fig. 2.10(b). The
conservation form of the governing equations uses the
product pu as a dependent variable, and hence the
conservation form of the equations see no discontinuity
in this dependent variable across the shock wave. In
turn, the numerical accuracy and stability of the
solution should be greatly enhanced. To reinforce this
discussion, consider the momentum equation across a
normal shock wave [1,3]:

P+ piul = p, + oty (2.68)

As show in Fig. 2.10(c), the pressure itself is
discontinuous across the shock ; however, from Eq.
(2.68) the flux variable (0 + pu’) is constant across the
shock.
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[Wendt et. al. 2009], Fig.2.10: Variation
of flow properties through a normal
shock wave

This is illustrated in Fig. 2.10(d). Examining
the inviscid flow equations in the conservation
form given by Eq. (2.65), we clearly see that
the quantity (0 + pu®) is one of the dependent

variables. Therefore, the conservation form of
the equations would see no discontinuity in
this dependent variables across the shock.
Although this example of the flow across a
normal shock wave is somewhat simplistic, it
serves to explain why the use of the
conservation form of the governing equations
are so important for calculations using the
shock-capturing  method.  Because the
conservation form uses flux variables as the
dependent variables, and because the changes
in these flux variables are either zero or small
across a shock wave, the numerical quality of a
shock-capturing method will be enhances by
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the use of the conservation form in contrast to
the non-conservation form, which uses the
primitive variables as dependent variables.

In summary, the previous discussion is one of
the primary reasons why CFD makes a
distinction between the two forms of the
governing equations-conservation and non-
conservation. And this is why we have gone to
great lengths in this chapter to derive these
different forms, and why we should be aware

of the differences between the two forms.
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In [Wendt et. al. 2009 ] there are two methods described which use these elementary flows:

¢ Non-lifting Flows Over Arbitrary Two-Dimensional Bodies: The Source Panel Method

¢ Lifting Flows Over Arbitrary Two-Dimensional Bodies: The Vortex Panel Method

Also the application “The Aerodynamics of Drooped Leading-Edge Wings Below and Above
Stall” is described.
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The governing equations in the form of partial
differential forms (as [Wendt et.al.2009], Egs.
2.36 a-c, see Chapter 2.7) are by far the most
prevalent form used in computational fluid
dynamics (CFD). Therefore, before studying
numerical methods for the solution of these
equations, it is useful to examine some
mathematical properties of partial differential
equations themselves. Any valid numerical
solution of the equations should exhibit the
property of obeying the general mathematical
properties of the governing equations.

Examine the governing equations of fluid
dynamics as derived in Chap.2. Note that in
all cases the highest order derivates occur
linearly, i.e. there are no products or
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exponentials of the highest order derivates —
they appear by themselves, multiplied by
coefficients which are functions of the
dependent variables themselves. Such a
system of equations is called a quasilinear
system. For example, for inviscid flows,
examining the equations in Sect. 2.7.2 we find
the highest order derivates are first order and
all of them appear linearly. For viscid flows,
examining the equations in Sect. 2.7.1 we find
the highest order derivates are second order
and all of them appear linearly.

For this reason, in the next section, let us
examine some properties of a system of
quasilinear partial differential equations. In
the process we will establish a classification of
three types of partial differential equations —
all three of which are encountered in fluid
dynamics.

Classification of Partial Differential ) i ilold oVl Cies 4.2

(Equations

For simplicity, let us consider a fairly simple
system of quasilinear equations. They will not
be the flow equations, but they are similar in
some respects. Therefore, this section serves as
a simplified example.

Consider the system of quasilinear equations
given below:

ou Ju ov ov
—+b, — —+d,—=
+ lay+clax+ lay fl

Ju Ju ov ov
—4b,—4c,—+d,—=
ox dy © ox 9y S2

a,

[Wendt et. al. 2009], Eq. (4.1a)

[Wendt et. al. 2009], Eq. (4.1Db)

where u and v are the dependent variables,
functions of x and y, and the coefficients
a,,a,,b,,b,,c,,c,,d,,d,,f, and f, can be
functions of x, y,uand v.

Consider any point in the xy-plane. Let us
seek the lines (or directions) through this
point (if any exist) along which the derivates of
u and v are indeterminant, and across which
may be discontinuous. Such lines are called
characteristic lines. To find such lines, we
assume that are continuous, and hence

52




since u = u(x,y): du = g—udx + 3_14 dy [Wendt et. al. 2009], Eq. (4.2a)
X Y
) v v
since v=v(xy): dv= a—dx + a—dy [Wendt et. al. 2009], Eq. (4.2b)
X Y

Equations [Wendt et. al. 2009], Eq. (4.1a and b)
and [Wendt et. al. 2009], Eq. (4.2a and b)
constitute a system of four linear equations
with four unknowns (du/dx,du/dy,dv/ox,

and dv/dy). These equations can be written

in matrix form as

a, b, ¢ d |dulox fi
a, b, ¢, d,|duldy| |f,
dc dy 0 0 |ov/ox| |du [Wendt et. al. 2009], Eq. (4.3)
0 0 dx dy|ov/dy dv

Let [A] denote the coefficient matrix.

a b ¢ d
[A]= a, b, ¢, d,
dx dy 0 0
0 0 dx dy

Moreover, let |A| be the determinant of [A]
From Cramer’s rule, if |A| #0, then unique

solutions can be obtained for
ou/0dx,0u/dy,dv/dx, and dv/dy . On the other

hand, if |A| =0, then du/dx,du/dy,dv/dx, and
ov/dy are, at best, indeterminant. We are
seeking the particular directions in the xy-
plane along which these derivates of uand v
and indeterminant. Therefore, let us set |A| =0,

and see what happens.

al bl cl dl

a, b, ¢, d,

dx dy 0 0|

0 0 dx dy

Hence U

(apc: — a0 ]fr.ijp]3 —(aydz —azdy + bycz — baoy Hdx)(dy) + (b1dz — bad) Wdx)> =0
[Wendt et. al. 2009], Eq. (4.4)

Divide [Wendt et. al. 2009], Eq. (4.4) by (dx)’.
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dy” dy
{ﬂ]L‘g—ﬂch(d—}] —(aydr —azxd) + byor — b2y ]d—Jr +i(byds=bad)) =0
1x kS

[Wendt et. al. 2009], Eq. (4.5)

Equation (4.5) is a quadratic equation in dy/dx.
For any point in the xy-plane, the solution of
Eq. (4.5) will give the slopes of the lines along
which the derivatives of wand v are
indeterminant. These lines in the xy space along
are called characteristic lines fo the system of
equations given by Wendt et. al. 2009], Eq. (4.1a
and 4.1b).

In Eq. (4.5), let

a=(aycy—ac)
b= —(ayds —aady +byoa —bacy)

¢ = (Idas=bady)

Then Eq. (4.5) can be written as

dx dx

dy\ (dyY
a(—yj +b(—y) +e=0 [Wendt et. al. 2009], Eq. (4.6)

Hence from the quadratic formula:

ﬂ_ —bxAb* —4dac

dx 2a

[Wendt et. al. 2009], Eq. (4.7)

Equation (4.7) gives the direction of the
characteristic lines through a given xy point.
These lines have a different nature, depending
on the value of the discriminant in Eq. (4.7).
Denote the dicriminant by D.

D =b*—-4ac [Wendt et. al. 2009], Eq. (4.

8)

The characteristic lines may be real and distinct,
real and equal, or imaginary, depending on the
value of D. Specially:

If D>0: Two real and distinct lines exist through
each point in the xy-plane. When this is the
case, the system of equations given by
[Wendt et. al. 2009], Eqgs. (4.1 a and b) is
called hyperbolic.

If D=0: One real characteristic exists. Here the
system of equations given by [Wendt et. al.
2009], Egs. (4.1 a and b) is called parabolic.
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If D<0: The characteristic lines are imaginary.
Here the system of equations given by
[Wendt et. al. 2009], Egs. (4.1 a and b) is
called elliptic.

The classification of quasilinear PDEs as either
elliptic, parabolic or hyperbolic is common in the
analysis of such equations. These three classes
of equations have totally different behaviour.
The origin of the words elliptic, parabolic and
hyperbolic is simply a direct analogy with the
case for conic sections. The general equations
for a conic section from analytic geometry is

ax® +bxy+cy’ +dx+ey+ f =0

Where, if

b* —4ac > 0, the conic is a hyperbola
b* —4ac =0, the conic is a parabola
b> —4ac <0, the conic is a ellipse

We note, that for hyperbolic PDEs, the fact, that
two real and distinct characteristics exist,
allows the development of a method for the
ready solution of these equations. If we return
to [Wendt et. al. 2009], Eq. (4.3), and actually
attempt to solve for, say du/dy, using Cramer’s

rule, we have

Nl 0
au/ay:HZB

where the numerator determinant is

a f, ¢ d

a, f, ¢ d,
V| =

dc du 0 O

0 dv dx dy

[Wendt et. al. 2009], Eq. (4.9)

The reason why |N| must be zero is that du/dy
is indeterminant, of the form 0/0. Since |A| has

already been made to zero, then |N | must be

zero to allow du/dy to be indeterminant. The
expansion of [Wendt et. al. 2009], Eq. (4.9) will
lead to equations involving the flow field
variables which are ordinary differential
equations, and in some cases are algebraic
equations; these equations obtained from
[Wendt et. al. 2009], Eq. (4.9) are called the
compatibility equations. They hold only along
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the characteristic lines. This is the essence of
solving the original hyperbolic PDE: simply
integrate  simpler, ordinary differential
equations (the compatibility equations) along
the the characteristic lines in the xy-plane. This
is called the method of characteristics. This
method is highly developed for the solution of
inviscid supersonic flows, for which the system
of governing flow equations is hyperbolic. The
method of characteristics is a classical technique
for the solution of inviscid supersonic flows,
and therefor it will not be considered in this
book about CFD in any detail.

General Behaviour of the different Classes of PDEs and their 4.3

Relation to Fluid Dynamics

In this section we simply discuss, without
proof, some of the behaviour of hyperbolic,
parabolic and elliptic PDEs, and relate this
behaviour to the solution of problems in fluid

dynamics.

Hyperbolic Equations 4.3.1

For hyperbolic equations, information at a
given point P influences only those regions
between the advancing characteristics. For
example, examine Fig.4.1, which is sketched
for a two-dimensional problem with two
independent space variables.

Point P is located at a given (x,y). Consider the
left- and right-running characteristics as

shown in Fig. 4.1.

Fig. 41 Domain and
boundaries for the solution of
hyperbolic equations. Two-
dimensional steady flow.

Information at point P influences only the
shaded region — the region labelled I between
the two advancing characteristics through P.
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This has a collorary effect on boundary
conditions for hyperbolic equations. Assume
that the x-axis is a given boundary condition
for the problem, i.e. the dependent variables u
and v are known along the x-axis. Then the
solution can be obtained by ‘marching
forward” in the distance y, starting from the
given boundary. However, the solution for u
and v at point P will depend only on the part
of the boundary between a and b, as shown in
Fig.4.1l. Information at point ¢, which is
outside the interval ab, is propagated along
characteristics through ¢, and influences only
region II. Point P is outside region II, and
hence daes not feel information from point c.
For this reason, point P depends on only that
part of the boundary which is intercepted by
and included between the two retreating
characteristic lines through point P, i.e.
interval ab.

In fluid dynamics, the following types of
flows are governed by hyperbolic PDEs, and
hence exhibit the behaviour described above:
Steady, inviscid supersonic flow. If the flow in
two-dimensional, the behaviour is like this
discussed in Fig. 4.1. If the flow in three-
dimensional, there are characteristic surfaces
in xyz space, as sketched in Fig. 4.2. Consider
point P at a given (x,y,z) location. Information
at P influences the shaded volume within the
advancing characteristic surface. In addition,
if the x-y plane is a boundary surface, then
only that portion of the boundary shown as
the cross-hatched area in the x-y plane,
intercepted by the retreating characteristic
surface, has any effect on P. In Fig. 4.2, the
dependent variables are solved by starting
with the data given in the xy-plane, and
‘marching’ in the z-direction. For an inviscid
supersonic flow problem, the general flow
direction would also be the z-direction.
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Fig. 4.2 Domain and boundaries
for the solution of hyperbolic
equations. Three-dimensional
steady flow.

Unsteady inviscid compressible flow. For unsteady
one- and two-dimensional inviscid flows, the
govering equations are hyperbolic, no matter
whether the flow is locally subsonic or
supersonic. Here, time is the marching direction.
For one-dimensional unsteady flow, consider a
point P an the (x,t) plane shown in Fig. 4.3. Once
again, the region influenced by P is the shaded
area between the two advancing characteristics
through P, and the interval ab is the only portion
of the boundary along the x-axis upon which the
solution at P depends.

For two-dimensional unsteady flow, consider a
point P in the (x,y,t) space as shown in Fig. 4.4.
Starting with known initial data in the xy-plane,
the solution “‘marches’ forward in time.

Fig. 4.3 Domain and boundaries for
the solution of hyperbolic equations.
One-dimensional steady flow.

Fig. 44 Domain and
boundaries for the solution of
hyperbolic equations. Two-
dimensional unsteady flow.
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Parabolic Equations 4.3.2

For parabolic equations, information at point
P in the xy-plane influences the entire region
of the plane to one side of P. This is sketched
in Fig. 4.5, where the single characteristic line
through point P is drawn. Assume the x- and
y-axes are boundaries; the solution at P
depends on the boundary conditions along
the entire y axis, as well as on that portion of
the x-axis from a to b. Solutions to parabolic
equations are also ‘marching’ solutions;
starting with boundary conditions along both
the x- and y-axes, the flow-field solution is
obtained by ‘marching’ in the general x-
direction.

Fig. 45 Domain and
boundaries for the solution of
parabolic equations in two
dimensions.

In fluid dynamics , there are reduced forms of
the Navier-Stokes equations which exhibit
parabolic-type behaviour. If the viscous stress
terms involving derivatives with respect to x
are ignored in these equations, we obtain the
‘parabolized’ Navier-Stokes equations, which
allows a solution to march downstream in the
x-direction, starting with some prescribed
data along the x- and y-axes. A further
reduction of the Navier-Stokes equations for
the case of high Reynolds numbers leads to
the well-known boundary layer equations.
These boundary layer equations exhibit the
parabolic behaviour shown in Fig. 4.5.
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Elliptic Equations 4.3.3

For elliptic equations, information at point P
in the xy-plane influences all other regions of
the domain. This is sketched in Fig. 4.6, which
shows a rectangular domain. Here, the
domain is fully closed, surrounded by the
closed boundary abcd. For elliptic equations,
because point P influences all points in the
domain, then in turn the solution at point P is
influenced by the entire closed boundary abcd.
Therefore, the solution at point P must be
carried out simultaneously with the solution
at all other points in the domain. This is in be
in stark contrast to the ‘marching’ solutions
germaine to hyperbolic and parabolic
equations.

In fluid dynamics steady, subsonic, inviscid
flow is governed by elliptic equations. As a
sub-case, this also includes incompressible
flow (which theoretically implies that the
Mach number is zero). Hence, for such flows,
physically boundary conditions must be
applied over a closed boundary that totally
surrounds the flow, and the flow-field
solution at all points in the flow must be
obtained simultaneously, because the solution
at one point influences the solution at all other
points. In terms of Fig. 4.6, boundary
conditions must be applied over the entire
boundary abcd. These boundary conditions
can take the following forms:

A specification of the dependent variables u and
v along the boundary. This type of boundary
conditions is called the Dirichlet condition.

A specification of derivatives of the dependent
variables u and v , such as du/dy along the
boundary. This type of boundary conditions is
called the Neumann condition.
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Fig. 4.6 Domain and
boundaries for the solution of
elliptic equations in two
dimensions.

ol 2 4.3.4

At this stage it would be worthwhile for the
student to examine the actual, closed-form
solution to some linear PDE of the elliptic,
parabolic and hyperbolic types. Numerous
classical solutions can be found for example in
Refs. [2] and [3].

Well-Posed Problems 4.3.5

In the solution of PDEs it is sometimes easy to
attempt
insufficient boundary and initial conditions.
Such an ‘ill-posed” problem will usually lead

a solution wusing incorrect or

to spurious ( ij ) results.

Therefor we define a well-posed problem as
follows: If the solution to a PDE exists and is
unique, if the depends
continuously upon the initial and boundary
conditions, then the problem is well-posed.

and solution

References 4.3.6

[1] Anderson J.D., Modern Compressible Flow: With Historical Perspective, 2 ed., 1990

[2] Hildebrand, Advanced Calculus for Applications, 1976

[3] Anderson, Tannehill and Pletcher, Computational Fluid Mechanics and Heat Transfer, 1984
[4] Moretti and Abbett, “A Time-dependent Computational Method for Blunt Body Flows”,

AIAA Journal, Vol.4, No.12, Dec 1966, 2136-2141

61




Chapter 5: Discretization of Partial Differential Equations 5

J= 5.1

Analytical solutions of partial differential
equations involve closed-form expressions
which give the variation of the dependent
variables  continuously throughout the
domain. In contrast, numerical solutions can
give answers at only discrete points in the
domain, called grid points.

For example, consider Fig. 5.1, which shows a
section of a discrete grid in the xy-plane. For
convenience, let us assume that the spacing of
the grid points in the x-direction is uniform,
given by Ax, and that the spacing in y-
direction is also uniform, given by Ay, as
shown in Fig. 5.1.In general, Ax and Ay are
different. However, the vast majority of CFD
applications involve numerical solutions on a
grid which involves uniform spacing in each
direction, because this greatly simplifies the
programming of the solution, saves storage
space and usually results in greater accuracy.
This uniform spacing does not have to occur
in physical xy space; as is frequently done in
CFD, the numerical calculations are carried
out in a transformed computational space
which has uniform spacing in the transformed
independent variables, but which corresponds
to non-uniform spacing in the physical plane.
These matters are discussed in Chapter 6. In
any event, in this chapter we will assume
uniform spacing in each coordinate direction,
but not necessarily equal spacing for both
directions, i.e. we will assume Ax and Ay to be
constants, but that Ax does not have to equal
Ay.

Returning to Fig. 5.1, the grid points are
identified by an index i which runs in the x-
direction, and an index j which runs in the y-
direction. Hence, if (i j) is the index for point P
in Fig.5.1, then the point immediately to the
right of P is labelled as (i+1,j), the point direct
above is (i,j+1) etc.

The method of finite differences is widely used in
CFD, and therefore most of this chapter will
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be devoted to matters concerning finite
differences. The philosophy of finite
differences is to replace the partial derivatives
appearing in the governing equations of fluid
dynamics. With algebraic difference quotients,
yielding a system of algebraic equations
which can be solved for the flow-field
variables at the specific, discrete grid points in
the flow (as shown in Fig. 5.1). Let us now
proceed to derive some of the more common
algebraic  difference quotients wused to
discretize the PDEs.

Fig. 5.1 Discrete grid points

5.2 Derivation of Elementary Finite Difference Quotients

Finite difference representations of derivatives
are based on Taylor’s series expansions.For
example, if ui, j denotes the x-component of
velocity at point (i, j), then the velocity ui, j at
point (i + 1, j) can be expressed in terms of a
Taylor’s series expanded about point (i, j), as

follows:
ot y OPu\  (Ax)? Fu\ (Ux)3 5.1)
1= Ui;+| — X+ + +oeee J.
LT T oy i ox* ), 2 ox*); 6

Equation (5.1) is mathematically an exact
expression for ui+l,j if:

(a) the number of terms is infinite and the series
converges,

(b) and/or Ax—0.

For numerical computations, it is impractical to
carry an infinite number of terms in Eq. (5.1).
Therefore, Eq. (5.1) is truncated. For example, if
terms of magnitude(Ax)? and higher order are
neglected, Eq. (5.1) reduces to




N ou Ax+ u\ (Ax)?
Uipj~ U+ | 4dx
. ! ox i (?.\'E i 2

(5.2)

We say that Eq. (5.2) is of second-order
accuracy, because terms of order (Ax)® and
higher have been neglected. If terms of order
(Ax)? and higher are neglected,we obtain from

Eq. (5.1),

ou
Mi-ﬁ-]._j st ”i’j—i—((?—y) Ax

tn
%!

where Eq. (5.3) is of first-order accuracy. In Egs.
(5.2) and (5.3), the neglected higher-order terms
represent the truncation error in the finite series
representation. For example, the truncation

error for Eq. (5.2) is

i(g) (Ax)"
Jxn i n!

n=3

and the truncation error for Eq. (5.3) is

i d"u\  (Ax)"
Jxn i !

n=2

The truncation error can be reduced by:

(a) Carrying more terms in the Taylor’s series,
Eq. (5.1). This leads to higher-

order accuracy in the representation of ui,.

(b) Reducing the magnitude of Ax.

Let us return to Eq. (5.1), and solve for
(0u/ox )i;

Lj

Ou\  Uig1j— Ui Pu\ Ax  (Pu) 43
oxl.. Ax ax2 y 2 dx3 i 6

Truncation error

or,

(a_u) e L BT
0x ij Ax

In Eq. (5.4), the symbol O(Ax) is a formal
mathematical notation which represents’terms
of-order-of Ax’. Eq. (5.4) is more precise
notation than Eq. (5.3), which involves

the ‘approximately equal” notation; in Eq. (5.4)
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the order of magnitude of the truncation error
is shown explicitly by the O notation. We now
identify the firstorder-accurate difference
representation for the derivative (u/0x)s;
expressed by Eq. (5.4) as a first-order forward

difference, repeated below

W\ ety i
((_”) e Ml BT ES (5.4 repeated)
ox i Ax

Let us now write a Taylor’s series expansion for

ui-1j, expanded about uij.

ax x2 2

Fu\ (=A4x)3
- 4+
ox3 i 6

) i —Ax)*
Hi-1,j = Mifﬁ(ﬂ) (_,_1_\-)+({' “) —
i i

or,

- [ou Axt Pu\ (4x)?
Ui—1,j = Uij O iej' X rj.l."g ’ 3

A u (A.r)3+
Jx3 i 6

Solving for (0u/0x)ij, we obtain

) Uii— Hi—1.; ,
(ﬁ) = TN L o) (5.6)
ox i Ax

Equation (5.6) is a first order rearward
difference expression for the derivative(du/ox)

at grid point (i, j).
Let us now subtract Eq. (5.5) from (5.1).
du FPu) (4x)?
Uil — Ui-1,] =2l — | dx+ — ,,_) T (5.7)
' ax ij ax3 ij

Solving Eq. (5.7) for (du/0x)j, we obtain
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dx 2Ax

G\ Ui — 1
( ) _ Ui T o
i

(5.8)

Equation (5.8) is a second order -central

difference for the derivative (Ou/0x) at
grid point (i, j).To obtain a finite-difference
expression for the second partial derivative
(02u/0x?)ij, first recall that the order-of
magnitude term in Eq. (5.8) comes from Eq.

(5.7),and that Eq. (5.8) can be written

out Uiy Ui Fu\ (4x)? N
ax i B 24x x> i 6

Substituting Eq. (5.9) into (5.1), we obtain

Uiy1j = Uij+ : -
) ) 24x ox3 6

N 3*u (A.x'}2+ PFu\ (4x)?
Ox2 i 2 x> g 6

N Fu (A.x'}4+
(3.\4 I._j 2—1

Uit — Ui—1,j ((33;{) (;I.\')2+
ij

(5.10)

Solving Eq. (5.10) for (0*u/0x?)ij, we obtain

92 N 7T AP

o-u Wiglj— 2Uj; + Ui,

( ) = ! ! !+ O(Ux)?
i

dx2 (Ax)2

(5.11)

Equation (5.11) is a second-order central second
difference for the derivative (d*u/0x?) at grid
point (i, j). Difference expressions for the
y-derivatives are obtained in exactly the same
fashion. The results are directly analogous to
the previous equations for the x-derivatives.
They are:
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du Ui j+1 — Ui

— | = ——=+0Uy) Forward difference
ay ). Ay

B ,J B
ou Ui j— Ujj—1 L
— | = ——+0Uy) Rearward difference
dy J. . Ay

- ]’J -
du Ui j+1 — Ui j—1 5 o
— ] =2 L ouy) Central difference
ay i 24y

o) ;
0°u Myt — 205+ i o
= ) =rH ! =+ O(4y)? Central second difference
a..2 2 .
f)‘\- i (ld_\‘)ﬁ

It is interesting to note that the central second
difference given for example by Eq. (5.11) can
be intepreted as a forward difference of the first
derivatives, with rearward differences used for
the first derivatives. Dropping the O notation

for convenience, we have

d-u %, (r_?u)] ax Jiv1j \ax )i

i B e e ~ .

X i | Ox \ Oy i Ax

¥ _

d<u (”i+lfj_f'ffi,j) (”i,j_”i—],j)] I

ox?); I\ Ax Ax Ax

b ;

0 u Uiglj— 20 j + i1 j (5.12)
dx? i (Ax)? -

Equation (5.12) is the same difference quotient
as Eq. (5.11). The same philosophy can be used
to quickly generate a finite difference quotient
for the mixed derivative (0*u/0xdy) at grid point
(i, j). For example,

Pu_ 9 (o (5.13)
dxdy  ox\dy

In Eq. (5.13), write the x-derivative as a central
difference of the y-derivatives, and then cast the
y-derivatives also in terms of central

differences.




)
ay Ji-1

axdy — dx\dy

Pu 0 ({m): (g__it‘)m,j_(

2Ax

2
O | Uir1j+1 — Uir j-1 i1 j+1 — Ui—1 j-1 I
axay 24y 24y 24x

A u
axdy ~ 44xA

~

or

\‘(“i+1.j+1 + i1 -1 — Ui j—1 — Ui-1 j+1)

dxdy 44xAy

+ O[(4x)?, (A_v)z]

7
a°u |
= ‘(“i+1.j+1 + Uim1j-1— Uir1j—1 — Ui-1 j+1)
i.]

(5.14)

Many other difference approximations can be
obtained for the above derivatives ,as well as
for derivatives of even higher order. The
philosophy is the same. For a detailed
tabulation of many forms of difference
quotients, see pages 44 and 45 of

Ref. [1]. What happens at a boundary? What
type of differencing is possible when we have
only one direction to go, namely, the direction
away from the boundary? For example,
consider Fig. 5.2, which illustrates a portion of
the boundary, with the yaxis perpendicular to
the boundary. Let grid point 1 be on the
boundary, with points 2 and 3 a distance Ay
and 2Ay above the boundary respectively.We
wish to construct a finite difference
approximation for ou/dy at the boundary. It is
easy to construct a forward difference as

. _
) I e O
av /, Ay '

which is of first-order accuracy. However, how
do we obtain a result which is of second-order
accuracy? Our central difference in Eq. (5.8)
fails us because it requires another point
beneath the boundary, such as illustrated as
point 2_ in Fig. 5.2. Point 2_is outside the
domain of computation, and we generally have
no information about u at this point. In the
early days of CFD, many solutions attempted to
sidestep this problem by assuming that

u2_= u2. This is called the reflection boundary
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condition. In most cases it does not make
physical sense, and is just as inaccurate,if not
more so, than the forward difference given by
Eq. (5.15).50 we ask the question again, how do
we find a second-order accurate finitedifference
at the boundary? The answer is simple, and it
illustrates another method of deriving finite-
difference quotients. Assume that at the
boundary u can be expressed by the polynomial

u = atby+cy2

(5.16)

Applied to the grid points in Fig. 5.2, Eq. (5.16)
yields

ur=a
uz = atbAy+c(Ay)?
us = atb(2Ay)+c(2Ay)?

Solving this system for b:

—3uy +4ur — i3

b=
24y

Returning to Eq. (5.16), and differentiating;:

du

=b+2cy
ay e

(5.18)

Equation (5.18), evaluated at the boundary
where y =0, yields

av ),

(5.19)

Combining Egs. (5.18) and (5.19), we obtain

du\  =3uy+4ur—u3
dv B 24y

It remains to show the order-of-accuracy of Eq.
(5.20). Consider a Taylor’s series expansion
about the point 1.

») . ou N Pu) v . Puy ? .
u(y) =u — | vy ] = +-.
. 1 dy . (3_1_,2 | 2 (3-\.3 | 6

Compare Egs. (5.21) and (5.16). Our assumed
polynomial expression in Eq. (5.16) is the same
as using the first three terms in the Taylor’s
series. Hence,Eq. (5.16) is of O(Ay)’. In forming
the derivative in Eq. (5.20), we divided by Ay,
which then makes Eq. (5.20) of O(Ay).
Thus, we can write from Eq. (5.20)
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(@u) =3uy +4uy — us
1

ay 24y

Fig. 5.2 Grid points at a
boundary

This is our desired second-order-accurate
difference quotient at the boundary.Both Egs.
(5.15) and (5.22) are called one-sided
differences, because they express a derivative at
a point in terms of dependent variables on only
one side of the point. Many other one-sided
differences can be formed, with higher degrees
of accuracy,using additional grid points to one
side of the given point. It is not unusual to see
four- and five point one-sided differences

applied at a boundary.

= +0(4y)?

(5.22)

5.3 Basic Aspects of Finite-Difference Equations

The essence of finite-difference solutions in
CFD is to use the difference quotients derived
in Sect. 5.2 (or others that are similar) to replace
the partial derivatives in the governing flow
equations, resulting in a system of algebraic
difference equations for the dependent
variables at each grid point. In the present
section, we examine some of the basic aspects
of a difference equation.Consider the following
model equation, in which we assume that the

dependent variable u is a function of x and t.

or  Ox2

(5.23)

We choose this simple equation for
convenience; at this stage in our discussions
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there is no advantage to be obtained by dealing
with the much more complex flow equations.
The basic aspects of finite-difference equations
to be examined in this section can just as well
be developed using Eq. (5.23). It should be
noted that Eq. (5.23) is parabolic.

If we replace the time derivative in Eq. (5.23)
with a forward difference, and the spatial
derivative with a central difference, the result
is:

n _n
i P Uy T2 A,
_ : (5.24)
At (dx)=

In Eq. (5.24), some common notation is used for
the difference of the time derivative. The index
for time usually appears as a superscript in
CFD, where n denotes conditions at time t,(n+1)
denotes conditions at time (t+At), and so forth.
The subscript still denotes the grid point
location; for the one spatial dimension
considered here, clearly we need only one
index, i.

Question: What is the truncation error for the
complete finite-difference equation?

Obviously, there must be a truncation error
because each one of the (finitedifference
quotients has its own truncation error. Let us
address this question. Combining Eqs. (5.23)
and (5.24), and explicitly writing the truncation
errors associated with the difference quotients
(from Egs. (5.4) and (5.10)), we have

. a2 n+l __ n n __ A~,.n n
@ - J*u _ i o (HH] 2”1 +u )
or  Ox2 At (Ax)?

ﬁ
_n
)
h

e a2u\" At N 04_;.' " (Ax)? .
o). 2 x4 12

i i

Examining Eq. (5.25), on the left-hand side is
the original partial differential equation, the
first two terms on the right-hand side are the
finite difference representation of this equation
and the terms in the square brackets are the
truncation error for the complete equation.
Note that the truncation error for this

representation is O[At, (Ax)?].

Does the finite-difference equation reduce to




the original differential equation as the number
of grid points goes to infinity, i.e. as Ax — 0 and
At — 0? Examining Eq. (5.25), we note that the
truncation error approaches zero, and hence the
difference equation does indeed approach the
original differential equation. When this is the
case, the finite-difference representation of the
partial differential equation is said to be
consistent. The solution of Eq. (5.24) takes the
form of a ‘marching’ solution in steps of time.
(Recall from Sect. 4.3.2 that such marching
solutions are a characteristic of parabolic
equations.) Assume that know the
dependent variable at all x at some instant in
time, say from given initial conditions.
Examining Eq. (5.24), we see that it contains
only

we

one unknown, namely u ™
In this fashion, the dependent variable
at time (t +At) can be obtained explicitly from
the known results at time t, i.e. uj™!
is obtained directly from the known values unj«
, uv, and u"a. This is an example of an explicit
finite-difference solution. As a counter example,
let us be daring and return to the original
partial differential equation given by Eq. (5.23).
This time, we write the spatial differences on
the right-hand side in terms of average

properties between n and (n+1), that is

=20 =20 ]

(Ax)2

n+1 n
ie1 T iy

"t 0
i i

At

u +u

' (5.

2| —

The differencing shown in Eq. (5.26) is called
the Crank-Nicolson form. Examine Eq. (5.26)
closely. The unknown u*! is not only expressed
in terms of the known quantities at time index
n, namely u+1,u", and u®-1, but also in terms of
unknown quantities at time index n+1, namely

u™lw1 and u™'i1 . Hence, Eq. (5.26) applied at a
given grid point i cannot by itself result in the
solution for u ! . Rather, Eq. (5.26) must be
written at all grid points, resulting in a system
of algebraic equations from which the
unknown u ! for all i can be solved
simultaneously. This is an example of an
implicit finite-difference solution. Because they
deal with the solution of large systems of

simultaneous linear algebraic equations,implicit
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methods are wusually involved with the
manipulation of large matrices. The relative
major advantages and disadvantages of these
two approaches are summarized as follows.

1. Explicit approach.

(a) Advantage. Relatively simple to set up and
program.

(b) Disadvantage. In terms of our above
example, for a given Ax, At must be less than
some limit imposed by stability constraints. In
many cases, At must be very small to maintain
stability; this can result in long computer
running times to make calculations over a given
interval of t.

2. Implicit approach.

(a) Advantage. Stability can be maintained
over much larger values of At, hence using
considerably fewer time steps to make
calculations over a given interval of t. This
results in less computer time.

(b) Disadvantage. More complicated to set up
and program.

(c) Disadvantage. Since massive matrix
manipulations are usually required at each time
step, the computer time per time step is much
larger than in the explicit approach.

(d) Disadvantage. Since large At can be taken,
the truncation error is larger, and the use of
implicit methods to follow the exact transients
(time variations of the independent variable)
may not be as accurate as an explicit approach.
However, for a time-dependent solution in
which the steady state is the desired result, this
relative time-wise inaccuracy is not important.

During the period 1969 to about 1979, the vast
majority of practical CFD solutions involving
‘marching’” solutions (such as in the above
example) employed explicit methods. Today,
they are still the most straightforward methods
for flow field solutions. However, many of the
more sophisticated CFD applications—those
requiring very closely-spaced grid points in
some regions of the flow —would demand
inordinately large computer running times due
to the small marching steps required. This has
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made the advantage listed above for implicit
methods very attractive, namely the ability to
use large marching steps even for a very fine
grid. For this reason, implicit methods are

today the major focus of CFD applications.

A General Comment 5.3.1

It is clear that finite-difference solutions appear
to be philosophically straightforward jus
replace the partial derivatives in the governing
equations with algebraic difference quotients,
and grind away to obtain solutions of these
algebraic equations at each grid point.
However, this impression is misleading. For
any given application, there is no guarantee
that such calculations will be accurate, or even
stable, under all conditions. Moreover, the
boundary conditions for a given problem
dictate the solution, and therefore the proper
treatment of boundary conditions within the
framework of a particular finite-difference
technique is vitally important.For these reasons,
finite-difference solutions  of  various
aerodynamic flow fields are by no means
routine. Indeed, much of computational fluid
dynamics today is still more of an art than a
science; each different problem usually requires
thought and originality in its solution.
However, a great deal of research in applied
mathematics is now being devoted to CFD, and
the next decade should see a major expansion
in our understandingof the discipline, as well
,as the development of more improved efficient
algorithms.!

5.4 Errors and an Analysis of Stability

At the end of the last section, we stated that no
guarantee exists for the accuracy and stability
of a system of finite-difference ,equations under
all conditions. However for linear equations
there is a formal way of examining the accuracy
and stability and these ideas at least provide
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guidance for the understanding of the
behaviour of the more complex non-linear
system that is our governing flow equations. In
this section we introduce some of these ideas,
applied to simple linear equations. The material
in this section is patterned somewhat after
section 3-6 of the excellent new book on CFD
by Dale Anderson, John Tannehill and Richard
Pletcher (Ref. [1]) which should be consulted

Consider a partial differential .for more details

equation, such as for example Eq. (5.23). The
numerical solution of this equation is

:influenced by two sources of error

Discretization error. The difference between .1

the exact analytical solution of the
partial differential equation (for example, Eq.
(5.23)) and the exact (round-off free) solution of
the corresponding difference equation (for

.example, Eq. (5.24))

From  our previous discussion, the

discretization error is simply the truncation
error for the difference equation plus any errors
introduced by the numerical treatment of the

.boundary conditions

Round-off error. The numerical error 2

introduced after a repetitive number of
calculations in which the computer is
constantly rounding the numbers to some

.significant figure

If we let

A = analytical solution of the partial differential
equation

D = exact solution of the difference equation

N = numerical solution from a real computer
with finite accuracy

then,

Round-off =e =N -D

(5.27)

Discretization error = A-D

From Eq. (6.27), we can write

N

=D+e

(5.28)

where again ¢ is the round-off error, which for
the remainder of our discussion in this section,
we will simply call “error” for brevity. The
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numerical solution N must satisfy the

difference equation. Hence from Eq. (5.24),

DM el oDt DR heh 2D 26"+ DY e

i i+1 i+1

n
l_

At (dx)?

1 (5.29)

By definition, D is the exact solution of the

difference equation, hence it exactly satisfies:

1+1 i—1

At (Ax)?

ph+l _ pn DY _2pnh 4 o
i P T “

Subtracting Eq. (5.30) from (5.29),

n+1 n n
i € gl

At (Ax)?

£ —2el+¢&

From Eq. (5.31), we see that the error ¢ also
satisfies the difference equation.We now
consider aspects of the stability of the difference
equation, Eq. (5.24). If errors ¢i are already
present at some stage of the solution of this
equation (as they always are in any real
computer solution), then the solution will be
stable if the €i’s shrink, or at best stay the same,
as the solution progresses from step n to n+1;
on the other hand, if the ¢i’s grow larger during
the progression of the solution from steps n to
n+1, then the solution is unstable. That is, for a

solution to be stable,

CACES

For Eq. (5.24), let us examine under what
conditions Eq. (5.32) holds.Assume that the
distribution of errors along the x-axis is given
by a Fourier series in x, and that the time-wise

variation is exponential in t, i.e.

e(x,r) = e Z otkmX

Ly

where km is the wave number and where the
exponential factor a is a complex number. Since
the difference equation is linear, when Eq.
(5.33) is substituted into Eq. (5.31) the
behaviour of each term of the series is the same
as the series itself. Hence, let us deal with just

one term of the series, and write

€m (.Y._ 1) = (?ﬂte"km-‘-'
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Substitute Eq. (5.34) into Eq. (5.31),

ezl(t+jt)€ikmx _ (_,:lreikmx e:ltefkm(x+;1.1') _ 26?zlt€iknl.1' + (_,:lreikm(x—d.r)
= . (5.35)
At (dx)~
Divide Eq. (5.35) by eateknx,
ezv_‘lt —1 - eikm/_‘l.r 24 f,—ikmdx
At (4x)?
or,
alt At dmdx | ikmAx -
=1+ ——=("M e " -2 (5.36)
(4x)~
Recalling the identity that
eikmjx +€—ik,nd.1'
cos(k,4x) =
2
Equation (5.36) can be written as
, 24t
e = | + ——cos(kpdx)— 1] (5.37)
X)=
Recalling another trigonometric identity that
.2 | —cos(kpdx)
sin“[(kpdx)/2] = 7
Equation (5.37) finally becomes
, 44r . 5
e = 1 — —— sin[(kyp4x)/2] (5.38)
(Ax)=
From Eq. (5.34),
n+1 a(t+41) ik x
8_ f;f.] {9 m- )
= ————— =" (5.39)
8[ (}t]t(;.': m-X
Combining Egs. (5.39), (6.38) and (5.32), we
have
8|1+1
: . .2
| =[e"" = || - — sin"[(kpdx)/2]| < | (5.40)
&gl (Ax)-

1
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Equation (5.40) must be satisfied to have a
stable solution, as dictated by Eq. (5.32). In Eq.
(5.40) the factor

sin’[(kypdx)/2]| = G

5
X)-

is called the amplification factor, and is denoted
by G. Evaluating the inequality in Eq. (5.40),
namely G < 1, we have two possible situations

which must hold simultaneously:

441
(1) 1= — sin*[(kndx)/2] < 1
(Ax)~

Thus

44t
0 sin®[(kpdx)/2] =0

Since At/(Ax)? is always positive, this condition
always holds.

(2) 1-

T S d0/2] 2 <1
Thus
441

-2

-

sin?[(kpAx)/2]—1< 1

For the above condition to hold,

At |
x? < 5 (5.41)

Equation (5.41) gives the stability requirement
for the solution of the difference equation, Eq.
(5.24), to be stable. Clearly, for a given Ax, the
allowed value of At must be small enough to
satisfy Eq. (5.41). Here is a stunning example of
the limitation placed on the marching variable

by stability considerations for explicit finite
difference models. As long as At/(Ax)? <1/2, the
error will not grow for subsequent marching

steps in t, and the numerical solution will
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proceed in a stable manner. On the other hand,
if At/(Ax)? > 1/2, then the error will
progressively become larger, and will
eventually cause the numerical marching
solution to ‘blow up’ on the computer.The
above analysis is an example of a general
method called the von Neuman stability
method, which is used frequently to study the
stability =~ properties of linear difference
quations. Let us quickly examine the stability
characteristics of another simple equation, this
time a hyperbolic equation. Consider the first

order wave equation:

du ot
— 40— =
ot Ox

(5.42)

Let us replace the spatial derivative with a
central difference (see Eq. (5.8)).

_ n _ . .n
Ou U — Ui

Ox 24x

(5.43)

Let us replace the time derivative with a first
order difference, where u(t) is represented by
an average value between grid points (i+1) and

(i-1), i.e.

]
u(r) = 5(”;1+1 + u;’_]J

Then
u _ -G, ) 5.44)
ot At B
Substituting Egs. (5.43) and (5.44) into (5.42), we
have
.',I!H_l _ ”]ilJrl + ”;l—l —Cﬁ ”]il+l B ”il—l (5.45)
: 2 Ax 2

Combining Egs. (5.18) and (5.19), we obta The
differencing used in the above equation, where
Eq. (5.44) is used to represent the time
derivative, is called the Lax method, after the
mathematician Peter Lax who first proposed it.
If we now assume an error of the form
em(x, t) = evelt as done previously, and
substitute this form into Eq. (5.45), the
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amplification factor becomesin |

G = cos(kmAx) —iC sin(kmAXx)

(5.46)

where C = c.At/Ax . The stability requirement is
lext] <1,which when applied to Eq. (5.46) yields

At
C=c—<1
Ir S

(5.47)

In Eq. (5.47), C is called the Courant number.
This equation says that At < Ax/c for the
numerical solution of Eq. (5.45) to be stable.
Moreover, Eq. (5.47) is called the Courant-
Friedrichs-Lewy condition, generally written as
the CFL condition. It is an important stability
criterion  for  hyperbolic  equations
Let us examine the physical significance of the
CFL condition. Consider the second

order wave equation

7 p)
a-u 0~ u

— =C .
Ot 0.x2

(5.48)

The characteristic lines for this equation (see
Sect. 4.2) are given by

x=ct (right running)

and
X = —ct

(left running)

and are sketched in Fig. 5.3(a) and (b). In both
parts (a) and (b) of Fig. 5.3, let point b be the
intersection of the right-running characteristic
through grid point (i — 1) and the left-running
characteristic through grid point (i+1). For Eq.
(5.48), the CFL condition as given in Eq. (5.47)
holds as the stability criterion. Let Atcs1 denote
the value of At given by Eq. (5.47) when C = 1.
Then Atc-1 = Ax/c, and the intersection point b is
therefore a distance Atc-1 above the x-axis, as
sketched in Figs. 5.3(a) and (b). Now assume
that C < 1, which is the case sketched in Fig.
5.3(a). Then from Eq. (5.47), Atcaa <Atcs, as
shown in Fig. 5.3(a). Let point d correspond to
the grid point at point i, existing at time
(t+Atc<t). Since properties at point d are
calculated numerically from the difference
equation using grid points (i-1) and (i+1), the
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numerical domain for point d is the triangle adc
shown in Fig. 5.3(a). The analytical domain for
point d is the shaded triangle in Fig. 5.3(a),
defined by the characteristics through point d.
Note that in Fig. 5.3(a) the numerical domain of
point d includes the analytical domain. In
contrast, consider the case shown in Fig. 5.3(b).
Here, C > 1. Then, from Eq. (5.47), Atcs1 > Ates,

as shown in Fig. 5.3(b). Let point d

Fig. 5.3 Illustration of the

physical significance of the |
CFL condition

in Fig. 5.3(b) correspond to the grid point i,
existing at time (t+Atcs1). Since properties at
point d are calculated numerically from the
difference equation using grid points (i-1) and
(i+1), the numerical domain for point d is the
triangle adc shown in Fig. 5.3(b). The analytical
domain for point d is the shaded triangle in Fig.
5.3(b),defined by the characteristics through
point d. Note that in Fig. 5.3(b), the numerical
domain does not include all of the analytical
domain, and it is this condition which leads to
unstable behaviour. Therefore, we can give the
following physical interpretation of the CFL
condition:

For stability, the computational domain must
include all of the analytical domain.

The above considerations dealt with stability.
The question of accuracy, which is sometimes
quite different, can also be examined from the
point of view of Fig. 5.3. Consider a stable case,
as shown in Fig. 5.3(a). Note that the analytic
domain of dependence for point d is the shaded
triangle in Fig. 5.3(a). From our discussion in
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Chap. 4, the properties at point d theoretically
depend only on those points within the shaded
triangle. However, note that the numerical grid
points (i-1) and (i+1) are outside the domain of
dependence, and hence theoretically should not
influence the properties at point d. On the other
hand, the numerical calculation of properties

at point d takes information from grid points
(i-1) and (i + 1). This situation is exacerbated
when Atca is chosen to be very small, Atca <<
Atc-1. In this case, even though the calculations
are stable, the results may be quite inaccurate
due to the large mismatch between the domain
of dependence of point d, and the location of
the actual numerical data used to calculate
properties at d. In light of the above discussion,
we conclude that the Courant number must be
equal to or less than unity for stability, C < 1,but
at the same time it is desirable to have C as
close to unity as possible for accuracy.

Reference

1. Anderson, D.A., Tannehill, John C. and Pletcher, Richard H., Computational Fluid Mechanics
and Heat Transfer, McGraw-Hill, New York, 1984.
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(Transformations and Grids)® 6

J= 6.1

If all CFD applications dealt with physical
problems where a uniform, rectangular grid could
be used in the physical plane, there would be no
reason to alter the governing equations derived in
Chap.2 we would simply apply these equations in
rectangular (x,y,z,t) space, finite-difference these
equations according to the difference quotients
derived in Chap. 5 and calculate away, using
uniform values of Ax, Ay, Az and At , However
,few real problems are ever so accommodating, for
exsample, assume we wish to calculate the flow
over an airfoil , as sketched in Fig .6.1, where we
have placed the placed the airfoil in a rectangular
grid . Note the problems with this rectangular grid

8 Mostly from [Wendt et.al. 2009], Chapter 6 (here is the author J.D. Anderson, Jr.
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(1) Some grid points fall inside the airfoil , where
they are completely out of the flow .what values of
the flow properties do we ascribe to these points?
(2) There are few , if any .grid points that fall on the
surface of the airfoil . This is not good . because the
airfoil surface is a vital boundary condition for the
determination of the flow, and hence the airfoil
surface must be clearly and strongly seen by the
numerical solution.

As a result. we can conclude that the rectangular
grid in Fig .6.1 is not appropriate for the solution of
the flow field.In contrast, agrid that is appropriate
is sketched in Fig. 6.2(a). here we see a non-
uniform, curvilinear grid which is literally
wrapped around the airfoil. New coordinate lines
?? and ?? = constant. This is called a boundary -
fitted coordinate system , and will be discussed in
detail later in this chapter. The important point is
that grid points naturally fall on the airfoil surface,
as shown in Fig. 6.2(a).What is equally important is
that ,in the physical space shown in Fig. 6.2(a),the
conventional difference quotients are difficult to
use. What must be done is to transform the
curvilinear grid mesh in physical space to a
rectangularmesh in terms of £ and n.This is shown
in Fig. 6.2(b) which illustrates a rectangular grid in
terms of £ and 1.The rectangular mesh shown in
Fig. 6.2(b) is called the computational plane . There
is a one-to-one correspondence between this
mesh,and the curvilinear mesh in Fig. 6.2(a),called
the physical plane . for example,points a,b and c in
the physical plane (Fig. 6.2a) correspond to points
ab and c in the computational plane , which
involves uniform AE and wuniform An. The
computed information is then transferred back to
the physical plane. Moreover, when the governing
equations are solved in the computational space,
they must be expressed in terms of the variables &
and n rather than x and yjie,the governing
equations must be transformed from (x, y) to (&, 1)
as the new independent variables.

The purpose of this chapter is to first describe the
general transformation of the governing flow
equations between the physical plane and the
computational plane .

following this, various specific grids will be
discussed. This material is an example of a very
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active area of CFD research called grid generation.

Fig. 6.1: Airfoil on a y
rectangular grid -

[— 1
'

Fig. 6.2 (a) Physical plane

(b) Computational plane

An

General Transformation of the Equations

6.2

For simplicity , we will consider a two-
dimensional unsteady flow ,with independent
variables x, y and t; the results for a three-
dimensional unsteady flow, with independent
variables x, y ,z and t, are analogous, und

simply involve more terms.
We will transform the variables in physical
space(x, y, t) to a transformed space (&, 1, 1),

where

E; = E(X/ Yy, t)

n=n(xy,t)
T=1(t)

(6.1a)
(6.1b)
(6.1¢c)

In the above transformation, T is considered a
function of t only, and is frequently given by t =
t .This seems rather trivial; however , Eq.(6.1c)
must be carried through the transformation in a
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formal manner, or else certain necessary terms
will not be generated. Form the chain rule of
differential calculus ,we have

ax), = e, ), +( ol 31,

(). (2.

The subscripts in the above expression are
added to emphasize what variables are being
held constant in the partial differentiation.
In our subsequent expression, subscripts will be
dropped; however, it is always useful to keep
them in your mind. Thus , we will write the

above expression as

a0 52)* 35 3)
% (as](gf)J'(an)(g?)

(5, (), (5),, )5,
2,05,

Similarly,

Also,

or,

EREIREIRE

(6.2)

(6.3)

(6.4)

(6.5)
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allow

(6.2),(6.3) and (6,5) the
derivatives with respect to x, y and t to be

Equations

transformed into derivatives with respect to
&, n and t. The coefficients of the derivatives
with respect to £, n and T are called metrics, e.g.
0&/0x , 9E/dy, On/ox and On/dy are metric terms
which can be obtained from the general
transformation given by Egs. (6.1a, b and c) .if
Egs.(6.1a ,b and c) are given as closed form
analytic expressions, then the metrics can also
be obtained in closed form. However, the
transformation given by Egs. (6.1a, b, and c) is
frequently a purely numerical relationship, in
which case the metrics can be evaluated by
finite-difference quotients — typically central
differences.

Examining the governing equations derived in
Chap. 2, we note that the equations for viscous
flow involve second derivatives. Therefore, we
need a transformation for these derivatives;
they can be obtained as follows. From Eq. (6.2),
let

SO (o)) (2o
T A (3&')(r’i.1‘]+(f'}r;)(f'}_1'

Then,

[ d £ . agyf o i 621;) (c’l‘n)( i ]
~ (e )+ () e ) )« (3 s) o
TI I c
The mixed derivatives denoted by B and C in
Eq. (6.6) can be obtained from the chain rule as
follows:
I
T oxdE T dx\dE
Recalling the chain rule given by Eq. (6.2), we
have
B g\ o g \{an'
#= (af? ](E] +(ﬂnﬁ§)(ﬁ) ©
Similarly:
0 afay (& \[|e az)a:; ,
<= e~ ax\on) e ax) (3 (23) ©%

Substituting B and C fro Egs. (6.7) and (6.8) into
Eq. (6.6), and rearranging the sequence of

87




terms, we have |

C‘j‘_

a5 (77 &)
(a5 (o 7))

2

(6.9)

Equation (6.9) second partial
derivative with respect to x in terms of first,

gives the

second, and mixed derivatives with respect to £
and 1, multiplied by various metric terms. Let
us now continue to obtain the second partial

with respect to y. From Eq. (6.3), let

D= % - (E)(gf) (an](

o~ a0~ i) 3 33

~(ae) (55 (5 ) - GG

E

-

Using Eq. (6.3),

an ]
day

(&)

2
202

and

3

nay
[

F

|

(6.10)

(6.11)

(6.12)

Substituting Eqgs. (6.11) and (6.12) into (6.10), we
have, after rearranging the sequence of terms:

g e A 1)
: |2 i
*(aj;](%) *Z(avias) 3;][0&)

(6.13)

Equation (6.13) gives the second partial
derivative with respect to y in terms of first,
second, and mixed derivatives with respect to £
and n, multiplied by various metric terms. We
now continue to obtain the second partial with

respect to x and y.

-2 521
5B Bl

H

)

(5l
Ay [\ dndx
L

a._

[

|

(6.14)

Substituting Eqgs. (6.7) and (6.8) for B and C
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respectively into Eq. (6.14), and rearranging the
sequence of terms, we have

ER AR ENE R
(212 Gl )

(6.15)

Equation (6.15) gives the second partial
derivative with respect to x and y in terms of
first, second, and mixed derivatives with
respect to £ and n, multiplied by various metric
terms.

Examine all the equations given in the boxed
above. They represent all that is necessary to
transform the governing flow equations
obtained in Chap. 2 with x, y, and t as the
independent variables to &, 1, and T as the new
independent variables.  Clerely, when this
transformation is made, the governing
equations in terms of &, 1, and T become rather
lengthy. Let us consider a simple example,
namely that for inviscid, irrotational, steady,
incompressible flow, for which Laplace’s
Equation is the governing equation.

. Fo o
Laplace’s Equation: —+— =0 (6.16)
dxs aye

Transforming Eq. (6.16) from (x, y) to (&, 1),
where & = £(x, y) and n = n(x, y), we have from
Egs. (6.9) and (6.13):

()5 (e () ) (325

(G- (G5 ()5

(a3 )5 ()31
() (G-

Rearranging terms, we obtain

o3 -3 53

2 (73 ()

ip 02¢+a¢ M[JJH aiﬂ_
A x| iy -

(6.17)

Examine Egs. (6.16) and (6.17); the former is
Laplace’s equation in the physical (x, y) space,
and the latter is the transformed Laplace’s
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equation in the computational (&, n) space. The
transformed equation clearly contains many
more terms.

Once again we emphasize that Egs. (6.1), (6.2),
(6.3), (6.5), (6.9), (6.13), and (6.15) ar used to
transform the governing flow equations from
the physical plane (x. y space) to the
computational plane (£ , 1 space), and that the
purpose of the transformation in most CFD
applications is to transform a non-uniform grid
in physical space (such as shown in Fig. 6.2a) to
a uniform grid in the computational space
(such as shown in Fig. 6.2b). The transformed
governing partial differential equations are
then finite-differenced in the computational
plane, where there exists a uniform Af and a
uniform An), as shown in Fig. 6.2(b). The flow-
field variables are calculated at all grid points
in the computational plane, such as points, a, b,
and c in Fig. 6.2(b). These are the same flow-
field variables which exist in the physical plane
at the corresponding points a, b, and c in Fig.
6.2(a). The transformation that accomplishes all
this is given in general form by Egs. (6.1a, b,
and c). Of course, to carry out a solution for a
given problem, the transformation given
generically by Egs. (6.1a, b, and c) must be
explicitly specified. Examples of some specific
transformations will be given in subsequent
sections.

6.3 Metrics and Jacobians

6.3

In Egs. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8),
(6.9), (6.10), (6.11), (6.12), (6.13), (6.14), (6.15),
the terms involving the geometry of the grids,
such as 0£/0x, 0&/dy,0n/0x, on/dy, etc., are called
metrics. If the transformation, Eq. (6.1a, b and
c), is given analytically, then it is possible to
obtain analytic values for the metric terms.
However, in many CFD applications, the
transformation, Eq. (6.1a, b and c), is given
numerically, and hence the metric terms are
calculated as finite differences.

Also, in many applications, the transformation
may be more conveniently expressed

as the inverse of Egs. (6.1a, b), that is, we may
have available the inverse
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transformation.

x=x(EM,T) (6.18a)

y=yEnTD  (6.18b)

t=1Hr1) (6.18¢c)
In Egs. (6.18a, b and c), § n and T are the
independent variables. However,
in the derivative transformations given by Egs.
(6.2), (6.3), (6.4), (6.5), (6.6),
(6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13),
(6.14), and (6.15), the metric terms
0&/0x, 0n/dy, etc. are partial derivatives in terms
of x, y and t as the independent
variables. Therefore, in order to calculate the
metric terms in these equations from
the inverse transformation in Egs. (6.18a, b and
c), we need to relate 0£/0x, on/dy,
etc. to the inverse forms 0x/0E, dy/on, etc. These
inverse forms of the metrics are the
values which can be directly obtained from the
inverse transformation, Egs. (6.18a,
b and c). Let us proceed to find such relations.
Consider a dependent variable in the governing
flow equations, such as the xcomponent
of velocity, u. Let u = u(x, y), where from Egs.
(6.18a and b), x = x(&, 1)
and y = y(§, mn). The total differential of u is
given by

du  Oudx  du dy (6.20)

—_— =t — —
OF  Ox 0E  dy O¢

Equations (6.20) and (6.21) can be viewed as
two equations for the two unknowns

Oou/ox and Ou/dy. Solving the system of
equations (6.20) and (6.21) for du/dx using
Cramer’s rule, we have
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du dy
0E OE
du dy
du |on on
dx  |ox dy
9E OE
dx oy
an on
6.22
In Eq. (6.22), the denominator determinant is
identified as the Jacobian determinant,
denoted by
dx dy
= Nx.y) |0 D€
~OE,n)  |Ox dy
an on
Hence, Eq. (6.22) can be written as
du 1|[{du\[dy du\ [ dv (6.23)
ox J\oE)\an) \on)\oé o
6.23
Now let us return to Egs. (6.20) and (6.21), and
solve for ou/dy.
6.24

92




dx ou
& 0E
dx du

u E Ir;
dy  |ox Oy
0 o¢
ax Oy

ou 1 (r‘)u) 'Ox r'}u)(r‘}x
an, (E'J‘E o0& 1\ dn

ay I\ A

or,

(6.24)

Examine Egs. (6.23) and (6.24). They express the
derivatives of the flow field wvariables in
physical space in terms of the derivatives of the
flowfield variables in computational space.
Equations (6.23) and (6.24) accomplish the same
derivative transformations as given by Egs.
(6.2) and (6.3). However, unlike Egs. (6.2) and
(6.3) where the metric terms are 0£/0x, on/dy,
etc., the new Egs. (6.23) and (6.24) involve the
inverse metrics, 0x/0, dy/dn, etc. Also notice
that Egs. (6.23) and (6.24) include the Jacobian
of the transformation. Therefore, whenever you
have the transformation given in the form of
Egs. (6.18a, b and c), from which you can
readily obtain the metrics in the form ox/0f,
ox/0n), etc., the transformed governing flow
equations can be expressed in terms of these
inverse metrics and the Jacobian, J.A similar but
more lengthy set of results can be obtained for a
three-dimensional transformation from (x, y, z)
to (§ m, C). Consult Ref. [1] for more details.
Our discussion above has been intentionally
limited to two dimensions in order to
demonstratethe basic principles without
cluttering the consideration with details.

6.3 Coordinate Stretching 6.4

In the remaining three sections of this chapter, we
examine three types of grid transformations.

The simplest is discussed here. It consists of
stretching the grid in one

or more coordinate directions.

For example, consider the physical and
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computational planes shown in Fig. 6.3(a,

b). Assume that we are dealing with the viscous
flow over a flat surface, where the

velocity varies rapidly near the surface as shown
in the velocity profile sketched at

the right of the physical plane (Fig. 6.3a). To
calculate the details of this flow near

the surface, a finely spaced grid in the y-direction
should be used, as sketched in the

physical plane. However, far away from the
surface, the grid can be more coarse.

Therefore, a proper grid should be one in which
the coordinate lines become progressively

more closely spaced as the surface is approached.
On the other hand, we

wish to deal with a uniform grid in the
computational plane, as shown in Fig. 6.3(b).

On examination, we see that the grid in the
physical space is ‘stretched’, as if a uniform

grid were drawn on a piece of rubber, and then
the upper portion of the rubber

were stretched upward in the y-direction. A
simple analytical transformation which

can accomplish this grid stretching is:.

(i, j)

]
/
—
/
e

(G j)

a X

u

b ¢Fi

g. 6.3 Example of grid stretching. (a) Physical plane. (b) Computational plane

E=x (6.25a)
n =In(y+1) (6.25b)
The inverse transformation is
x=& (6.26a)
y=en-1 (6.26b)
from which the inverse metrics are obtained as:
0x dx av ay
OX 1, HX_g, D_p. D_n (6.27)
7} an & an
6.22
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In Eq. (6.22), the denominator determinant is
identified as the Jacobian determinant,
denoted by

Hence, Eq. (6.22) can be written as

Ay
&

0x

E:

dx
on

9y _ o
o

(6.27)

Let us consider the continuity equation, given by
Eq. (2.27). For steady, twodimensional flow, this is

apu) N apv)

=0

dx ay

(6.28)

Equation (6.27) is the continuity equation written
in terms of the physical plane.This equation can
be formally transformed by means of the general

results given by Egs. (6.23) and (6.24), obtaining

1| d(pu) (f?_v) A pu) (3}-‘ ) 1 f?(,m-‘}(
J| o \on| ong \oe J| o

J| & \an an \ac)| T| oy

fix) Apv) (r_'i'x)
& 0&

(6.29)

Substituting into Eq. (6.29) the inverse metrics
from Eq. (6.27), we have

o d(pu) N d(pv) B

=0

a&

an

(6.30)

Equation (6.30) is the continuity equation in the
computational plane.Equation (6.30) can also be
obtained from the direct transformation given by
Egs. (6.25a and b). Here, the metrics are:

0& &
— =1 = =)
0x dy

an
“T_p
0x

an

1
ay  y+1

(6.31)

Using the transformations given by Egs. (6.2) and
(6.3), Eq. (6.28) becomes

dpu) [ d€ N d(pu) (on N
a& \ox dn \ox

apv) ( 3 ) s
o

=

A pv) ( an ) B

Ly an \dy

(6.32)

Substituting into Eq. (6.32) the metrics from Eq.
(6.31), we have

d(pu) N 1
a  (y+1)

dpv)

0
on

(6.33)

However, from Eq. (6.26b), y+1 = en. Therefore,
Eq. (6.33) becomes
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dpu) N 1 dlpv)

0
& en Oy

or
o MNpou) N dpv) _

0é an

0 (6.34)

Equation (6.34) is identical to Eq. (6.30). All that
we have done here is to demonstrate how the
transformed equation can be obtained from either
the direct transformation or the inverse
transformation ; the results are the same. An
example of more complex grid stretching, in both
the x- and y-directions, is given in Refs. [2, 3].
Here, the supersonic viscous flow over a blunt
base is studied.The physical and computational
planes are illustrated in Fig. 6.4. The streamwise
stretching is  accomplished  through a
transformation originally used by Holst [4]

o, .
x= iﬂ [sinh((€ — x0)Bx) + A]
where
A = sinh(Syxp)
and
o b 1+ (P - 1)g
xXp =
20x 1 —I—(E’_ﬁx - 1)é

where £0 is the location in the computational
plane where the maximum clustering is to occur,
and x is a constant which controls the degree of
clustering at &0, with larger values of Bx
providing a finer grid in the clustered region. The
transverse stretching is accomplished by dividing
the physical plane into two sections: (1) the space
directly behind the step, and (2) the space above
(both in front of and behind) the step. The
transformation is based on that used by Roberts

[5], and is given by
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Uniform grid

[ o= ===

Compressed grid

Fig. 6.4 Comparison of uniform and compressed grid

By +1)—(By - 1)e—cn-1-a)/(1-a)

(2{1_'_ 1)(] + e—c{q—]—cz}jt l—chJ

where

c=log

ey

and Py and a are appropriate constants, and are
different for the two sections identified

above. The algebraic transformations given above
result in the grid stretching

shown in Fig. 6.4.

6.3 Boundary-Fitted Coordinate Systems 6.5

Consider the flow through the divergent duct
shown in Fig. 6.5(a). Curve de is the upper wall of
the duct, and line fg is the centreline. For this flow,
a simple rectangular grid in the physical plane is

not appropriate, for the reasons discussed in
Sect. 6.1. Instead, we draw the curvilinear grid in
Fig. 6.5(a) which allows both the upper boundary
de and the centreline fg to be coordinate lines,
exactly fitting these boundaries. In turn, the
curvilinear grid in Fig. 6.5(a) must be transformed
to a rectangular grid in the computational plane,
Fig. 6.5(b). This can be accomplished as follows.
Let ys = f (x) be the ordinate of the upper surfacede
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in Fig. 6.5(a). Then the following transformation
will result in a rectangular grid in (€, 1) space:

n=ylys

E=x
where ys =f (x)

The above is a simple example of a boundary
fitted coordinate system. A more sophisticated
example is shown in Fig. 6.6, which is an
elaboration of the case illustrated in Fig. 6.2.
Consider the airfoil shape given in Figure 6.6(a). A
curvilinear system is wrapped around the airfoil,
where one coordinate line 1 = )1 =constant is on
the airfoil surface. This is the inner boundary of
the grid, designated by I'l. The outer boundary of
the grid is labelled I'2 in Figure 6.6(a), and is given
by 1 = n2 = constant. Examining this grid, we see
that it clearly fits the boundary, and hence it is a
boundary-fitted coordinate system. The lines
which fan out from the inner boundary I'l and
which intersect the outer boundary I'2 are lines of
constant &, such as line ef for which & = £1 =
constant. (Note that in Fig. 6.6(a) the lines

of constant n totally enclose the airfoil, much like
elongated circles; such a grid is called an ‘0" type
grid for airfoils. Another related curvilinear grid
can have the n =constant lines trailing
downstream to the right, not totally enclosing the
airfoil (except on the inner boundary I'l). Such a
grid is called a ‘C’ type grid. We will see an
example of a ‘C’ type grid shortly.)
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Fig. 6.5 A simple boundary-fitted coordinate system. {a) Physical plane. (b) Computational plane

6 Transformations and Grids

Fig. 6.6 {a) Physical plane.
(b} Computational plane
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Question: What transformation will cast the
curvilinear grid in Fig. 6.6(a) into a uniform grid
in the computational plane as sketched in
Fig.6.6(b)? To answer this question, note from Fig.
6.6(a) that along the inner boundary I'l, the
physical coordinates of the body are known:

(x, y) known along I'1

Similarly, the physical coordinates of the outer
boundary I'2 are also known, because I'2 is simply
a rather arbitrarily drawn loop around the airfoil.
Once this loop I2 is specified, then the physical
coordinates along it are known:

(%, y) known along I'2

This hints of a boundary value problem where the
boundary conditions (namely the values of x and
y) are known everywhere along the boundary.
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Recall from Sect. 4.3.3 that the solution of elliptic
partial differential equations requires the
specification of the boundary conditions
everywhere along a boundary enclosing the
domain. Therefore, let us consider the
transformation in Fig. 6.6 to be defined by an
elliptic partial differential equation (in contrast to an
algebraic relation as illustrated in Sect. 6.4). One
of the simplest elliptic equations is Laplace’s

equation:
e o0 |
— T —E =0 (6.35a)
dx? ri}ﬁz
2 a7
g n o071 :
A (6.35b)
oxt  Oy?

where we have Dirichlet boundary conditions
n=mnl=constantonI1

1 =12 = constant on 12

and

& = &(x, y) is specified on both I'l and I'2

It is important to keep in mind what we are doing
here. The equations (6.35a and b) have nothing to
do with the physics of the flow field. They are
simply elliptic partial differential equations which
we have chosen to relate £ and n to x and y,and
hence constitute a transformation (a one-to-one
correspondence of grid points) from the physical
plane to the computational plane. Because this
transformation is governed by elliptic equations,
it is an example of a general class of grid
generation called elliptic grid generation. Such
elliptic grid generation was first used on a
practical basis by Joe Thompson at Missippi State
University, and is described in detail in the
pioneering paper given in Ref. [6].

Let us look more closely at the physical and
computational planes shown in Fig. 6.6. In order
to construct a rectangular grid in the
computational plane plane (Fig. 6.6b), a cut must
be made in the physical plane (Fig. 6.6a) at the
trailing edge of the airfoil. This cut can be
visualized as two lines superimposed on each
other: the line pg denoted by I3 represents a
boundary line for the physical space above

pq, and and the line rs denoted by I'4 represents a
boundary line for the physical space below rs. In
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the physical plane, the points p and r are the same
point, and the points g and s are the same point; in
Fig. 6.6(a) they are slightly displaced for clarity.
However, in the computational plane, these
points are all different. Indeed, the grid in the
computational plane is obtained by slicing the
physical grid at the cut, and then ‘unwrapping’
the grid from the airfoil. For example, the airfoil
surface in the physical plane, curve pgecar,
becomes the lower straight line denoted by I'l

in the computational plane. Similarly, the outer
boundary ghfdbs becomes the upper straight line
denoted by I'2 in the computational plane. The left
and right sides of the rectangle in the
computational plane are formed from the cut in
the physical plane; the left side is line rs denoted
by I'4 in Fig. 6.6(b), and the right side is line pg
denoted by I'3 in Fig. 6.6(b). The computational
plane is sketched again in Fig. 6.7. Here we
emphasize that values of (x, y) are known along all
four boundaries, I'l, T2, I'3 and I'4. The key aspect
of the elliptic grid generation approach is that,
with the given boundary conditions, Egs. (6.35a
and b) are solved for the (x, y) values which apply
to all the internal points. An example of such an
internal point is given by point A in Fig. 6.7,
which corresponds to the same point A in Figs.
6.6(a) and (b). In reality, the equations

to be solved are the inverse of Egs. (6.35a and b),
that is, equations obtained from Egs. (6.35a and b)
by interchanging the dependent and independent
variables.The result is:

Fig. 6.7 Computational 7l

plane, illustrating the bound- A

ary conditions and an internal MppsE————————————===+

point I (x. yYknown Il
[|1tx y) I

;Ei i"‘”““’” (x, y)calculated (x y) F if;
L here from known |||
| solution of ||
Il A Eq.(5.36) 1
(x, yIknown I

b |
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a2 .. a2 a2

(- x " x (- x L
o0— —2B——+y— = (6.36a)

&= dED dn-

5y Py Py o

Cr ol Lol (6.36b)

-2 +0 =
0E? dcon - on?

x|’ (r’iv )2
— ] +|=
on o

( r‘)x) Ox . E)}-') ay
& (r’)i; & (r'n,r

x ) dy )3
Y=\7z| Tz
( 1S &

where

o

Note in Egs. (6.36a and b) that x and y are now
expressed as the dependent variables. Returning
again to Fig. 6.7, Egs. (6.36a and b) are solved,
along with the given boundary conditions for
(x, y) onI'1, I'2, I'3 and I'4, to obtain the values of
(x, y)ywhich correspond to the uniformly spaced
grid points in the computational (&, n)plane. Thus,
a given grid point (&inj) in the computational
plane corresponds to the calculated grid point
(xi, yj) in physical space. The solution of Egs.
(6.36a and b) is carried out by an appropriate
finite-difference solution for elliptic equations; for
example, relaxation techniques are popular for
such equations. Note that the above
transformation, wusing an elliptic partial
differential equation to generate the grid, does not
involve closed-form analytic expressions; rather, it
produces a set of numbers which locate a grid
point (xi, yj) in physical space which correspond
to a given grid point (&i, nj) in computational
space. In turn, the metrics in the governing flow
equations (which are solved in the computational
plane), such as 0&/0x, On/dy, etc. are obtained from
finite differences; central differences are
frequently used for this purpose.The curvilinear,
boundary-fitted coordinate system shown in Fig.
6.6(a) is simply illustrated in a qualitative sense in
that figure, for purposes of instruction. An actual
grid generated about an airfoil using the above
elliptic grid generation approach is shown in
Fig. 6.8, taken from Ref. [7]. Using Thompson’'s
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grid generation scheme(Ref. [6]), Wright ( [7]) has
generated a boundary-fitted coordinate system
around a Miley airfoil. (The Miley airfoil is an
airfoil specially designed for low Reynolds
number applications by Stan Miley at Mississippi
State University.) In Fig. 6.6 the white speck in the
middle of the figure is the airfoil, and the grid
spreads far away from the airfoil in all directions.
In Ref. [7] low Reynolds number flows over
airfoils were calculated by means of a time
dependent finite-difference solution of the
compressible Navier-Stokes equations (such time-
dependent solutions are discussed in Chap. 7).
The free stream is subsonic, hence the outer
boundary must be placed far away from the
airfoil because of the far-reaching propagation of
disturbances in a subsonic flow. A detail of the
grid in the near vicinity of the airfoil is shown in
Fig. 6.9. Note from both Figs. 6.8 and 6.9 that the
grid is a ‘C’ type grid, in contrast to the ‘0" type
grid sketched in Fig. 6.6.We end this section by
emphasizing again that the elliptic grid
generation, with its solution of elliptic partial
differential equations to obtain the internal grid
points, is completely separate from the finite-
difference solution of the governing equations.
The grid is generated first, before any solution of
the governing equations is attempted. The use of
Laplace’s equation (Eq. (6.35a and b)) to obtain
this grid has nothing to do whatsoever with the
physical aspects of the actual flow field.
Here,Laplace’s equation is simply used to
generate the grid only.
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Fig. 6.8 Boundary fitted grid (from Ref. [7])
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Fig. 6.9 A detail of the boundary fitted grid (from Ref. [7])

6.6 Adaptive Grids

An adaptive grid is a grid network that
automatically clusters grid points in regions of
high flow field gradients; it uses the solution of

the flow field properties to locate the grid points

104




in the physical plane. The adaptive grid evolves in
steps of time in conjunction with a time
dependent solution of the governing flow field
equations,which computes the flow field variables
in steps of time. During the course of the solution,
the grid points in the physical plane move in such
a fashion to ‘adapt’ to regions of large flow field
gradients. Hence, the actual grid points in the
physical plane are constantly in motion during the
solution of the flow field, and become stationary
only when the flow solution approaches a steady
state. Therefore, unlike the elliptic grid generation
discussed in Sect. 6.5 where the generation of the
grid is completely separate from the flow field
solution, an adaptive grid is intimately linked to
the flow field solution, and changes as the flow
field changes. The hoped-for advantages of an
adaptive grid are expected because the grid points
are clustered in regions where the ‘action’ is
occurring. These advantages are: (1) increased
accuracy for a fixed number of grid points, or (2),
for a given accuracy, fewer grid points are
needed. Adaptive grids are still very new in CFD,
and whether or not these advantages are always
acheived is not well established. An example of a
simple adaptive grid is that used by Corda [8] for
the solution of viscous supersonic flow over a
rearward-facing step. Here, the transformation is
expressed in the form:

BAéE
Ax = ¢

(x

Ay = dg

| +c-
ay

F)
1 +b':_—g

CAn

(6.37)

(6.38)

where g is a primitive flow field variable, such as
p, oor T.If g =p, then Egs. (6.37)

and (6.38) cluster the grid points in regions of
large pressure gradients; if g=T,

the grid points cluster in regions of large
temperature gradients, and so forth. In

Egs. (6.37) and (6.38), AL and An are fixed,
uniform grid spacings in the computational

(&, m) plane, b and c are constants chosen to
increase or decrease the effect of
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the gradient in changing the grid spacing in the
physical plane, B and C are scale factors and Ax
and Ay are the new grid spacings in the physical
plane. Because dg/0x and 0g/dy are changing with
time during a time-dependent solution of the flow
field, then clearly Ax and Ay change with time, i.e.
the grid points move in the physical space.
Clearly, in regions of the flow where 9g/0x and
0g/0y are large, Eqgs. (6.37) and (6.38) yield small
values of Ax and Ay for a given A and An); this is
the mechanism which clusters the grid points.In
dealing with an adaptive grid, the computational
plane consists of fixed points in the (§, 1) space;
these points are fixed in time, i.e. they do not
move in the computational space. Moreover, A€ is
uniform, and An is uniform. Hence, the
computational plane is the same as we have
discussed in previous sections.

The governing flow equations are solved in the
computational plane, where the x, y and t
derivatives are transformed according to Egs.
(6.2), (6.3) and (6.5). In particular, examine the
transformation given by Eq. (6.5) for the time
derivative. In the case of stretched or boundary-
fitted grids as discussed in Sects. 6.4 and 6.5
respectively, the metrics 0&/0t and on/ot were
zero, and Eq. (6.5) yields 9/0t = 0/0t. However, for
an adaptive grid,

and

are finite. Why? Because, although the grid points
are fixed in the computational plane, the grid
points in the physical plane are moving with time.
The physical meaning of (0£/0t)x,y is the time rate
of change of & at a fixed (x, y) location in the
physical plane. Similarly, the physical meaning of
(On/ot)x,y is the time rate of change of 1 at a fixed
(x, y) location in the physical plane. Imagine that
you have your eyes locked to a fixed (x, y) point in
the physical plane. As a function of time, the
values of £ and 1 associated with this fixed (x, y)
point will change. This is why 0£/0t and 0n/ot are
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finite. In turn, when dealing with the transformed
flow equations in the computational plane, all
three terms on the right-hand side of Eq. (6.5) are
finite, and must be included in the transformed
equations. In this fashion, the time metrics 0&/ot
and 0On/ot automatically take into account the
movement of the adaptive grid during the
solution of the governing flow equations.

The values of the time metrics in the form shown
in Eq. (6.5) are a bit cumbersome to evaluate; on
the other hand, the related time metrics

( r‘}x) 'r'h-')
— and =
ot . (df

sn S
are much easier to evaluate, because they come
from
dx Ax -
T = ,_’I_ (6.39)
ot En “ t
and .
dy Ay _
[+) Y (6.40)
at ‘é-ﬂ At
where Ax and Ay are obtained directly from the
transformation given in Egs. (6.37) and (6.38)
respectively. Let us find the relationship between
these two sets of time metrics. Consider
E=xENRT)
Hence
dx . [ox dx
dr= ( - _) d£+(,_—) dr;+(7) dr
0 T N e« ot £
From this result, we write
axy O (ax) (ag) 5 (ax) (61'1) i (ax) 1 d
t K, ¥ af Mt at XY an E,t at K,y at En at %Y
or st X i : :
dx 0x 0 0x o :
), e
ot e & nx\Of/x. an e\ Ot )5y

)’ \

Note that we are carrying the subscripts on the
partial derivatives to avoid any confusion over
what variables are held constant. Now consider
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y=w¢&n.7)

ay ay' av’
dy = d — d
Y (ﬂf] e (_as—;L ’“(&J_ £

Thus, from this result we write

a0 (ay\ (¢ +(6y o\ (% ary |
0t), \8&Jnc\0t)y, \Omju.\ot)., \0t)y,X0t).,

ay av\ (o€ ( ay' ( an ) _
((?T) &m (E) (E Xy N (?_??]E_"r E Y {642)
Solve Egs. (6.41) and (6.42) for (5 ), o
(HI) (HI)
O Je o \ 0N
(&), (5,
[' AN Nizs En an Ex
ﬁf 0.t a’:" E__,r
Ene
'{if n.T (?J':-' Er

Hence:

or

Recognizing that t = f, and that the denominator is
the Jacobian ], the above equation becomes

(dropping subscripts)

(22 (2)(2 643

ar J ot J\an) \ort]\on,

Solving Egs. (6.41) and (6.42) for [% e
, we find a likewise fashion that o

on [ﬂl](f}\ ) ((’)‘}-‘]['61)
= = 6.44
ot~ J |\ or)\oe at |\ ¢, 644

Let us recapitulate. For an adaptive grid, the
governing flow equations, when transformed for
solution in the computational (&, n) plane, must
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contain all the terms in the time transformation
given by Eq. (6.5). The time metrics, 0&/0t and
on/ot, in Eq. (6.5) can in turn be expressed in terms
of dx/ot and dy/ot through Eqs. (6.43) and (6.44).
These new time metrics can in turn be readily
calculated from Egs. (6.39) and (6.40), where Ax
and Ay are given by the basic transformation in
Egs. (6.37) and (6.38). An example of an adapted
grid for the supersonic viscous flow over a
rearward facing step is given in Fig. 6.10, taken
from the work of Corda [8]. Flow is from left to
right. Note that the grid points cluster around the
expansion wave from the top corner of the step,
and around the reattachment shock wave
downstream of the step.It is interesting to note
that the adapted grid itself is a type of ‘flow field
visualization method’ that helps to identify the
location of waves and other gradients in the flow.
As a final note, there are many different
approaches for the generation of adaptive grids.
The above discussion is just one; it is based on
ideas presented by Dwyer et al. in Ref. [9]. For a
more complete discussion on adaptive grids, as

well as grid generation in general, see Ref. [1].
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Fig. 6.10 Adapted grid for the rearward-facing step problem (from Corda, Ref. [8])
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Chapter 7 (Explicit Finite Difference Methods: Some Selected 7
Applications to Inviscid and Viscous Flows)

7.1 Introduction

In this chapter we round-out our introductory
treatment of computational fluid dynamics

by discussing some applications of explicit
finite difference methods to selected examples
for inviscid and viscous flows. These examples
have one thing in common—they are results
obtained by either the present author and/or
some of his graduate students over the past few
years. This is not meant to be chauvinistic;
rather this choice is intentionally made to
illustrate what can be done by uninitiated
students who are new to the ideas of CFD.
These examples demonstrate the power and
beauty of CFD in the hands of students much
like yourselves who may have little or no
experience in the field. Moreover, in all cases
the applications are carried out with computer
programs designed and written completely by
each student. This is following the author’s
educational philosophy that each student
should have the experience of starting with
paper and pencil, writing down the governing
equations,  developing the appropriate
numerical solution of these equations, writing
the FORTRAN program, punching the program
into the computer, and then going through all
the trials and tribulations of making the
program work properly. This is an important
aspect of CFD education. No established
computer programs (‘canned” programs)

are used; everything is ‘home-grown’, with the
exception of standard graphics packages which
are used to plot the results. Therefore, by
examining these examples, you should obtain a
reasonable feeling for what you can expect to
accomplish when youfirst jump into the world
of CFD applications.Before we discuss some
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examples, it is important to describe the
mechanism  of  explicit finite-difference
calculations. The distinction between explicit
and implicit approaches was made in Sect. 5.3,
which should be reviewed before progressing
further in this chapter. In the next few sections,
we will describe two rather straightforward
and popular explicit methods. The treatment
and application of implicit methods is given by
other lectures in this course, and hence will not
be discussed here.

Finally, the examples discussed in this chapter
all incorporate the time-dependent method, i.e.
forward marching in steps of time. The historic
break-through made by this method in the
1960s is discussed in Chap. 1. The vast majority
of time dependent solutions have as their
objective the solution of a steady-state flow
tield which is approached by the solution at
large times; here, the time-dependent
mechanism is simply a means towards
achieving that end. In other applications, the
timedependent method is used to calculate the
actual transients in an unsteady flow of interest.
Examples of both are given here. We note,
however, that although the following sections
deal with marching forward in time, the same
techniques are easily applied to a steady flow
calculation where spatial marching is done
along some coordinate axis. We have seen in
Chap. 4 that such forward marching (in time or
space) is appropriate when the governing
equations are hyperbolic or parabolic.

7.2 The Lax-Wendroff Method

Let us describe this method by considering a
simple gas-dynamic problem, namely

the subsonic-supersonic isentropic  flow
through a convergent-divergent nozzle, as
sketched in Fig. 7.1. Here, a nozzle of specified
area distribution, A = A(x), is given,

and the reservoir conditions are known. Let us
consider a quasi-one-dimensional

solution where the flow field variables are
functions of x (in the steady state). For

112




a calorically perfect gas, the solution of this
flow is classical, and can be found in any
compressible flow text book (see for example
Refs. [1,2]).We use this example here only
because it is an excellent vehicle for introducing
and describing the time dependent finite-
difference philosophy.The nozzle is divided
into a number of grid points in the x-direction
as shown in Fig. 7.1; the spacing between
adjacent grid points is Ax. Now assume values
of the flow field variables at all grid points, and
consider this rather arbitrarily assumed flow as
an initial condition at time t = 0. In general,these
assumed values will not be the exact stead state
results; indeed, the exact steady-state results are
what we are trying to calculate. Consider a grid
point, say point i. Let gi denote a flow field
variable at this point (gi might be pressure,
density, velocity, etc.). This variable gi will be a
function of time; however, we know gi at time
t = 0, i.,e. we know gi(0) because we have
assumed values for all the flow field variables

at all the grid points at the initial time t=0

Fixed equilibrium reservoir
conditions at first grid point

i : L
Fig. 7.1 Flow through a \_/
convergent-divergent nozzle |

Ax
Nozzle of specified shape A=A(x)

We now calculate a new value of gi at time t
+At; starting from the initial conditions, the first
new time is t+At = 0+At. Here, At is a small
increment in time to be discussed later. The
new value of gi, i.e. gi(t+At), is obtained from a

Taylor’s series expansion in time as

ag 3*o\ (An)?
Ht+ AN =g+ — | Ar+| — +

—

or, using the standard notation of time as a
superscript,
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dgt {92(;., t(AI}
L+AL t o) - A
r .+ At + — t 7.1)
fi i (d ) ( ar* )i 2 {

Here git*t is the value of g at grid point i and at
time t +At; (0g/ot)t is the first partial of g
evaluated at grid point i at time t, etc. In Eq.
(7.1), gtiis known and At is specified. Therefore,
we can use Eq. (7.1) to calculate giAtif we have
numbers for the derivatives (dg/ot) ¢ and
(02g/ot2) i+, The numbers for the derivatives
are obtained from the physics of the flow as
embodied in the governing flow equations.
(Note that Eq. (7.1) is simply mathematics, and
by itself is certainly not sufficient to solve the
problem.) The governing flow equations for the
quasi-one-dimensional flow through a nozzle

are (14):

. dp I d(puA)
C ty : = 7.2

ontinuity I 1 or (
Momentum : (?—M = —l Ji + m(?_u (7.3)
ot dx 0x
‘ de B 1| ou A(lnA)  de '

Energy : o p { ax TP T T ﬁ.k‘] (7.4

Note that Egs. (7.2), (7.3) and (7.4) are written
with the time derivatives on the left-hand side,
and spatial derivatives on the right-hand side.
For the moment, let us calculate density,
i.e. g =0, and let us consider just the continuity
equation, Eq. (7.2).Expanding the right-hand

side of Eq. (7.2), we obtain

dp I 0A  dp  Ou
op_ 1,04 ,op_ ou 75
o A™ax "ox Fox (7.5)

At time t = 0, the flow field variables are
assumed; hence we can replace the spatial

derivatives with central differences:

dp\ L (A=A (P = Pic) e~ i :
(W) -k 1( 2Ax )_”i ax ) Pl 24y (7.6)

Equation (7.6) gives us a number for (do/ ot)t,
which is inserted into Eq. (7.1).However, to
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complete Eq. (7.1), we need a number for the
second partial also, namely (0%0/0t?)4. To obtain
this, differentiate the continuity equation,

Eq. (7.5), with respect to time:

*p I [0A (')u dp 3p  [op\[ou Fu  (du\[dp
— == —|= +u— || —t- —N—l=-p——1=1Il= (7.7)
ar? Alox\Par ™ dxor \ox]\ or dxdr \ox)\ or

Also, differentiate the continuity equation, Eq.
(7.5), with respect to x:

9*p 1 f')"A_’_ JA 8.&! dp _ar_'?zp_ op\[du )(321,{_ du\(dp
orox A" ox2  \ox r’h r_?.r ox2 \ox/\ox ot ox2 \ox/\ox

(7.8)

The procedure now works as follows:
(1) In Eq. (7.8), replace all derivatives on the

right-hand side with central differences, such as

. t gt
du Wiy U

ox  2Ax

Fu - s, | —2ut +u_1
ax2 (Ax)?

ete.

This now provides a number for (0%0/0tox)t
from Eq. (7.8).

(2) Insert this number for (d?g/0tdx) & into
Eq.(7.7). Also in Eq. (7.7), numbers for ou/ot
and 0%u/0xot are obtained from a treatment of
the momentum equation,Eq. (7.3), in a manner
exactly the same as the continuity equation was
treated above. The details will not be given
here. In Eq. (7.7), a number for (0p/dt) is already
available, namely from Eq. (7.6). The net result
is that we now have a number for (0%0/0t?) &,
obtained from Eq. (7.7).

(3) Insert this number for (0%0/0t?) tinto Eq. (7.1)
remembering that g = g for this case.

(4) Insert the number for (dg/0t) t,obtained from
Eq. (7.6), into Eq. (7.1).

(5) Every quantity on the right-hand side of Eq.
(7.1) is now known. This allows the density it
to be calculated from Eq. (7.1). This is indeed
what we wanted.We now have the density at
grid point i at the next step in time, t+At.

(6) Perform the above procedure at every grid
point to obtain o(t +At) everywhere throughout

the nozzle.
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(7) Perform the above procedure on the
momentum and energy equations to obtain

u(t + At) and e(t + At) everywhere throughout
the nozzle. We now have the complete
flowfield at time (t + At), obtained from
theknown flowfield at time t. (Recall that the
process is started at t = 0 with the assumed
initial conditions.)

(8) Repeat the above process for a large number
of time steps. At each time step, the flow
properties at all grid points will change from
one time to the next.However, at large times,
these changes become very small, and a steady-
state is approached. This steady-state is the
desired result, and the time-dependent
technique is simply a means to that end.

Fig. 7.2 Transient and final steady-state 12
temperature distributions for a calorically 10
erfect gas obtained from the present time '
perfect g presem @ AN
dependent analysis, vy =1.4 08 AN &‘ Lt =744 At (steady state)
TN
\_\ 32
=06 SN 16
KV t1_+2.2(x-1.5)2 N BAL g(initial
=time S distribution)
04 At =time increment R N
° NACA report 1135 N
0.2 S
\\
0 04 08 12 16 20 24 28 32

Distance along nozzle x

The behaviour of this type of solution is
illustrated in Figs. 7.2 and 7.3. In Fig. 7.2, the
temperature distribution through a given
nozzle is shown. The dashed line labelled t = 0
is the initially assumed values for T throughout
the nozzle. The curve above it labelled 8At is
the temperature distribution after eight time
steps following the above procedure. The
curves labeled 16At and 32At are similar results
after 16 and 32 time steps respectively. Note
that the temperature distribution has rapidly
changed from the assumed initial distribution
at t = 0. At later times, the changes become
smaller; note that the curve labelled 120At is not
too different from that for 32At. Finally, after
744 time steps, the changes are so small that the
temperature distribution is essentially at a

steady state. This steady state is the desired
solution. Note that the numerically-obtained
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steady state agrees virtually perfectly with the
classical results, as can be obtained from Refs.
[1, 3], and from Ref. [4].Fig. 7.3 illustrates the
variation of mass flow, m", through the nozzle.
The dashed line is the m" consistent with the
assumed initial conditions at t = 0. The curves
labeled 16At and 32At graphically demonstrate

the wild variations in m’ at early times.

Fig. 7.3 Transient and final steady-state mass- 20 1 /J. 1 2‘ 2 15')2
s el : . - =1+22(x-1.
flow distributions for a calorically perfect gas %, [™~\ t =time
. . g N At =time increment — |
obtained from the present time-dependent g |
analysis, y=1.4 § 12 H“‘ﬂ“ (steady state) i
= AR distribution)
2.0 SOSK 6 120 | Sormea
=108 7 ~, \ ) < N
a [aacA 1135 [N b
g [I~C === \
= 0.4 . \\
s \

0 04 08 12 16 20 24 28 32
Distance along nozzle x

However, after 120 time steps m’ has become
more stable, and after 744 time steps has
reached a steady state. This steady state
distribution for m" is a straight, horizontal line,
as it should be for steady flow, where m" =
constant through the nozzle.Moreover, it is the
correct value of mass flow, as compared to
results from Ref. [4]. The method described
above, utilizing Eq. (7.1), which is the first three
terms of a Taylor’s series expansion and where
both the first and second partial derivatives in
Eq. (7.1) are found by finite-differencing the
spatial derivatives in the governing flow
equations with central differences, is called the
Lax-Wendroff method. Note that the method is
of second-order accuracy, from Eq. (7.1). This
method was employed with much success in
the late 1960s until a more straight-forward
version of the same idea was introduced by
MacCormack in 1969. This is the subject of the
next section. For more details about the Lax-
Wendroff method as applied to the nozzle
problem, see Refs. [5, 6].

7.3 MacCormack’s Method

MacCormack’s method, first introduced in 1969
(see Ref. [7]), has been the most popular explicit
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finite-difference method for solving fluid flows.
It is closely related to the Lax-Wendroff
method, but is easier to apply. Let us use the
same nozzle problem discussed in Sect. 7.2 to
illustrate MacCormack’s method in the present
section. MacCormack’s method, like the Lax-

Wendroff method, is based on a Taylor’s series
expansion in time. Once again, as in Sect. 7.2,

let us consider the density at grid point i.

t+At ot
£ =5

+(@) At
f)r ave

(7.9)

Equation (7.9) is a truncated Taylor’s series that
looks first-order accurate; however, (0p/Ot)ave is
an average time derivative taken between time
t and t +At. This derivative is evaluated in such
a fashion that the calculation of @ i from
Eq. (7.9) becomes second-order accurate. The
average time derivative in Eq. (7.9) is evaluated
from a predictor-corrector philosophy as
follows.Predictor step.We repeat the continuity

equation, Eq. (7.5), below:

dp I 0A  0Op du
—_— = —_—_ O — - — - [—
or ~  AP"ox T"ax TP ox

(7.5 repeated)

In Eq. (7.5), calculate the spatial derivatives
from the known flow field values at time t
using forward differences. That is, from Eq.

(7.5),
90\ A . v =t =t
op :_l[pl”t( i+1 _Al)]_”l Fis1 ~Fi SpR] (7.10)
ar), AU Ax "\ Ax " Ax '
Obtain a predicted value of density, "oi*t, from
the first two terms of a Taylor’'s series, as
follows
ap\'
,c_'JiHm =pi+ 'f At (7.11)
or |

In Eq. (7.11), ot is known, and (dp/ot)4

is a known number from Eq. (7.10);

hence, o i *t is readily obtained. In a similar
fashion, from the momentum and energy
equations, predicted values of the other flow
variables such as uitt, e itAt, etc. areobtained.
Corrector step Here, we first obtain a predicted
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value of the time derivative, ( dg/ot ) i, by
substituting the predicted values of ustt, pit4t,

etc.into  Eq. 7.5, using rearward differences.

t+At

(% —t+At - t+AL

1
r_'ir)j St

_ —t+AL

(Ai —Aj ) .
Ax K

—t+AL _ St+AL

i — 0.

"{1 "(1—1 _ —_}t+£\t
Ax i

1

[ﬁ!-ﬁ-ﬂl _ ﬁ!+A[

i—1
Ax

(7.12)

Now calculate the average time derivative as
the arithmetic mean between Egs. (7.10) and

dp

(7.12), ie.
ap\ t
ot .. 2|\ar

t 7
dp
)i N (E )i

+At

(7.13)

where numbers for the two terms on the right-
hand side of Eq. (7.13) come from Eqs (7.10)and
(7.12) respectively. Finally, we obtain the
corrected value of g i**t from Eq. (7.9), repeated

below:

ap
ot

p;+m :pit -I—(

| a
ave

(7.9 repeated)

The above predictor—corrector approach is
carried out for all grid points throughout

the nozzle, and is applied simultaneously to the
momentum and energy equations

in order to generate u it and ei".In this
fashion, the flow field through the entire nozzle
at time t +At is calculated. This is repeated for a
large number of time steps until the steady state
is achieved, just as in the case of the Lax
Wendroff method described in Sect. 7.2.
MacCormack’s technique as described above,
because a two-step  predictor—corrector
sequence is used with forward differences on
the predictor and rearward differences on the
corrector, is a second-order accurate method.
Therefore, it has the same accuracy as the
Lax-Wendroff method described in Sect. 7.2.
However, the MacCormack method is much
easier to apply, because there is no need to
evaluate the second time derivatives as was the
case for the Lax-Wendroff method. To see this
more clearly, recall Eqs. (7.7) and (7.8), which
are required for the Lax-Wendroff method.
These equations represent a large number of
additional calculations. Moreover, for a more
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complex fluid dynamic problem, the
differentiation of the continuity, momentum
and energy equations to obtain the second
derivatives, first with respect to time, and then
the mixed derivatives with respect to time and
space, can be very tedious, and provides an
extra source for human error. MacCormack’s
method does not require such second
derivatives, and hence does not deal with
equations such as Egs. (7.7) and (7.8).

A few comments are made with regard to the
specific application to the quasione dimensional
nozzle flow shown in Fig. 7.1. At the inflow
boundary (the first grid point at the left), the
values of p, T and o are fixed, independent of
time, and are assumed to be reservoir values.
The inflow velocity, which is a very small
subsonic value, is calculated from linear
extrapolation using the adjacent internal points,
or it can be evaluated from the momentum
equation applied at the first grid point using
one-sided differences. At the outflow boundary
(the last grid point at the right in Fig. 7.1), all
the dependent variables are obtained from
linear extrapolation from the adjacent internal
points, or by applying the governing equations
at this point, using one-sided differences.
Finally, we note that results obtained from the
Lax-Wendroff method and from the
MacCormack method are virtually identical.
For example, these two methods are compared
for a vibrationally relaxing, high temperature,
non-equilibrium nozzle flow in Ref. [8]; there is
no difference between the two sets of results.

7.4 Stability Criterion

Examine Eq. (7.1), which is vital to the Lax—
Wendroff method. Note that it requires the
specification of a time increment, At. Examine
Egs. (7.9) and (7.11), which are vital to the
MacCormack method. They too require the
specification of a time increment ,At. For
explicit methods, the value of At cannot be
arbitrary, rather it must be less than some
maximum value allowable for stability.
The time-dependent applications described in
Sects. 7.2 and 7.3 are dealing with governing
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flow equations which are hyperbolic with
respect to time. Recall our discussion in Sect. 5.4
dealing with the stability criteria for such
equations. There, it was stated that At must
obey the Courant-Friedrichs-Lewy criterion—
the so-called CFL criterion. This is embodied

in Eq. (5.47), which was derived from the
simple model equation given by Eq. (5.42). This
is the linear wave equation, where c is the wave
propagation  speed.If the wave were
propagating through a gas which already has a
velocity u, then the wave will travel at the
velocity (u + c) relative to the stationary
surroundings. For such a case, Eq. (5.47)
becomes

m:c( Av ); C<

u+c

(7.14)

where C is the Courant number, and c is the
speed of sound, c = (0p/do)s. Eq. (7.14) is the
appropriate CFL criterion for the one
dimensional, explicit solutions of nozzle flows
discussed in Sects. 7.2 and 7.3. The CFL
criterion given by Eq. (7.14) says physically that
the explicit time step must be no greater than
the time required for asound wave to propagate
from one grid point to the next. This author’s
experience has been that C should be as close to
unity as possible, but depending upon the
actual  application, themaximumallowable
value ofC for stability in explicit timedependent
finite difference calculations can vary from
approximately 0.5-1.0.Keep in mind that the
stability criteria exemplified by Egs. (5.47) and
(7.14) are based on analysis of linear equations.
On the other hand, the governing equations for
a general fluid flow are highly non- linear .
Therefore,wewould not expect theCFLcriteria
to apply exactly to such cases; instead, it
provides a reasonable estimate of At for a given
non-linear problem, and as a result the value of
the Courant number in Eq. (7.14) can be viewed
as an adjustable parameter to compensate for
such non-linearities. Return for a moment to the

nozzle flow application discussed in Sects. 7.2
and 7.3. Here, at any given time t, Eq. (7.14) is
evaluated at each grid point throughout the
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flow. Because u and c vary with x, then the
local value of At associated with each grid point
will be different from one point to the next. The
value of At actually employed in Egs. (7.1) and
(7.9) to advance the flow field through the next
step in time should be the minimum At
calculated over all the grid points.

[Some CFD applications have employed the
‘local time step method’, wherein the local
values of At are used at each grid point in Egs.
(7.1) and (7.9). In this case, the transient
variations calculated over many time steps do
not hold physically; a type of ‘time-warped’
flow field is developed, where all the new flow
variables calculated for a subsequent time step
actually pertain to different total values of

time. This ‘local time step method’ frequently
results in a faster convergence to the steady
state, that is, fewer total time steps are required
to obtain the steady state. On the other hand,
the calculated transients have no physical
meaning, and some CFD experts wonder
openly about the overall accuracy of such a
method, even for the final steady state results.]
Finally, we note that for a two or three-
dimensional flow, an extension of Eq. (7.14) is:

Ar = Min(Ary. Aty) (7.15a)
where A
Aty = C— (7.15b)
i+c
and N
Aty =C—> (7.15¢)
v+c
7.5 Selected Applications of the Explicit

Time-Dependent Technique

The purpose of this section is to illustrate
various  applications of the  explicit,
timedependent technique described in the
previous sections of this chapter. These
applications contain many of the CFD features
that have been discussed throughout these

notes.
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Non-equilibrium Nozzle Flows 7.5.1

References [5,6,8] represent the first application
of the time-dependent technique to vibrational
and chemical non-equilibrium nozzle flows.
A purely steady flow analysis of such flows,
which involves forward marching from the
reservoir to the exit of the nozzle, encounters a
saddle-point singularity at the nozzle throat.
This singularity greatly complicates steady-
state numerical solutions of the flow. On the
other hand, as first demonstrated in Refs. [5,6],
the time-dependent numerical solution
circumvents such problems in the throat region,
and therefore constitutes a relatively
straightforward numerical solution of such

The analysis of vibrational non-.flows

equilibrium nozzle flows requires the inclusion
of a vibrational rate equation, such as

de vib
ot

I
= ; [(f’vibbcq — eyip] —u

(jf’vjb
dx

(7.16)

where evib is the local non-equilibrium value of
molecular vibrational energy per unit mass of
gas, (evib)eq is the local equilibrium value, and
T is the vibrational relaxation time which is a
function of local p and T. The analysis of
chemical nonequilibrium nozzle flows requires
the inclusion of species continuity equations—
one for each chemical species present in the gas
—which are of the form

o an;

i — 1 1
ot !

ox

(7.17)

where ni is the mole-mass ratio (moles of
species i per unit mass of mixture), and wiis the
rate of formation (or extinction of species i) due
to finite-rate chemical reactions. The form of wi
involves chemical rate constants and the local
concentrations of the chemical species. For an
introductory development of Egs. (7.16) and
(7.17), see Chaps. 13 and 14 of Ref. [3]. Note
that, in the same vein as Eqgs. (7.2), (7.3) and
(7.4), Egs. (7.16) and (7.17) are written in the
form of a time derivative on the left-hand side,
and spatial derivatives on the right-hand side.
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In turn, the nonequilibrium variables evib and
ni are calculated in steps of time in the same
fashion as @, u and e from Egs. (7.2), (7.3) and
(7.4). Indeed, for the time-dependent solution

of non-equilibrium nozzle flows, Eqs (7.2), (7.3)
(7.4), (7.16) and (7.17) are coupled, and are
solved in the same coupled fashion at each time
step as described in Sects. 7.2 and 7.3. However,
there is one additional stability restriction
brought about by the non-equilibrium
phenomena. For explicit solutions of non
equilibrium flows, in addition to the CFL
criterion discussed in Sect. 7.4, the value of At
must also be less than the characteristic time for
the fastest finite rate taking place in the system.
That is

At < BI

where I' = 1 for vibrational non-equilibrium,
and I' = (Owiy/Ony)? which is an effective
chemical relaxation time. (See Refs. [5, 6] for
more details.) For this problem, no grid
transformation is necessary; the physical and

computational planes are one-in-the-same.

: : : ; U
Fig. 74 Transient and final steady-state evib S
distributions for the non-equilibrium expansion 060 \\‘\
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Typical results obtained with the Lax-Wendroff
time-dependent technique are shown in Figs.
74 and 7.5, from Ref. [5]. The case of the
vibrational non-equilibrium expansion of pure
N2 is illustrated in Fig. 7.4. Here, the time-
dependent nature of the non-equilibrium value
of evib as a function of distance through the
nozzle is shown. The dashed line represents the
assumed initial distribution at t = 0. Several
intermediate distributions, after 100 and 250
time steps, are shown, along with the final
steady state after 800 time steps. A different
case, namely that of the nonequilibrium
chemically reacting expansion of dissociated
oxygen, is illustrated in Fig. 7.5. Here, the
dashed line represents the initially assumed
variation of the mass fraction of atomic oxygen
through the nozzle at t = 0. Several intermediate
curves after 100 and 400 time steps are shown,
along with the final, converged steady state
after 2800 time steps. This final steady state
distribution agrees well with an earlier steady
flow solution carried out by Hall and Russo [9],
which is shown as the solid circles in Fig. 7.5.

Fig. 7.5 Transient and final steady-state atom
mass fraction distributions for
equilibrium expansion of dissociating oxygen

the non-

obtained from the present time-dependent

method; the steadystate distribution is
compared with the steady-flow analysis of Ref.
[9]
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Flow Field Over a Supersonic Blunt Body 7.5.2

Here we return to the supersonic blunt body

problem discussed in Sect. 1.1. We assume
inviscid flow, hence the governing flow
equations are represented by Eq. (2.65) with U,
F, G, and H given by the inviscid expressions in
Sect. 2.9. For the present case, body forces are
negligible and hence ] = 0.The physical plane is
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shown at the top of Fig. 7.6; the curve BC is the
body and curve AD is the shock wave. The x-
coordinates of the shock and body are given by
s and b respectively. The local shock
detachment distance is given by d = s—b. During
the time-dependent solution, the body is
stationary, hence b = b(y). However, the shock
wave will change shape and location with time,

hence s = s(y, t). Therefore,

S(v.1) = s(v.1)—b(v) (7.18)
The computational plane (&, n) is shown in Fig.
7.6b, and is obtained from the transformation
. x—=b
= ——: n=y. 7=t (7.19)
0

where 0 is obtained from Eq. (7.18). Note that
this transformation is an example of a
boundary-fitted coordinate system as discussed
in Sect. 5.5.Typical results, obtained from Ref.
[10], are shown in Figs. 7.7, 7.8 and 7.9.

These results were obtained using the Lax-
Wendroff method. In Fig. 7.7, the
timedependent wave motion is illustrated,
starting from its initially assumed value of

t = 0, and progressing to its steady state shape
and location after 500 time steps. The time
variations of the centreline wave velocity and
the stagnation point pressure are shown in Figs.
7.8 and 7.9 respectively. Note in all three Figs.
7.7, 7.8 and 7.9, that the most rapid changes
occur at early times, and the steady state is
approached rather asymptotically at large
times.
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Fig. 7.6 Coordinate system for the blunt body problem

7 Explicit Finite Difference Methods

Fig. 7.7 Time-dependent
shock wave motion, parabolic
cylinder. M., =4

Fig. 7.8 Time variation of
wave velocity; parabolic
cylinder, M, =4

Fig. 7.9 Time variation of
stagnation point pressure:
parabolic cylinder, M, =4
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Internal Combustion Engine Flows 7.5.3

inside an internal
modelled by the
pistoncylinder geometry shown in Fig. 7.10.

Consider the flow

combustion engine as
The piston moves up and down inside the
cylinder, and the flow enters through the intake
valve and exits through the exhaustvalve.
The flow field in this problem is truly unsteady,
and the objective is to calculate this unsteady
flow by means of the time-dependent
technique. Here,no asymptotic steady state is
ever obtained; rather, a repeatable cyclic flow
field is calculated over the complete four-stroke
cycle of intake, compression, power and
exhaust. We will consider inviscid flow, and

hence the governing equations are Eq. (2.65)
and the U, F, G, and H column vectors from

Sect. 2.9 for an inviscid flow.A boundary-fitted

coordinate system is used, where the
transformation is
E=x/H(t);, Ny, t=t

Fig. 710 Geometry of two-dimensional _Jﬁ%i_j:wﬁ 2

cylinder-piston LC. engine model showing
grid arrangement.(a) Piston positioned at
TDC, 10 x 17 uniformly spaced grid points; (b)
Piston positioned at TDC, 10 x 17 variably
spaced grid points (only in y-direction); (c)
Piston positioned at BDC, 10x17 uniformly

spaced grid points

10mm

80mm

1<

and where H(t) is the time-varying distance
between the top of the cylinder and the top of
the piston. Note in Fig. 7.10 that the x
coordinate is along the vertical axis of

the cylinder, and the y-coordinate is in the
radial direction across the cylinder.Results for
this flow are shown in Figs. 7.11, 7.12, 7.13 and
7.14, taken from Ref. [11]. The solution is
carried out using MacCormack’s technique as
described in Sect. 7.3. Figures 7.11, 7.12, 7.13
and 7.14 show the flow field associated with
bottom dead centre of the intake stroke, three
locations of the piston during the compression
stroke, near bottom dead centre of the power
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stroke, and an intermediate location of the
exhaust stroke, respectively. Note that a
circulatory flow is created during the intake
stroke, and that this circulatory flow persists

throughout the fourstroke cycle.

Supersonic Viscous Flow Over a Rearward-Facing 7.5.4

StepWith Hydrogen Injection

Consider the two-dimensional supersonic
viscous flow over a rearward facing step,

where H2 is injected into the flow downstream
of the step as sketched in Fig. 7.15. Unlike the
examples mentioned above, this case deals with
the solution of the complete Navier-Stokes
Equations, given by Eq. (2.65) with the U, F and
G column vectors given in essence in Sect. 2.9
for viscous flow. This system is slightly
modified for the presence of mass diffusion,
which adds a diffusion term in the energy
equation, and adds another equation, namely,
the species continuity equation with

diffusion terms. (See Refs. [12, 13] for more
details.) The numerical technique used

here is MacCormack’s method discussed in
Sect. 7.3. The present calculations were made
on a uniform grid throughout the physical
space. In combination with the rectangular
geometry already existing in the physical plane
(as can be seen by examining Fig. 7.15), this
means that no grid transformation is needed.
Typical results obtained from Refs. [12, 13] are
given in Figs. 7.16, 7.17, 7.18 and 7.19. In Fig.
7.16, a velocity vector diagram is shown for the
case with no H2 injection. The external Mach
number is 2.19, and the Reynolds number
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70,000. These
calculations also include a turbulence model
patterned after that of Baldwin and Lomax [14].

Note the recirculating separated flow just
downstream of the step. Figure 7.17 is a

velocity vector diagram with H2 injection.
Recirculating separated flows are now seen

based on step height is

between the step and the H2 jet, as well

as downstream of the jet. Figure 7.18 shows
aMach number contour plot of the flow

(lines of constant Mach number). Figure 7.19
illustrates the contours of constant H2 mass
fraction; this figure serves to define the extent
and shape of the jet flow.

Fig. 7.11 Velocity pattern on
the intake stroke.
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Fig. 7.14 Velocity

distribution on exhaust stroke;

XE =6.99, CA =600°,
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Fig. 7.19 Lines of constant H, mass fraction

Supersonic Viscous Flow Over a Base 7.5.5
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In a somewhat related fashion, consider the
supersonic viscous flow over a base, as
illustrated in Fig. 7.20. Here, the same viscous
flow equations are used as discussed in Sect.
7.5.4 above. However, for this calculation a
stretched grid is used, as given

in detail in Sect. 6.4, and as shown in Fig. 6.4.
Again, MacCormack’s technique is

used. Some sample results from Refs. [15,16]
are given in Figs. 7.21 and 7.22, which

deal with no secondary mass injection at the
base. Figure 7.21 shows the velocity vector
diagram for the case with an external Mach
number of 2.25 and a Reynolds number of 477
000 based on the height of the base. Note the
recirculating separated flow downstream of the
base. Figure 7.22 illustrates the contours of
constant pressure in the flow; the expansion
wave around the corner and the recompression
shock downstream of the base are clearly seen.
Figures 7.23 and 7.24 show the same type of
results, except now for the case of air injection
from the centre of the base. Note that injection
greatly changes the flow field, as can be seen in
comparison with Figs. 7.21 and 7.22.

Fig. 7.20 Base flow with
mass injection
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Compressible Viscous Flow Over an Airfoil 7.5.6

Consider the subsonic compressible, viscous
two-dimensional flow over an airfoil.

The governing equations are the Navier—Stokes
equations discussed in Chap. 2. For this
application, the choice is made to use the non-
conservation form of the equations, namely,
Egs. 2.36(a, b and c), because no shock waves
will be present in theflow. MacCormack’s
method is used. Consider the airfoil and the
elliptically generated boundary-fitted grid
shown in Figs. 6.8 and 6.9, as discussed in Sect.
6.5,and as taken from Refs. [17, 18]. Calculated
results for a free stream Mach number of 0.5
and a Reynolds number based on chord length
of 100 000 (this is a low Reynolds number flow,
which was the objective of the study in Ref.
[18]) are shown in Figs. 7.25, 7.26 and 7.27. The
angle-of-attack in these figures is zero. These
figures illustrate the instantaneous flow over a
Wortmann airfoil at different times. In Figs.
725 and 7.26, the flow is laminar, and it
separates over the top surface of the airfoil at
about the maximum thickness point. The flow
is clearly unsteady, as can beseen by comparing
Fig. 7.25(a, b and c); there is a rather periodic
flow fluctuation over the rearward portion of
the airfoil, as well as downstream of the trailing
edge.The calculation of such unsteady flows,
especially in situations where they may be
unexpected, is one of the major advantages of
the time-dependent method in comparison

to steady-state analyses. In Fig. 7.27, the flow is
treated as turbulent; note that in this case the
flow is attached.
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Fig. 7.24 Lines of constant pressure with injection from the center of the base

This author has many more examples of CFD
applications from the work of his graduate
students; those listed in Sect. 7.5 are but a
small fraction. They are picked for discussion
in these notes on a rather arbitrary basis. Time
and space do not allow further listing and

Also, this brings to an end our .discussion

introduction to CFD. It is the author’s hope
that these notes have been a reasonable
beginning for the unitiated reader, and that he
or she can now greatly expand his or her
horizons by reading the more advanced
literature on CFD. If such advanced reading is
indeed more easy after studying the

present notes, then this author has
accomplished his goal In recent years, some
modern texts on CFD have been published
(Refs. [19-23]); these texts are recommended
for advanced studies of the subject. In
particular, Fletcher’s two volumes (Refs. [19,
20]) contain a nice theoretical discussion

of the subject. Of special note are the two

these ;([volumes by Hirsch (Refs. [21, 22

volumes represent an  authoritative
presentation of the mathematical and
numerical fundamentals of CFD, the modern
techniques used in CFD, and how these
techniques are used in various practical

,applications. Reference [23], by Hoffmann

is a crisp presentation of CFD for use by
engineers. All of these books are
recommended for more advanced study of
computational fluid dynamics. Also, for an
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extended presentation of the elementary,
introductory ideas contained in the present
book, as well as a lengthy discussion of the
overall philosophy of CFD and its role in
modern engineering, see the book by the
present author (Ref. [24]); this is written for a
senior-level undergraduate course in CFD,
and assumes absolutely no prior knowledge of
the subject. This author wishes you happy
reading, and happy computing in your further
expeditions into the world of computational
fluid dynamics.

Fig. 7.25 Velocity vector diagrams at three different non-dimensional times for purely laminar Aow
dRe = 1000 000, M = 0.5, Alpha = 0.0 dep.). (8} Mon-dimensional time T, = 6.27. ib) Ty = 7.04,

Fig. 7.26 Instantaneous streamlines over Wortmann airfoil (FX63-137)—laminar flow (unsteady

results) (Re = 100000, M = 0.5, Alpha = 0.0 deg.) Non-dimensional time T, =7.04
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Fig. 7.27 Streamlines over Wortmann airfoil (FX63-137)—turbulent flow (Re = 100 000,

M = 0.5, Alpha = 0.0 deg.)
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Js 9.1

The finite element method (FEM) is a

numerical technique for
differential equations (PDE’s).

solving partial

ol (Finite element method) dgxll olall 42

B b gl ol L Ll Lo Gl
idoladl oVolall iy &l JJd slgy  ous
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9
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and [Wendt 2009], Ch. 10.

144




Its first essential characteristic is that the
continuum field, or domain, is subdivided
into cells, called elements, which form a grid.

The elements (in 2D) have a triangular of a
quadrilateral form and can be rectilinear or
curved. The grid itself need not be structured.
With unstructured grids and curved cells,
complex geometries can be handled with ease.

The second essential characteristic of the FEM
is that the solution of the discrete problem is
assumed a priori to have a prescribed form.
The solution has to belong to a function space,
which is built by varying function values in a
given way, for instance
quadratically between values in nodal points.

The nodal points, or nodes, are typical points
of the elements such as vertices, mid-side
points, mid-element points, etc. Due to this
choice, the representation of the solution is
linked to  the  geometric

representation of the domain.

linearly or

strongly

The third essential characteristic is that a FEM
does not look for the solution of the PDE
itself, but looks for a solution of an integral
form of the PDE. The most general integral
form is obtained from a weighted residual
formulation. By this formulation the method
acquires the ability to naturally incorporate
differential type boundary conditions and
allows easily the construction of higher order
accurate methods.

The ease in obtaining higher order accuracy
and the ease of implementation of boundary
conditions form a second
advantage of the FEM.

important

A final essential characteristic of the FEM is
the modular way in which the discretization is
The
constructed from contributions on the element
level which afterwards are assembled.

obtained. discrete equations are

(Buler) sl a3,kS 3L i alasaal Ll

.(Runge-Kutta) b~ s, Bl
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Variational formulation = The minimization of an energy integral over the domain.
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o 10

Writing down the governing equations onto the paper

developing the appropriate numerical solution of these equations

writing the C++/ FORTRAN program and putting it into the computer

going through all the trials and tribulations of making the program work properly
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(Introduction to Numerical Combustion) (=bwad) Gadl A i

Based on
Theroretical and Numerical Combustion (Thierry Poinsot, Denis Veynante) and
Introduction to Combustion — Concepts and Applications, 2" edition (Stephen R. Turns)
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Introduction to mass transfer'® 11

10 From [Turns], pp. 83-105

152



Conservation equations for reacting ' ilels ou) e &y ozt SYlee 12
‘flows

(General forms) i JSa 12.1
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Some Important Chemical Mechanisms 13

(The H2-O2 System) " 13.1

11 From [Turns], 148-152
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Laminar premixed flames and Laminar Diffusion flames 14
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Droplet Evaporation and Burning 15

156



Introduction to Turbulent Flows 16
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Turbulent Premixed and Nonpremixed flames 17
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Burning of solids 18
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