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1.1 ������ 
������1 

�*�)+� ���,����) Fluid Mechanics  (.
/0+� 1�)+� ���,���� 2� 3��4 5/6 )�) Continuum Mechanics ( 
 �7�7' �"� )��	
����� ���8�� 3*�!9�:�� ;)
<�� 5/=0�� ��� >��!� &?�@�A��� �*�)<�� �7�7' 3� B�� &

�*�)+� ���#�07C �C .�%�, 2� DE�<F# 2�G� &1�)+� H�I 3
���J' &.K�L� M�� .��% N �O07��1 �'  ������!1 �
 .�*�)I� ?�������!��� ;��O4 &.��"� ���' ?�//6 �O0P Q���!� &.K�L� .��% N �O07��1 �' �*�)+�

) ���������! (��!���� .�*�+� ?�����) �������"��# .( .��R� .�*�!9�:�� ?��E��� �!�P �C 5/=0�� ��� 	"<!
��� &SAT�� &.��<�� �U� V�W� &�*�)+�� &(���L� .��1� &.4�U�$�%&'�� ?�F�
X# ?�OY �Z� &[4�0�� \�"�� 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 2� wiki/org.wikipedia.ar://http]#���� 2� [F^ 2���  



9 

�������!1 V��� �"+� 5/=0�� 	E<!� &�*�)+� ���,���_ .
/0+� �*�<E
� \)
% 1�`a .U!�% .���<% �*�)+� ?
 .���<L�).!9�
ba��:Computational FluidDynamics ) (CFD.(  

1.2 
��(�'� )�*+ 

�%)
� 3+�"�� M�8��� )� ��� M�=0<+� M�8��� ?�)SI(. 

.�7�7�� D#��%� c
# H�,1' .E*�F��:  

  

1.3 ,�-.� /� 0�1� 2%3�4�5�'�  

N 2� \��� d9e� ��0�� f� d�g h� \���0! ]�0��� ��� :  
•  5�=
#+ �*�)+� ���,���).!9�
ba�� :Fluid Mechanics ( 

•  5=
� ���� i1�� ��
j0
�).!9�
ba�� :Numerics / Numerical Computation ( 
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•  ]���7� .���<L� �*�)+� ?�������!1).!9�
ba��:Computational FluidDynamics (  
(1�+� N ���� .���"�� .A��� ��)! ����*�)+� ���,� k�0K )� � 	
����  �+����[!�� lg�� �E^ 2� 2

.  

1.4  	
����)fluids( 

 �*�� .E
�� �EnK �*�)+�)fluid  ( opq# rP k��<,s� .
��Z (1�� i' 3�� &(1�+� ��)t' 2� .�)Eu ��v#
�I i��L� d�,a� ��g ��q#� 5F�� 1�O�C . 2� w�K �*�)+� 2ET0#�*�)<�� &?�@�A�� &�xs
�� ks�y� �,��%'� .,�
�� 

plastic solids. 

�C (1�� �*�)+� z�/#:  
• 	
���7�8.+9' �&��: (compressible fluids)  �U� �O�
� �Z�)�� SAT�� oA0� �O04�UK oA0# B�� �*�)+� 3�� 

?�@�A�� .3t�AT,�� h�!�<�� w�T!� l<! �.  
• 7�8.+9' �&��: ;< 	
���(incompressible fluids) �*�)+� 3��  �Z�)�� �{)�� oA0� �O04�UK oA0# � B�� 

�*�)<�� �U� �O�
� .3t�AT,� s�� h�!�<�� w�T!� l<! �.  

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 [Siddiq] 
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• .��#)�, �*�)�: � 	
���=����' .Zs� D�4 h)�# �*�� )� 1�O�a�3
 J \�":,�� )O�a� .n�0, 1�)+� H)v#1�(  .Zs�

 ]7��0�� r��p l7� }�"!� &?��p��%a� '�
� 2� �G l�F0<� ��g 	
� i' .�X�.��9
��� . �*�+� ��� 3x
 ~�"�� l7� 	
�2#)�, [j7�4. 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3 engl. stress 
4  >?�@“/���+”) .!9�
ba�� :Isaac Newton  ( i1��!�;�'��/���+ >?�@ ) 4�!��!  1643J 31>���  1727 ( \��� 2�.��
+� .�"Ee� h�K 3*�!9�4 i9�
bC ?��{�!� ~��� 

V
4 ~��� ."�
X�� l
"� })<
�4� 3*�E�K� ?)�s��� ~���.!�v
�� �!��# N ��opq# \����� l8�' 2� ���%���  . D��0K �"!�.�"�
X�� .:<
:
� .�{�!��� \)�y� k�0K M�� �v, i���� 
1687 N ��opq# ]0��� �UK' 2� l
"�� �!��# ?�!�8, l8"+ >�7' ��"{�� .���7s��� ���,���+� . z�� &k�0��� ��� N”2#)�, “e�.��"�� .��W� .K�L� c,�)Z� 	
� ?�X�7 B��� .psU�� 

 �C .�E
"�� (�8���i1�+� ~�"�� �{�� .�1�F�� .psU�� h��F
� "2#)�, " ]K)K 	
� M�<�y� .K�% h'��y� M���' �I B��� .!��x [!�t 2� �O<:, .�"�
X�� c,�)F�� .�)Eu �OE�P 
 c� ��<#�� ?�
pC c,�)Z"�

K ".�
K)��� .K�L�� .��R� .!�8, \)% ?��p B�� .�F
0+� ;)�v�� .��@C � 2�� �.��W�e�� .��R� D0!�8,� �Ev�� .!9K�� ��F# �C �1' �� .�E
"�� (�)U�� .

 [
"0! �E�4����,���+�� 2
�' &"2#)�, " 2� ��� .��R� .Z�X�� d�F� �1�
�.K�L� .�EK .!��9�� .K�L� .�EK� . l
� N�?�!�/
�� ��0�� &"2#)�, " \�'�K�� k)�<
#]3[3
E�  . V��K�
 h�)�y� .!�8, �)t ��T!')h)�( h' .8%s� 	
� ���E0"� �)v�+� �
� ���y� d)T�� ��v# B�� h�)�y� 2� �!�"�� �C 3*�+� z�X�� . ��� &V�W �C .4�{a����!�0
� 2#)�, h),�Z >�1� 

?)/�� .��7 . ;��v! &?��{�!��� l
"� .
<�����"2#)�," "90�
!� �!�:#)� " }�g N�!)X# �{�:0��� ����0�� k�<% . r
p' &��T!' V��K�.EE"+� 2!�L� ?�W .!�8��� 	E<! �� �)t� 
 ��"2#)�, .F!�t " (1)�)+� ��:�y� ]!�F0� .��R�.������ .7��1 N l��7� �)F�� .
<
<0� . .,��� �8#"2#)�, " i'� �sX07� D0
p' i��� ��y� .
#�� 	
�' N d�E
"�� c� ."�4���

 M�� i��'2005
"� [
"0! �E�4  d�E3�
+� �E0�� 	
� opq# l8�' D� h�K 2� )� �sX07�� ��� D%�t i��� \��<�� h�K� ��X!��� l
"�� �!��#" 2#)�, " M'"2!�0v�!$ ?��' ."
 h' 3� �sX07�� .n�0, r,�K�"2#)�, "��opq# �UKy� �0"! )�.]4[ h�K &V�W 	
� w(�s� "2#)�, "���F# .!�A
� ).E*�F�� .��!��� }���y� �� �wF:0� 2�! ~ D,' 2� l���� 	
� ( ��n0���

 N \�E�y� 2� �!�"
�>�F+� k�0��� ?�o<:#h�� �% D� D#���O7C ~�"�� ��! ~ B�� .�"�
X�� M)
"�� N Dn0,' �� �UK' . 
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• �#)�, o� �*�)�.�: C����+ 1 	
�� r��p M��=07�� D,�!�� z�� 2�G � �*�� )� .��9
�� . ]
�' �0"#
 ������?�o+)
�� �U� ."*�v�� �*�)<�� 2� oU���� .�,)#)�,s�� �*�)+� 2� .
*���� ?��E��)
��� ]v0��� ]*�W &

�v��� &M��� )
��v���.  

1.5 �&D5�� ��-�'� 

� N .4�<� �A�' r,�K �WC .
/0� .�EK �*�+� ��
0�� 2�G?��*9n
� �L� ��<+� S7)0+� 2� �K' ��
j0�.  
L >> l 

1.6 �E�F�'� 

 lnL� h' ��
0��� .4�U��� h�4 .
/0+� .�E��� ��g N)0<#� ��
j0�� 3� 1�# .4�<� �A�' ]"�� )�  
3
! �EK }�"#:  

  
 ��% � M���)
����� .
0���  .4�U��� (�%� � ]"�+� �0+�� lnL� .   

1.7 ��G��'� �E�F�'� 

 
 

1.8 ����'� H�8'� ,��:(ideal gas)  

 

1.9  I���'� ,����'�)steady flow( 

  

1.10  J*5��� ,����'�)uniform flow( 
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1.11  4���+1� K�)streamline( 

 

1.12  ,����'� ����!)dimensions of flow( 

 

1.13  ��L$1�)stress( 

 



14 

1.14  M?
��D'� ,����'�)laminar flow ( �
��� ,����'�)turbulent flow( 

 

1.15  ���*���)system ( J�?5'� JN(�)control volume(  ��8D'� O �(��. M�
�� �.Q

)infinitesimal fluid element( 

 
 ��v�� N M)7�� l�j0�� lnL� ���)1.3.1 a ( )� �EK l�j0�� ln% �� �8�, h� 2�G w�T!� 2��� ��<��� 	
�

 ��v�� N)1.3.1 a (cE��� 	
� h�!�<�� �� ;�j0! l�j0�� ln% )� �.  
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 ��v��)1.3.1(  
([Wendt 2009], Fig. 2.1)  

 

  Fig. 1.3.1 a, left side: finite control volume V, an 

a finite control surface S fixed in space:  

The fluid equations the we directly obtain by 

applying the fundamental physical principles  

to a finite control volume are in integral form. 

These integral forms of the governing 

equations can be manipulated to indirectly 

obtain partial differential equations. The 

equations so obtained, in either integral or 

partial differential form, are called the 

conservation form of the governing equations. 

 

The equations obtained from the finite control 

volume moving with the fluid (Fig. 1.3.1 a, 

right side), in either integral or partial 

differential form, are called the non-

conservation form of the governing equations. 
  If we consider a infinitesimal fluid element, 

which is fixed is space (Fig. 1.3.1 b, left side), 

we can directly derive the partial differential 

equations. This is again the conservation 

form. 

If we consider a infinitesimal fluid element, 

which is moving is space (Fig. 1.3.1 b, right 
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side), we can directly derive the partial 

differential equations. This is again the non-

conservation form. 
  In general aerodynamic theory, wheter we 

deal with the conservation or 

nonconservation forms of equations is 

irrelevant. However, there are cases in CFD 

where it is important which form we use. 

1.16 M<���'� K8.'�� M���R�� K8.'� 

  

1.17 ��?S�'� T�R'�� ��-�3� T�R'� 

 

1.18 MDR'� ��L$1� 
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2 	
����  �+���� O �����1� 
1�����(Governing Equations of Fluid Dynamics)   

 	
� �
�� ��0��][!��[ �/4 &2 � [Anderson 1991].  

2.1 ���� 

 N >�7��CFD )�  sU�� ¡:L� ?�1�"� 3� � �*�)+� V�,���� N .�7�7�� k�1�"+�:  
.
0��� ¡:%(mass conservation)��X�� ¡:%� (energy conservation) ;�j0�� .�EK ¡:%� momentum 

conservation)  .(! i��� h�!�<�� Dn0� z!�"0� V��� M�Z �¡:L� ?�1�"� �K N w�K�0v� w��/�� ��v.  

2.1.1 ,����'� UN5� 

 ��v��2.1   

  
 ��v�� N �{)+� 3E�j0�� lnL�)2.1 ( DEn%V D0%�<� � A . .�
{�:0�� .%�<+� 	
� 9�K�0���dA h�4 

 3� ���� .���R� .
0���dm rZ)�� N dth�!�<�� \�"� �
/��  
•

md. h�!�<�� .��7  Dn0+� 3� �{)+� Nv 
 .!��9#α \)X�� i1�%' Dn0+� �� n .%�<+� 	
� ���"0+� dA ��%   

 dAn = Ad 
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2.2  ;G�'� ��R5V1�)The Substantial Derivate( 

 QW)E�K)model(  cE��� 	
� 3� B�� (�)/�� ��q�7 h�!�<
�
 ��v�� 2�1.3.1(b) )��   

As a model for the flow, we will adopt 

the picture shown at the right of Fig. 

1.3.1 (b). 
Namely that of an infinitesimally 

small fluid element moving with the 

flow. The motion of the fluid element 

is shown in detail in Fig. 2.2.1. 

Here, the fluid element is moving 

through cartesian space. The unit 

vectors along the x, y, z axis are .,, kji
rrr

 

The vector velocity field in this 

cartesian space is given by  

kwjviuV
rrrr

++=  

Where the components of velocity are 

given respectively by 

),,,(

),,,(

),,,(

tzyxww

tzyxvv

tzyxuu

=

=

=
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Note that we are considering in general 

an unsteady flow, where u, v, and w are 

functions of both space and time, t. In 

addition the scalar density field is 

given by ),,,( tzyxρρ = . 

  

 

Fig. 2.2.1 ([Wendt 

2009], Fig. 2.2) 

 At the time 1t  the fluid element is 

located at point 1 in Fig. 2.2.1. At this 

point and time, the density of the fluid 

element is ),,,( 11111 tzyxρρ =  

 

At a later time 2t  the fluid element has 

moved to the point 2 where the density 

is ),,,( 22222 tzyxρρ =  

 

Since ),,,( tzyxρρ = , we can expand 

this function in a Taylor’s series about 

point 1 as follows: 

)()()()( 12
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ρρ +(higher order terms) 

 With ignoring the higher order terms 

we obtain 
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xtt

ρρρρρρ
                             (2.1.1) 

 Eq. (2.1.1) is physically the average 

time-rate-of-change in density of the 

fluid element as it moves from point 1 

to point 2. In the limit, as 2t approaches 

1t , this term becomes 

Dt

D

tttt

ρρρ
≡









−

−

→
12

12

12

lim  

 
Dt

Dρ
 is a symbol for the instantaneous 

time rate of change of density. 
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By definition, this symbol is called the 

substantial derivate, D/Dt. 

Dt

Dρ
is the time rate of change of 

density of the given fluid element. Our 

eyes are locked with the fluid element, 

not with the point in the space. So 
Dt

Dρ
 

is different physically and numerically 

from 
1










∂

∂

t

ρ
which is physically the 

time rate of change of density at the 

fixed point 1. 

Returning to Eq. (2.1.1), note that  

w
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 Thus, taking the limit of Eq.(2.1.1) as  

22 tt − , we obtain 

z
w

y
v

x
u

tDt

D

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
≡

ρρρρρ
    (2.1.2) 

 From (2.1.2) we obtain an expression 

for the substantial derivate in cartesian 

coordinates 

z
w

y
v

x
u

tDt

D

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
≡     (2.1.3) 

 In cartesian coordinates the vector 

operator ∇  is defined as  

z
k

y
j

x
i

∂

∂
+

∂

∂
+

∂

∂
≡∇

rrr
    (2.1.4) 

 Hence Eq.(2.1.3) can be written as  

)( ∇⋅+
∂

∂
≡ V

tDt

D r
    (2.1.5) 

 Eq.(2.1.5) represents a definition of the substantial 

derivative operator in vector notation; thus it is 

valid for any coordinate system. 

t∂

∂
 is called the local derivative which is physically 

the time rate the time rate of change at a fixed point; 

∇⋅V
r

is called the consecutive derivative, which is 



22 

physically the time rate of change due to the 

movement of the fluid element from one location to 

another in the flow field where the flow properties 

are spatially different. The substantial derivative 

applies to any flow-field variable, for example, 

Dp/Dt, DT/Dt, …, where p and T are static pressure 

and temperature respectively. 

 

The substantial derivative is essentially the same as 

the total differential from calculus. Therefore, the 

substantial dervative is nothing more than a total 

derivative with respect to time. 

2.3 /� ��
��%��'� W���  �Q��'� �Q�G�)divergence of velocity (V
r

⋅∇ 

 .��<�� ���
#)divergence of velocity (V
r

⋅∇  
φ∇ 

)4.2..(..................................................
)(1

Dt

VD

V
V

δ

δ
=⋅∇

r
 

V
r

∇per unit , f the volume of a moving fluid element is physically the time rate of change o

.volume 
V
r

∇  l�j0�� lnL ��9�� o�A0�� )�)control volume ( 2� �*�� )T�)fluid element(  ¢���)moving(  �
� ]<% V�W l�j0�� lnL)per control volume(  

 

2.4  �&5�'� X�()mass conservation( 

),�Z .A���*�+� h�!�7 	
� w�F
X� .
0��� ¡:% h:  
"�!�7 \�"� 5��� D��C w�4�T� 3E�j0�� lnL� ���1 .
0��� lK��# \�"� 3E�j0�� lnL� Q��� �C .
0��� h

�:� i��<!.  

  
 3E�j0�� lnL� ���1 .
0��� 1�!1@� \�"�)control volume:(  

                                 
 � ����0�� 1��% hyrZ)�� 	
� �E0"#.  

 .�1�"+� 2�)2.1 (3E�j0�� lnL� Q��� �C .
0��� h�!�7 5���  
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 .�1�+�).42 ( 3� .�
���0�� (�)/�� N .
0��� ¡:% .�1�"�)mintegral for.(  
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2.4.1  ��"��-5�1� �'����)continuity equation( 

.�1�"� 	
� w.��� l7�� ��� [
X!.�
{�:0�� �£�)� N .
0��� ¡:%  . .�1�"+� 2� ¤d��)2.4 ( ��U�� �L� �!)P 2�G
 ���
0�� .!�8, M��=07�� 3EnL� ����0�� (�)� �� 3jX<�� ����0�� (�)� 2�)divergence theorem.(5 

 To obtain the basic equations of fluid motion, 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5  
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always the following way is followed: 

Choose the appropriate fundamental physical 

principles from physics 

Apply these physical principles to a suitable model 

of the flow. 

From this application, extract the mathematical 

equations which embody such physical principles. 

So, in our case the physical principle is:  

“Mass is Conserved”. 
 

 
w.!���0�� ����0�� 1��% r,�K � w��:� ����0�� .E�Z r,�K �WC w��:� �¦���+� .E�Z h)�# ����0�� c,�)F� w�"
#.  

  
 ��%w, v, u ?���§�� N .��<�� ?�
K�� 3� z , y , x.  

 3t�AT,� � h�!�<�� h� \�% N �)incompressible flow(  
)2.7(…………………………0=

∂

∂
+

∂

∂
+

∂

∂

z

w

y

v

x

u  
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2.5 (�:�S'� X�(energy conservation)  

��v�� 2.4 

  

  
  

2Gy� .�1�"+� ],�� N h������ h��L�  � &3E�j0�� lnL� ���1 �*�+� 	
� .���
+� (��F�� 2� h��"!•

Q \�"� 
3E�j0�� lnL� ���1 �C (���L� h�!�7.  

Y%&'� �#�N5�) viscosity ( 1�O�a� �
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2.6 Z�?5'� ��-[ X�((momentum conservation)  

��v�� 2.4 

 

  
 ��U�� 2#)�, h),�Z 2� h),�F�� ��� �E0<!)Second Newtonian Law (3E�j0�� l=% 	
� w�F��X� .K�j
�:  

" lK��# \�"� Q��� �C ;�j0�� .�EK h�!�7 \�"� 5��� D��� w�4�T� 3E�j0�� lnL� ���1 ;�j0�� .�EK
�*�+� 	
� (�p�+� �)F�� �)Eu \1�"! .
0��� \�F0,�� 3E�j0�� lnL�".  

  
  

  

2.7  �����1� 
1����� \�]&�)governing equations (
�*(9� 	� 	
����  ������' 

2.7.1  M$%&'� ,����'� 
1����)viscous flow(  ��
��-��'� 
9Q��� ^� �*�'� ,��)without considering chemical reactions( 

 D�E{ 2� i��� )� 3�9
�� h�!�<��.… 
)dissipative, transport phenomena of 

Viscous flow: a flow which includes the dissipative, 

transport phenomena of viscosity and thermal 

conduction. The additional transport phenomenon 

of mass diffusion is not included because we are 



32 

viscosity( � &.…) thermal conduction ( 

  

limiting our considerations to a homogenous, non-

chemically reacting gas. Combustion for example is 

a flow with a chemical reaction. If diffusion were to 

be included, there would be additional continuity 

equations – the species continuity equations 

involving mass transport of chemical species i due 

to a concentration gradient in the species.  

Moreover the energy equation would have an 

additional term to account for energy transport due 

to the diffusion of species.  

With the above restrictions in mind, the governing 

equations for an unsteady, three-dimensional, 

compressible, viscous flow are: 

 
��"��-5�1� 
1����  

);8'� ��_'��M*E�` (  

Continuity equations 

(Non-conservation form – [Wendt 2009], Eq.2.18) 

0=⋅∇+ V
Dt

D r
ρ

ρ
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  (Conservation form – [Wendt 2009], Eq. 2.27) 

0)( =⋅∇+
∂

∂
V

t

r
ρ

ρ
 

  Equation [Wendt 2009], (2.18) is the continuity 

equation in non-conservation form. Note that: 

1.  By applying the model of an infinitesimal fluid 

element, we have obtained Eq. [Wendt 2009], 

(2.18) directly in partial differential form. 

2. By choosing the model to be moving with the 

flow, we have obtained the non-conservation 

form of the continuity equation, namely Eq. 

[Wendt 2009], (2.18). 

Equation [Wendt 2009], (2.27) is the continuity 

equation in conservation form. Note that: 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Integral form of the continuity equation: ([Wendt 2009],  Eq. 2.23)  
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1.  By applying the model of an finite control volume, 

we have obtained Eq. [Wendt 2009], (2.23) 

directly in integral form.6 Only after some 

manipulation of the integral form the partial 

differential form, namely Eq. [Wendt 2009], 

(2.27), is obtained. 

2. By choosing the model to be fixed in space, we 

have obtained the conservation form of the 

continuity equation, namely Eqs. [Wendt 2009], 

(2.13) and (2.27). 

 

Z�?5'� ��-[ 
1����  

  

Momentum equations 

(Non-conservation form – [Wendt 2009], Eqs. 2.36a-c) 
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[Wendt 2009], 

Fig.2.5: 

Infinitesimally 

small, moving fluid 

element. Only the 

forces in the x 

direction are 

shown. 

xF  3�  H�§� N .���¨�� ()F��x  
  

��X!�� ��� N ()F�� 2� c�), ;���:  
لة  التي تتفاعل مباشرةً على الكتقوات جسمية .1

). fluid element(ي عضو مائعالحجمية لل

القوة الجاذبية والكھروبائية : و امثلة ھي

Total force in the x-direction: xF  

 

[Wendt 2009], S.28 Def. of body forces and surface 

forces: 

Body forces, which act directly on the volumetric 

mass of the fluid element. Examples: gravitational, 

electric and magnetic forces.  

• Def.: body force on the fluid element acting 
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  .والمغناطسية

التي تتفاعل مباشرة على سطع قوات سطحية  .2

 .يعضو المائعال

  

 

in the x-direction )(dxdydzf xρ= . 

Surface forces, which act directly on the surface of 

the fluid element. They are due to only two sources: 

(a) pressure distribution acting on the surface, 

imposed by the outside fluid surrounding the fluid 

element, and (b) the shear and normal stress 

distributions acting on the surface, also imposed by 

the outside fluid “tugging” or “pushing” on the 

surface by means of friction. 

 

 

[Wendt 2009], 

Fig.2.6: 

Illustration of 

shear  and 

normal stresses 

  (Conservation form – [Wendt 2009], Eqs. 2.42a-c) 
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�:�S'� �'����  Energy equation 

(Non-conservation form – [Wendt 2009], Eq. 2.52) 
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  (Conservation form – [Wendt 2009], Eq. 2.64) 
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2.7.2  M$%' 1� ,����'� 
1����)inviscous flow(  ��
��-��'� 
9Q��� ^� �*�'� ,��)without considering chemical reactions( 

  Here are the viscous terms of the above equations 

dropped. 

2.7.3 �����1� 
1����� a&Q 
�R�&�� 

 ,� 	�S5�+ b�����1� 
1����� ��c5+ �d�

^�5'� 0�R+:  
  ھي ممجموعة مزواجة من  .1

  

Surveying the above governing equations, several 

comments and observations can be made: 

1. They are coupled system of non-linear partial 

differential equations, and hence are very 

difficult to solve analytically. To date, there is no 

general closed-form solution to these equations. 

2. For the momentum and energy equations, the 

difference between the non-conservation and 

conservation forms of the equation is just the left-

hand side. 

3. Note that the conservation form of the 

equationscontain terms on the left-hand side 

which include the divergence of some quantity, 

such as )( V
r

⋅⋅∇ ρ , )( Vu
r

ρ⋅∇ , etc. For this 

reason, the conservation form of the governing 

equations is sometimes called the divergence form.  

4. The normal and stress terms in these equations 

are functions of the velocity gradients, as given 

by [Wendt 2009], Eqs. (2.43a-f). 

5. The system contains five equations in terms of six 
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unknown flow-field variables, ewvup ,,,,,ρ . In 

aerodeynamics, it is generally reasonable to 

assume the gas is a perfect gas (which assumes 

that intermolecular forces are negligible). For a 

perfect gas, the equation of state is  

RTp ρ= ,  

where R is the specific gas constant. This provides a 

sixth equation, but it also introduces a seventh 

unknown, namely temperature, T. A seventh 

equation to close the entire system must be a 

thermodynamic relation between state variables. 

For example, 

e = e(T,p) 

For a calorically perfect gas (constant specific heats), 

this relation would be 
Tce v=  

where 
vc  is the specific heat at constant volume. 

6. Historically, the momentum equations for a 

viscous flow are called the Navier-Stokes 

equations. However, in modern CFD literature, 

“a Navier-Stokes solution” simply means a 

solution of a viscous flow problem using full 

governing equations (including continuity as well as 

energy and momentum). 

2.7.4  ��"��3� 0��(1�)boundary conditions( 

  The boundary conditions, and sometimes the initial 

conditions, dictate the particular solutions to be obtained 

from the governing equations. (This makes the difference for 

example between the flow over a Boing 757 or past a wind 

mill, although the equations are the same). For a viscous 

fluid, the boundary condition on a surface assumes no 

relative velocity between the surface and the gas 

immediately at the surface. This is called the no-slip 

condition. If the surface is stationary, then 

0=== wvu  at the surface  

(for a viscous flow) 

 

For an inviscid fluid, the flow slips over the surface (there is 
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no friction to promote its ‘sticking’ to the surface); hence, at 

the surface, the flow must be tangent to the surface. 

0=⋅ nV
rr

 at the surface  

(for a inviscid flow) 

where n
r

 is a unit vector perpendicular (that means 

orthogonal) to the surface. The boundary conditions 

elsewhere in the flow depend on the type of problem being 

considered, and usually pertain to inflow and outflow 

boundaries at a finite distance from the surfaces, or an 

‘infinity’ boundary condition infinitely far from surface. 

 

The boundary conditions discussed above are physically 

boundary conditions in nature.  

In CFD we have a additional concern, namely the proper 

numerical implementation of the boundary conditions. 

2.8  	� J
9� �����1� 
1��-&' 0��V�CFD : M*�?5'� ��_'� a&Q 
�*(9�)conservation form( 

<, 38:j0�� ��v��� .�7�7�� ?�1�"+� .�)Eu ]0�, h� ��X0)conservation form (��0�� M�"�� ��v���: 

 
[Wendt], Eq. 2.65 
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 .!1)"�� ?�O�)+� & .�1�"+� NF � G �  H l<#

e� ?�O�)+�.�,�!�.  

In [Wendt], Eq. 2.65, the column vectors F, G, 

and H are called the flux terms (or flux vectors), 

and J represents a ‘source term’ (which is zero if 

body forces are negligible). For an unsteady 

problem, U is called the solution vector because 

the elements in U ( ,,, vu ρρρ etc.) are the 

dependent variables which are usually solved 

numerically in steps of time. Please note that, in 

this formalism, it is the elements of U  that are 

obtained computationally, i.e. numbers are 

obtained for the products wvu ρρρρ ,,,  and 

)2/( 2
Ve +ρ . Of course, once numbers are 

known for these dependent variables (which 

includes ρ  by itself), obtaining the primitive 

variables is simple: 
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�h�!�< 3�9� �  .�1�"+�[Wendt et. al. 2009], 

Eq.(2.65) h� �� &3� �EK 	F
#  .!1)��"�� ?�O�)+�
S<�� rj
��.  

 k�� N .��9� s�� ?�1�"E
� 38:j0�� ��v�� ��
�q# �W�
2.7.2 h� �b   

For an inviscid flow, [Wendt et. al. 2009], 

Eq.(2.65) remains the same, except the 

elements of the column vectors are 

simplified. Examining the conservation form 

of the inviscid equations summerized in 

Sect. 2.7.2, we find that  
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  For the numerical solution of an unsteady 

inviscid flow, once again the solution vector 

is U, and the dependent variables for which 

numbers are directly obtained are products 

wvu ρρρρ ,,,  and )2/( 2
Ve +ρ . For a 

steady inviscid flow, 0/ =∂∂ tU . 

Frequently, the numerical solution to such 

problems takes the form of ‘marching’ 

techniques; for example, if the solution is 

being obtained by marching in the x-

direction, then [Wendt et. al. 2009], Eq.(2.65) 

can be written as  

[Wendt], Eq. 2.66 
z
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Here, F becomes the ‘solution vector’, and the 

dependent variables for which numbers are 

obtained are wvu ρρρρ ,,,  and )2/( 2
Ve +ρ . 

From these dependent variables, it is still 

possible to obtain the primitive variables, 

although the algebra is more complex than in 

the previously discussed case. 

Notice that the governing equations when 

written in the form of [Wendt et. al. 2009], 
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Eq.(2.65), have no flow variables outside the 

single x,y,z, and t derivates. Indeed, the terms in 

[Wendt et. al. 2009], Eq.(2.65) have everything 

buried inside these derivates. The flow 

equations in the form of [Wendt et. al. 2009], 

Eq.(2.65) are said to be in strong conservation 

form. In contrast, examine the forms [Wendt et. 

al. 2009], Eq.(2.42a,b and c) and [Wendt et. al. 

2009], Eq.(2.64). These equations have a number 

of x,y and z derivates exipliticly appearing on 

the right –hand side. These are the weak 

conservation form of the equations.  

  The form of the governing equations giving by 

Eq. (2.65) is popular in CFD; let us explain why. 

In flow fields involving shock waves, there are 

sharp, discontinuous changes in the primitive 

flow-field variables p, p, u, T, etc., across the  

shocks. Many computations of flows with 

shocks are designed to have the shock waves 

appear naturally within the computational space 

as a direct result of the overall flow field 

solution, i.e. as a direct result of the general 

algorithm, without any special treatment to take 

care of the shocks themselves. Such approaches 

are called shock capturing methods. This is in 

contrast to the alternate approach, where shock 

waves are explicitly introduced into the flow-

field solution, the exact Rankine-Hugoniot 

relations for changes across a shock are used to 

relate the flow immediately ahead of and behind 

the shock, and the governing flow equations are 

used to calculate the remainder of the flow field. 

This approach is called the shock-fitting method. 

These two different approaches are illustrated in 

Figs. 2.8 and 2.9. In Fig.2.8, the computational 

domain for calculating the supersonic flow over 

the body extends both upstream and 

downstream of the nose. The shock wave is 

allowed to form within the computational 

domain as a consequence of the general flow-

field algorithm, 
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[Wendt et.al.2009], Fig.2.8: Mesh for the 

shock-capturing approach 

 without any special shock relations being introduced. 

In this manner, the shock wave is ̒captured̉ within the 

domain by means of the computational solution of the 

governing partial differential equations. Therefore, 

Fig. 2.8 is an example of the shock-capturing method. 

In contrast, Fig. 2.9 illustrates the same flow problem, 

except that now the computational domain is the flow 

between the between the shock and the body. The 

shock wave is introduced directly into the solution as 

an explicit discontinuity, and the standard oblique 

shock relations (the Rankine-Hugoniot relations) are 

used the freestream supersonic flow ahead of the 

shock to the flow computed by the partial differential 

equations downstream of the shock. Therefore, Fig. 

2.9 is an example of the shock-fitting method. There 

are advantages and disadvantages of both methods. 

For example, the shock-capturing method is ideal for 

complex flow problems involving shock waves for 

which we do not know either the location or number 

of shocks. Here, the shocks simply form within the 

computational domain as nature would have it. 

Moreover, this takes place without requiring any 

special treatment of the shock within the algorithm, 

and hence simplifies the computer programming. 

However, a disadvantage of this approach is that the 

shocks are generally smeared over a number of grid 

points in the computational mesh, and hence the 

numerically obtained shock thickness bears no 

relation what-so-ever to the actual physical shock 

thickness, and the precise location of the shock 

discontinuity is uncertain within a few mesh sizes. In 

contrast, the advantage of the shock-fitting method is 
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[Wendt et.al.2009], Fig.2.9: Mesh for 

the shock-fitting approach 

 That the shock is always treated as a discontinuity, and 

its location is well-defined numerically. However, for a 

given problem you have to know in advance 

approximately where to put the shock waves, and how 

many there are. For complex flows, this can be a distinct 

disadvantage. Therefore, there are pros and cons 

associated with both shock-capturing and shock-fitting 

methods, and both have been employed extensively in 

CFD. In fact, a combination of these two methods is 

used to predict the formation and approximate location 

of shocks, and then these shocks are fit with explicitly in 

those parts of a flow field where you know in advance 

they occur, and to employ a shock-capturing method 

for the remainder of the flow field in order to generate 

shocks that you cannot predict in advance. 

Again, what does all of this discussion have to do with 

the conservation form of the governing equations as 

given by Eq. (2.65)? Simply this. For the shock-

capturing method, experience has shown that the 

conservation form of the governing equations should be 

used. When the conservation form is used, the 

computed flow-field results are generally smooth and 

stable. However, when the non-conservation form is 

used for a shock-capturing solution, the computed 

flow-field results usually exhibit unsatisfactory spatial 

oscillations (wiggles) upstream and downstream of the 

shock wave, the shocks may appear in the wrong 

location and the solution may even become unstable. In 

contrast, for the shock-fitting method, satisfactory 

results are usually obtained for either form of the 
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equations-conservation or non-conservation. 

 Why is the use of the conservation form of the 

equations so important for the shock-capturing 

method? The answer can be see by considering the flow 

across a normal shock wave, as illustrated in Fig. 2.10. 

Consider the density distribution across the shock, as 

sketched in Fig. 2.10(a). Clearly, there is a discontinuous 

increase in p across the shock. If the non-conservation 

from of the governing equations were used to calculate 

this flow, where the primary dependent variables are 

the primitive variables such as p and p, then the 

equations would see a large discontinuity in the 

dependent variable p. This in turn would compound the 

numerical errors associated with the calculation of p. 

On the other hand, recall the continuity equation for a 

normal shock wave (see Refs.[1,3]): 

2211 uu ρρ =                                                                (2.67) 

 From Eq. (2.67), the mass flux, uρ , is constant across the 

shock wave, as illustrated in Fig. 2.10(b). The 

conservation form of the governing equations uses the 

product uρ  as a dependent variable, and hence the 

conservation form of the equations see no discontinuity 

in this dependent variable across the shock wave. In 

turn, the numerical accuracy and stability of the 

solution should be greatly enhanced. To reinforce this 

discussion, consider the momentum equation across a 

normal shock wave [1,3]: 
2

222

2

111 uu ρρρρ +=+                                                     (2.68) 

 As show in Fig. 2.10(c), the pressure itself is 

discontinuous across the shock ; however, from Eq. 

(2.68) the flux variable ( 2
uρρ + ) is constant across the 

shock. 
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[Wendt et. al. 2009], Fig.2.10: Variation 

of flow properties through a normal 

shock wave 

 This is illustrated in Fig. 2.10(d). Examining 

the inviscid flow equations in the conservation 

form given by Eq. (2.65), we clearly see that 

the quantity ( 2
uρρ + ) is one of the dependent 

variables. Therefore, the conservation form of 

the equations would see no discontinuity in 

this dependent variables across the shock. 

Although this example of the flow across a 

normal shock wave is somewhat simplistic, it 

serves to explain why the use of the 

conservation form of the governing equations 

are so important for calculations using the 

shock-capturing method. Because the 

conservation form uses flux variables as the 

dependent variables, and because the changes 

in these flux variables are either zero or small 

across a shock wave, the numerical quality of a 

shock-capturing method will be enhances by 
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the use of the conservation form in contrast to 

the non-conservation form, which uses the 

primitive variables as dependent variables. 

In summary, the previous discussion is one of 

the primary reasons why CFD makes a 

distinction between the two forms of the 

governing equations-conservation and non-

conservation. And this is why we have gone to 

great lengths in this chapter to derive these 

different forms, and why we should be aware 

of the differences between the two forms. 
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3 ��$%' 1 � ��f�8.+� 1 g���� )Incompressible Inviscid Flows( :  T�-5�� �����( ��f

 �����'� � 	G�'� 
��fh� a&Q)Source and Vortex Panel Methods(  

3.1 ����  

 ��
j0�� �� f� d�g h� �8��7 \�/:�� ��� N i1�"��)numerical analysis (� c!��<)flows (.�t�AT,� � 
)incompressible (.��9� � � )inviscid( . 1���� ��:�� .F!�t M�=0<! h� 2�G w��*��q�)finite-difference 

method (Jf� d�g h� �"� �� N ©Z��07 B�� Jc!��<�� 2� �)��� ��� �L  . i1q# ���� ��t ��)! 2���
 c!��<� .
7��� �UK� \)
% �� (��.�t�AT,� � )incompressible (� �.��9�  )inviscid( .  
 ��X�� H�� �%� ©Z��! �/:�� ���– (�<+� .������ � �
��� ?��t�� 	
� (�E0"� .���<% ��t )Source and 

Vortex Panel Methods( . B�� ?�K�v�� N (1�� �O�
� �E0"+�� .�7��F+� ��X�� 3� rj
�� ��X�� H��
 �F"�� ��� ��� � h����X�� ��/#1960  
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�t�+� ��t .!1�� .���<% ��t 3� ?�)numerical methods ( V��� � .E={ .���<% ()Z �� Q�0P
."!�7 ?��#)�
�)K.  

3.2 M$%' 1 � Mf�8.+� 1 ,����' �����1� �L$�1� i��  

�� 3t�AT,� oA�� h�!�<)incompressible flow ( .4�U�� h�!�7 )�)density ( .0��p).const=ρ.(  
� )T� �)/# �*�)fluid element ( .0��p .
0��)m = const. ( N i�` 3t�AT,� o� h�!�7)incompressible 

flow( k��<,� S� (�@�)� N )streamline .( lnL� ��0��
4 .0��p .4�U��� hy)volume ( )� 3"*�� )T"�� ��I
 r��p �T!� )V = const. .( hy �V

r
∇) V

r.��<�� 3�  ( 3EnL o�A0�� ��v!h��9�� ���� 	
� 3"*�� )T"� 
]0�, h� ��X0<,:  

0=∇V
r

    (3.1) 
∇\� ��� NABLA-Operator \ ./=
� .�s� )� � grad\� )� �.gradient  



49 

 3"*�� )T"�� �W�4 ��� �C � )fluid element (� w�T!� k��<,�� SR� (�@�)� N ;�j0! �+ ���! )streamline (
 h�!�<�� ��� ��0��
4)flow ( ����1 � l<!)irrotational .( .��<�� 2� �"! h� 2�G &c!��<�� 2� �)��� �W�I

)velocity ( \�!9��#)
K)potential (– «k l
"¬!  7
.  

φ∇=V
r

    (3.2) 

  

 
 

 .�1�"� h�� ��"¨ �WC(3.1) � (3.2)�� �/, :  
0=∇⋅∇ φ     

&��  

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7 2� �!9+ � ' [j
� �8,� ®�v�� )Anderson 1991.( 
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            (3.3)  

  
(3.3) .�1�"� 	E<# Laplace) Laplace’s equation( \�u N w���� .7���+�� (�)Ov+� ?�1�"+� �%� &

 .�{�!��� V!9�:��)mathematical physics(.  
 .�1�"� 2�)3.3 ( h� ��, c!��7)flows (.�t�AT,� � )incompressible (.��9� � � )inviscid ( l�̄¦j¬#

_ .�1�"Laplace) Laplace’s equation(.  
 �� .�1�"Laplace) Laplace’s equation ( .�X� 3�)linear(. 

 .�1�"+ .��)/� \)
% 2� 1�� �K V��� �)3.3 ( 1�9# h� 2�G)added (��$ �% °0�0<�� �"� �� . 

 2� �L .�7�7� .:<
4 i�¬! ��� �!�7 3t�AT,� o� h�)incompressible flow ( �h� )�:  
 h�!�<� �F"� ]�K�#3t�AT,� o�  �����1 �) irrotational flow, incompressible(  �E` h� 2�G

)synthesized ( .�7�7� c!��7 2�)elementary flows(  
�� �"� �� f� d�g hC �8��7 ��0��� .�7�7� c!��<)elementary flows(  l*s# B��)satisfy(  ��� .�1�"

Laplace) Laplace’s equation.( 

  Uniform flow 

xV∞=φ  

 

  Source flow 

  rln
2π

φ
Λ

=  

  
  Vortex flow 

  θ
π

φ
2

Γ
−=  

 
In [Wendt et. al. 2009 ] there are two methods described which use these elementary flows: 

• Non-lifting Flows Over Arbitrary Two-Dimensional Bodies: The Source Panel Method 

• Lifting Flows Over Arbitrary Two-Dimensional Bodies: The Vortex Panel Method 

Also the application “The Aerodynamics of Drooped Leading-Edge Wings Below and Above 

Stall“ is described. 

02 =∇ φ 
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4  ��j���'� 
��k�Dl�)Mathematical Properties ( 	
����  ������ 
1����)Fluid 

Dynamic Equations( 

4.1  ����)Introduction( 

 ��U�� k�
�� N r/
=07� B�� �*�)+� V����!1 2� .�7�7�� ?�1�"+�)Chapter 2 ( 3
{�:0�� ��v�� N ��� 3�
)differential form (
���0�� ��v�� �� 3)integral form( . 

.
U��: 
Integral form of the continuity equation. 

Eq. 2.23   

 
Partial differential form of the momentum equations 

Z�?5'� ��-[ 
1����  

  

Momentum equations 

(Non-conservation form – [Wendt 2009], Eqs. 2.36a-c) 

x-component: x

zxyxxx f
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  The governing equations in the form of partial 

differential forms (as [Wendt et.al.2009], Eqs. 

2.36 a-c, see Chapter 2.7) are by far the most 

prevalent form used in computational fluid 

dynamics (CFD). Therefore, before studying 

numerical methods for the solution of these 

equations, it is useful to examine some 

mathematical properties of partial differential 

equations themselves. Any valid numerical 

solution of the equations should exhibit the 

property of obeying the general mathematical 

properties of the governing equations. 

Examine the governing equations of fluid 

dynamics as derived in Chap.2. Note that in 

all cases the highest order derivates occur 

linearly, i.e. there are no products or 
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exponentials of the highest order derivates – 

they appear by themselves, multiplied by 

coefficients which are functions of the 

dependent variables themselves. Such a 

system of equations is called a quasilinear 

system. For example, for inviscid flows, 

examining the equations in Sect. 2.7.2 we find 

the highest order derivates are first order and 

all of them appear linearly. For viscid flows, 

examining the equations in Sect. 2.7.1 we find 

the highest order derivates are second order 

and all of them appear linearly. 

For this reason, in the next section, let us 

examine some properties of a system of 

quasilinear partial differential equations. In 

the process we will establish a classification of 

three types of partial differential equations – 

all three of which are encountered in fluid 

dynamics. 

4.2  m�D�� ��
%3� ��&j��5'� 
1�����)Classification of Partial Differential 

Equations( 

  For simplicity, let us consider a fairly simple 

system of quasilinear equations. They will not 

be the flow equations, but they are similar in 

some respects. Therefore, this section serves as 

a simplified example. 

Consider the system of quasilinear equations 

given below: 
                                 [Wendt et. al. 2009], Eq. (4.1a)
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                                 [Wendt et. al. 2009], Eq. (4.1b)22222 f
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  where u and v  are the dependent variables, 

functions of x and y, and the coefficients 

121212121 ,,,,,,,, fddccbbaa  and 2f  can be 

functions of uyx ,, and v .  

 Consider any point in the xy -plane. Let us 

seek the lines (or directions) through this 

point (if any exist) along which the derivates of 

u and v  are indeterminant, and across which 

may be discontinuous. Such lines are called 

characteristic lines. To find such lines, we 

assume that  are continuous, and hence  
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since u = u(x,y): dy
y

u
dx

x

u
du

∂

∂
+

∂

∂
=                         [Wendt et. al. 2009], Eq. (4.2a) 

since v = v (x,y): dy
y

v
dx

x

v
dv

∂

∂
+

∂

∂
=                         [Wendt et. al. 2009], Eq. (4.2b) 

 

  Equations [Wendt et. al. 2009], Eq. (4.1a and b) 

and [Wendt et. al. 2009], Eq. (4.2a and b) 

constitute a system of four linear equations 

with four unknowns ( xvyuxu ∂∂∂∂∂∂ /,/,/ , 

and yv ∂∂ / ). These equations can be written 

in matrix form as  



















=



















∂∂

∂∂

∂∂

∂∂



















dv

du

f

f

yv

xv

yu

xu

dydx

dydx

dcba

dcba

2

1

2222

1111

/

/

/

/

00

00                         [Wendt et. al. 2009], Eq. (4.3) 

  Let [ ]A  denote the coefficient matrix. 

[ ]A = 



















dydx

dydx

dcba

dcba

00

00

2222

1111

 

  Moreover, let A  be the determinant of [ ]A . 

From Cramer’s rule, if 0≠A , then unique 

solutions can be obtained for 

xvyuxu ∂∂∂∂∂∂ /,/,/ , and yv ∂∂ / . On the other 

hand, if 0=A , then xvyuxu ∂∂∂∂∂∂ /,/,/ , and 

yv ∂∂ /  are, at best, indeterminant. We are 

seeking the particular directions in the xy -

plane along which these derivates of u and v  

and indeterminant. Therefore, let us set 0=A , 

and see what happens.  

dydx

dydx

dcba

dcba

00

00

2222

1111

= 0 

V���  Hence 

  
[Wendt et. al. 2009], Eq. (4.4) 

  Divide [Wendt et. al. 2009], Eq. (4.4) by 2)(dx . 
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[Wendt et. al. 2009], Eq. (4.5) 

   

  Equation (4.5) is a quadratic equation in dy/dx. 

For any point in the xy-plane, the solution of 

Eq. (4.5) will give the slopes of the lines along 

which the derivatives of u and v  are 

indeterminant. These lines in the xy space along 

are called characteristic lines fo the system of 

equations given by Wendt et. al. 2009], Eq. (4.1a 

and 4.1b). 

 

  In Eq. (4.5), let  

 

  Then Eq. (4.5) can be written as 

0

22

=+







+








c

dx

dy
b

dx

dy
a            [Wendt et. al. 2009], Eq. (4.6) 

  Hence from the quadratic formula: 

a

acbb

dx

dy

2

42 −±−
=            [Wendt et. al. 2009], Eq. (4.7) 

  Equation (4.7) gives the direction of the 

characteristic lines through a given xy point. 

These lines have a different nature, depending 

on the value of the discriminant in Eq. (4.7). 

Denote the dicriminant by D. 

acbD 42 −=                 [Wendt et. al. 2009], Eq. (4.8) 

  The characteristic lines may be real and distinct, 

real and equal, or imaginary, depending on the 

value of D. Specially: 

  If D>0: Two real and distinct lines exist through 

each point in the xy-plane. When this is the 

case, the system of equations given by 

[Wendt et. al. 2009], Eqs. (4.1 a and b) is 

called hyperbolic. 

If D=0: One real characteristic exists. Here the 

system of equations given by [Wendt et. al. 

2009], Eqs. (4.1 a and b) is called parabolic. 
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If D<0: The characteristic lines are imaginary. 

Here the system of equations given by 

[Wendt et. al. 2009], Eqs. (4.1 a and b) is 

called elliptic. 

  The classification of quasilinear PDEs as either 

elliptic, parabolic or hyperbolic is common in the 

analysis of such equations. These three classes 

of equations have totally different behaviour. 

The origin of the words elliptic, parabolic and 

hyperbolic is simply a direct analogy with the 

case for conic sections. The general equations 

for a conic section from analytic geometry is 

022 =+++++ feydxcybxyax  

  Where, if 

acb 42 − > 0, the conic is a hyperbola 

acb 42 − = 0, the conic is a parabola 

acb 42 − < 0, the conic is a ellipse 

  We note, that for hyperbolic PDEs, the fact, that 

two real and distinct characteristics exist, 

allows the development of a method for the 

ready solution of these equations. If we return 

to [Wendt et. al. 2009], Eq. (4.3), and actually 

attempt to solve for, say yu ∂∂ / , using Cramer’s 

rule, we have 

0

0
/ ==∂∂

A

N
yu  

  where the numerator determinant is 

dydxdv

dudx

dcfa

dcfa

N

0

00

2222

1111

=               [Wendt et. al. 2009], Eq. (4.9) 

  The reason why N  must be zero is that yu ∂∂ /  

is indeterminant, of the form 0/0. Since A  has 

already been made to zero, then N  must be 

zero to allow yu ∂∂ /  to be indeterminant. The 

expansion of [Wendt et. al. 2009], Eq. (4.9) will 

lead to equations involving the flow field 

variables which are ordinary differential 

equations, and in some cases are algebraic 

equations; these equations obtained from 

[Wendt et. al. 2009], Eq. (4.9) are called the 

compatibility equations. They hold only along 
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the characteristic lines. This is the essence of 

solving the original hyperbolic PDE: simply 

integrate simpler, ordinary differential 

equations (the compatibility equations) along 

the the characteristic lines in the xy-plane. This 

is called the method of characteristics. This 

method is highly developed for the solution of 

inviscid supersonic flows, for which the system 

of governing flow equations is hyperbolic. The 

method of characteristics is a classical technique 

for the solution of inviscid supersonic flows, 

and therefor it will not be considered in this 

book about CFD in any detail. 

4.3 General Behaviour of the different Classes of PDEs and their 

Relation to Fluid Dynamics 

  In this section we simply discuss, without 

proof, some of the behaviour of hyperbolic, 

parabolic and elliptic PDEs, and relate this 

behaviour to the solution of problems in fluid 

dynamics. 

4.3.1 Hyperbolic Equations 

  For hyperbolic equations, information at a 

given point P influences only those regions 

between the advancing characteristics. For 

example, examine Fig.4.1, which is sketched 

for a two-dimensional problem with two 

independent space variables. 

Point P is located at a given (x,y). Consider the 

left- and right-running characteristics as 

shown in Fig. 4.1. 
 

 

Fig. 4.1 Domain and 

boundaries for the solution of 

hyperbolic equations. Two-

dimensional steady flow. 

  Information at point P influences only the 

shaded region – the region labelled I between 

the two advancing characteristics through P. 
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This has a collorary effect on boundary 

conditions for hyperbolic equations. Assume 

that the x-axis is a given boundary condition 

for the problem, i.e. the dependent variables u 

and v are known along the x-axis. Then the 

solution can be obtained by ‘marching 

forward’ in the distance y, starting from the 

given boundary. However, the solution for u 

and v at point P will depend only on the part 

of the boundary between a and b, as shown in 

Fig.4.1. Information at point c, which is 

outside the interval ab, is propagated along 

characteristics through c, and influences only 

region II. Point P is outside region II, and 

hence daes not feel information from point c. 

For this reason, point P depends on only that 

part of the boundary which is intercepted by 

and included between the two retreating 

characteristic lines through point P, i.e. 

interval ab. 

In fluid dynamics, the following types of 

flows are governed by hyperbolic PDEs, and 

hence exhibit the behaviour described above: 

Steady, inviscid supersonic flow. If the flow in 

two-dimensional, the behaviour is like this 

discussed in Fig. 4.1. If the flow in three-

dimensional, there are characteristic surfaces 

in xyz space, as sketched in Fig. 4.2. Consider 

point P at a given (x,y,z) location. Information 

at P influences the shaded volume within the 

advancing characteristic surface. In addition, 

if the x-y plane is a boundary surface, then 

only that portion of the boundary shown as 

the cross-hatched area in the x-y plane, 

intercepted by the retreating characteristic 

surface, has any effect on P. In Fig. 4.2, the 

dependent variables are solved by starting 

with the data given in the xy-plane, and 

‘marching’ in the z-direction. For an inviscid 

supersonic flow problem, the general flow 

direction would also be the z-direction. 
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Fig. 4.2 Domain and boundaries 

for the solution of hyperbolic 

equations. Three-dimensional 

steady flow. 

  Unsteady inviscid compressible flow. For unsteady 

one- and two-dimensional inviscid flows, the 

govering equations are hyperbolic, no matter 

whether the flow is locally subsonic or 

supersonic. Here, time is the marching direction. 

For one-dimensional unsteady flow, consider a 

point P an the (x,t) plane shown in Fig. 4.3. Once 

again, the region influenced by P is the shaded 

area between the two advancing characteristics 

through P, and the interval ab is the only portion 

of the boundary along the x-axis upon which the 

solution at P depends.  

For two-dimensional unsteady flow, consider a 

point P in the (x,y,t) space as shown in Fig. 4.4. 

Starting with known initial data in the xy-plane, 

the solution ‘marches’ forward in time. 

 

 

Fig. 4.3 Domain and boundaries for 

the solution of hyperbolic equations. 

One-dimensional steady flow. 

 

 

Fig. 4.4 Domain and 

boundaries for the solution of 

hyperbolic equations. Two-

dimensional unsteady flow. 
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4.3.2 Parabolic Equations 

  For parabolic equations, information at point 

P in the xy-plane influences the entire region 

of the plane to one side of P. This is sketched 

in Fig. 4.5, where the single characteristic line 

through point P is drawn. Assume the x- and 

y-axes are boundaries; the solution at P 

depends on the boundary conditions along 

the entire y axis, as well as on that portion of 

the x-axis from a to b. Solutions to parabolic 

equations are also ‘marching’ solutions; 

starting with boundary conditions along both 

the x- and y-axes, the flow-field solution is 

obtained by ‘marching’ in the general x-

direction. 

 

 

Fig. 4.5 Domain and 

boundaries for the solution of 

parabolic equations in two 

dimensions. 

  In fluid dynamics , there are reduced forms of 

the Navier-Stokes equations which exhibit 

parabolic-type behaviour. If the viscous stress 

terms involving derivatives with respect to x 

are ignored in these equations, we obtain the 

‘parabolized’ Navier-Stokes equations, which 

allows a solution to march downstream in the 

x-direction, starting with some prescribed 

data along the x- and y-axes. A further 

reduction of the Navier-Stokes equations for 

the case of high Reynolds numbers leads to 

the well-known boundary layer equations. 

These boundary layer equations exhibit the 

parabolic behaviour shown in Fig. 4.5. 
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4.3.3 Elliptic Equations 

  For elliptic equations, information at point P 

in the xy-plane influences all other regions of 

the domain. This is sketched in Fig. 4.6, which 

shows a rectangular domain. Here, the 

domain is fully closed, surrounded by the 

closed boundary abcd. For elliptic equations, 

because point P influences all points in the 

domain, then in turn the solution at point P is 

influenced by the entire closed boundary abcd. 

Therefore, the solution at point P must be 

carried out simultaneously with the solution 

at all other points in the domain. This is in be 

in stark contrast to the ‘marching’ solutions 

germaine to hyperbolic and parabolic 

equations.  

In fluid dynamics steady, subsonic, inviscid 

flow is governed by elliptic equations. As a 

sub-case, this also includes incompressible 

flow (which theoretically implies that the 

Mach number is zero). Hence, for such flows, 

physically boundary conditions must be 

applied over a closed boundary that totally 

surrounds the flow, and the flow-field 

solution at all points in the flow must be 

obtained simultaneously, because the solution 

at one point influences the solution at all other 

points. In terms of Fig. 4.6, boundary 

conditions must be applied over the entire 

boundary abcd. These boundary conditions 

can take the following forms: 

A specification of the dependent variables u and 

v along the boundary. This type of boundary 

conditions is called the Dirichlet condition. 

A specification of derivatives of the dependent 

variables u and v , such as yu ∂∂ /  along the 

boundary. This type of boundary conditions is 

called the Neumann condition. 
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Fig. 4.6 Domain and 

boundaries for the solution of 

elliptic equations in two 

dimensions. 

4.3.4 
�*(9�� i��  

  At this stage it would be worthwhile for the 

student to examine the actual, closed-form 

solution to some linear PDE of the elliptic, 

parabolic and hyperbolic types. Numerous 

classical solutions can be found for example in 

Refs. [2] and [3]. 

 

4.3.5 Well-Posed Problems  

  In the solution of PDEs it is sometimes easy to 

attempt a solution using incorrect or 

insufficient boundary and initial conditions. 

Such an ‘ill-posed’ problem will usually lead 

to spurious (�±�9�) results. 

 Therefor we define a well-posed problem as 

follows: If the solution to a PDE exists and is 

unique, and if the solution depends 

continuously upon the initial and boundary 

conditions, then the problem is well-posed. 
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5 Chapter 5: Discretization of Partial Differential Equations 

5.1 ���� 

  Analytical solutions of partial differential 

equations involve closed-form expressions 

which give the variation of the dependent 

variables continuously throughout the 

domain. In contrast, numerical solutions can 

give answers at only discrete points in the 

domain, called grid points. 

For example, consider Fig. 5.1, which shows a 

section of a discrete grid in the xy-plane. For 

convenience, let us assume that the spacing of 

the grid points in the x-direction is uniform, 

given by Δx, and that the spacing in y-

direction is also uniform, given by Δy, as 

shown in Fig. 5.1.In general, Δx and Δy are 

different. However, the vast majority of CFD 

applications involve numerical solutions on a 

grid which involves uniform spacing in each 

direction, because this greatly simplifies the 

programming of the solution, saves storage 

space and usually results in greater accuracy. 

This uniform spacing does not have to occur 

in physical xy space; as is frequently done in 

CFD, the numerical calculations are carried 

out in a transformed computational space 

which has uniform spacing in the transformed 

independent variables, but which corresponds 

to non-uniform spacing in the physical plane. 

These matters are discussed in Chapter 6. In 

any event, in this chapter we will assume 

uniform spacing in each coordinate direction, 

but not necessarily equal spacing for both 

directions, i.e. we will assume Δx and Δy to be 

constants, but that Δx does not have to equal 

Δy. 

Returning to Fig. 5.1, the grid points are 

identified by an index i which runs in the x-

direction, and an index j which runs in the y-

direction. Hence, if (i,j) is the index for point P 

in Fig.5.1, then the point immediately to the 

right of P is labelled as (i+1,j), the point direct 

above is (i,j+1) etc. 

The method of finite differences is widely used in 

CFD, and therefore most of this chapter will 
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be devoted to matters concerning finite 

differences. The philosophy of finite 

differences is to replace the partial derivatives 

appearing in the governing equations of fluid 

dynamics. With algebraic difference quotients, 

yielding a system of algebraic equations 

which can be solved for the flow-field 

variables at the specific, discrete grid points in 

the flow (as shown in Fig. 5.1). Let us now 

proceed to derive some of the more common 

algebraic difference quotients used to 

discretize the PDEs. 

 

 

Fig. 5.1 Discrete grid points 

5.2 Derivation of Elementary Finite Difference Quotients 

  Finite difference representations of derivatives 

are based on Taylor’s series expansions.For 

example, if ui, j denotes the x-component of 

velocity at point (i, j), then the velocity ui+1, j at 

point (i + 1, j) can be expressed in terms of a 

Taylor’s series expanded about point (i, j), as 

follows: 

 

  Equation (5.1) is mathematically an exact 

expression for ui+1,j if: 
(a) the number of terms is infinite and the series 

converges, 
(b) and/or Δx→0. 

For numerical computations, it is impractical to 

carry an infinite number of terms in Eq. (5.1). 

Therefore, Eq. (5.1) is truncated. For example, if 

terms of magnitude(Δx)3 and higher order are 

neglected, Eq. (5.1) reduces to 
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  We say that Eq. (5.2) is of second-order 

accuracy, because terms of order (Δx)3 and 

higher have been neglected. If terms of order 

(Δx)2 and higher are neglected,we obtain from 

Eq. (5.1), 

 

  where Eq. (5.3) is of first-order accuracy. In Eqs. 

(5.2) and (5.3), the neglected higher-order terms 

represent the truncation error in the finite series 

representation. For example, the truncation 

error for Eq. (5.2) is 

 

  and the truncation error for Eq. (5.3) is 

 

  The truncation error can be reduced by: 
(a) Carrying more terms in the Taylor’s series,   

                           Eq. (5.1). This leads to higher-

order accuracy in the representation of ui+1,j. 
(b) Reducing the magnitude of Δx. 

 Let us return to Eq. (5.1), and solve for                

( ∂u/∂x )i,j 

 
  In Eq. (5.4), the symbol O(Δx) is a formal 

mathematical notation which represents‘terms 

of-order-of Δx’. Eq. (5.4) is more precise 

notation than Eq. (5.3), which involves            

the ‘approximately equal’ notation; in Eq. (5.4) 
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the order of magnitude of the truncation error 

is shown explicitly by the O notation. We now 

identify the firstorder-accurate difference 

representation for the derivative (∂u/∂x)i,j 

expressed by Eq. (5.4) as a first-order forward 

difference, repeated below 

 

  Let us now write a Taylor’s series expansion for 

ui−1,j, expanded about ui,j. 

 

 

 

 

 

 

 

 
  Solving for (∂u/∂x)i,j, we obtain 

 

  Equation (5.6) is a first order rearward 

difference expression for the derivative(∂u/∂x) 

at grid point (i, j). 
Let us now subtract Eq. (5.5) from (5.1). 

 

  Solving Eq. (5.7) for (∂u/∂x)i,j, we obtain 
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  Equation (5.8) is a second order central 

difference for the derivative (∂u/∂x) at 
grid point (i, j).To obtain a finite-difference 

expression for the second partial derivative 

(∂2u/∂x2)i,j, first recall that the order-of 

magnitude term in Eq. (5.8) comes from Eq. 

(5.7),and that Eq. (5.8) can be written 

 

  Substituting Eq. (5.9) into (5.1), we obtain 

 
  Solving Eq. (5.10) for (∂2u/∂x2)i,j, we obtain 

 

  Equation (5.11) is a second-order central second 

difference for the derivative (∂2u/∂x2) at grid 

point (i, j). Difference expressions for the          

y-derivatives are obtained in exactly the same 
fashion. The results are directly analogous to 

the previous equations for the x-derivatives. 
They are: 
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  It is interesting to note that the central second 

difference given for example by Eq. (5.11) can 

be intepreted as a forward difference of the first 

derivatives, with rearward differences used for 

the first derivatives. Dropping the O notation 

for convenience, we have 

 

  Equation (5.12) is the same difference quotient 

as Eq. (5.11). The same philosophy can be used 

to quickly generate a finite difference quotient 
for the mixed derivative (∂2u/∂x∂y) at grid point 

(i, j). For example, 
 

  In Eq. (5.13), write the x-derivative as a central 

difference of the y-derivatives, and then cast the 

y-derivatives also in terms of central 

differences. 
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  Many other difference approximations can be 

obtained for the above derivatives ,as well as 

for derivatives of even higher order. The 

philosophy is the same. For a detailed 

tabulation of many forms of difference 

quotients, see pages 44 and 45 of 
Ref. [1]. What happens at a boundary? What 

type of differencing is possible when we have 

only one direction to go, namely, the direction 

away from the boundary? For example, 

consider Fig. 5.2, which illustrates a portion of 

the boundary, with the yaxis perpendicular to 

the boundary. Let grid point 1 be on the 

boundary, with points 2 and 3 a distance Δy 

and 2Δy above the boundary respectively.We 

wish to construct a finite difference 

approximation for ∂u/∂y at the boundary. It is 

easy to construct a forward difference as 

 

  which is of first-order accuracy. However, how 

do we obtain a result which is of second-order 

accuracy? Our central difference in Eq. (5.8) 

fails us because it requires another point 

beneath the boundary, such as illustrated as 

point 2_ in Fig. 5.2. Point 2_is outside the 

domain of computation, and we generally have 

no information about u at this point. In the 

early days of CFD, many solutions attempted to 

sidestep this problem by assuming that        

u2_= u2. This is called the reflection boundary 
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condition. In most cases it does not make 

physical sense, and is just as inaccurate,if not 

more so, than the forward difference given by 

Eq. (5.15).So we ask the question again, how do 

we find a second-order accurate finitedifference 
at the boundary? The answer is simple, and it 

illustrates another method of deriving finite-

difference quotients. Assume that at the 

boundary u can be expressed by the polynomial 
                                                   u = a+by+cy2                                                (5.16) 

  Applied to the grid points in Fig. 5.2, Eq. (5.16) 

yields 
u1 = a 

u2 = a+bΔy+c(Δy)2 

u3 = a+b(2Δy)+c(2Δy)2 
  Solving this system for b: 

 
  Returning to Eq. (5.16), and differentiating: 

 

  Equation (5.18), evaluated at the boundary 

where y = 0, yields 

 

  Combining Eqs. (5.18) and (5.19), we obtain 

 

  It remains to show the order-of-accuracy of Eq. 

(5.20). Consider a Taylor’s series expansion 

about the point 1. 

 

  Compare Eqs. (5.21) and (5.16). Our assumed 

polynomial expression in Eq. (5.16) is the same 

as using the first three terms in the Taylor’s 

series. Hence,Eq. (5.16) is of O(Δy)3. In forming 

the derivative in Eq. (5.20), we divided by Δy, 
which then makes Eq. (5.20) of O(Δy)2.        

Thus, we can write from Eq. (5.20) 
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Fig. 5.2 Grid points at a 
boundary 

  This is our desired second-order-accurate 

difference quotient at the boundary.Both Eqs. 

(5.15) and (5.22) are called one-sided 

differences, because they express a derivative at 

a point in terms of dependent variables on only 

one side of the point. Many other one-sided 

differences can be formed, with higher degrees 

of accuracy,using additional grid points to one 

side of the given point. It is not unusual to see 

four- and five point one-sided differences 

applied at a boundary. 

 

 

5.3 Basic Aspects of Finite-Difference Equations 

 

  The essence of finite-difference solutions in 

CFD is to use the difference quotients derived 

in Sect. 5.2 (or others that are similar) to replace 

the partial derivatives in the governing flow 

equations, resulting in a system of algebraic 

difference equations for the dependent 

variables at each grid point. In the present 

section, we examine some of the basic aspects 

of a difference equation.Consider the following 

model equation, in which we assume that the 

dependent variable u is a function of x and t. 

 

  We choose this simple equation for 

convenience; at this stage in our discussions 
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there is no advantage to be obtained by dealing 

with the much more complex flow equations. 

The basic aspects of finite-difference equations 

to be examined in this section can just as well 

be developed using Eq. (5.23). It should be 

noted that Eq. (5.23) is parabolic. 
If we replace the time derivative in Eq. (5.23) 

with a forward difference, and the spatial 

derivative with a central difference, the result 

is: 

 

  In Eq. (5.24), some common notation is used for 

the difference of the time derivative. The index 

for time usually appears as a superscript in 

CFD, where n denotes conditions at time t,(n+1) 

denotes conditions at time (t+Δt), and so forth. 

The subscript still denotes the grid point 

location; for the one spatial dimension 

considered here, clearly we need only one 

index, i. 
Question: What is the truncation error for the 

complete finite-difference equation? 
Obviously, there must be a truncation error 

because each one of the finitedifference 

quotients has its own truncation error. Let us 

address this question. Combining Eqs. (5.23) 

and (5.24), and explicitly writing the truncation 

errors associated with the difference quotients 

(from Eqs. (5.4) and (5.10)), we have 

 

  Examining Eq. (5.25), on the left-hand side is 

the original partial differential equation, the 

first two terms on the right-hand side are the 

finite difference representation of this equation 

and the terms in the square brackets are the 

truncation error for the complete equation. 

Note that the truncation error for this 

representation is O[Δt, (Δx)2]. 
Does the finite-difference equation reduce to 
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the original differential equation as the number 

of grid points goes to infinity, i.e. as Δx → 0 and 

Δt → 0? Examining Eq. (5.25), we note that the 

truncation error approaches zero, and hence the 

difference equation does indeed approach the 

original differential equation. When this is the 

case, the finite-difference representation of the 

partial differential equation is said to be 

consistent. The solution of Eq. (5.24) takes the 

form of a ‘marching’ solution in steps of time. 

(Recall from Sect. 4.3.2 that such marching 

solutions are a characteristic of parabolic 

equations.) Assume that we know the 

dependent variable at all x at some instant in 

time, say from given initial conditions. 

Examining Eq. (5.24), we see that it contains 

only one unknown, namely u jn+1 .                       

In this fashion, the dependent variable 
at time (t +Δt) can be obtained explicitly from 

the known results at time t, i.e. u jn+1 
is obtained directly from the known values unj+1 

, unj, and unj-1. This is an example of an explicit 

finite-difference solution. As a counter example, 

let us be daring and return to the original 

partial differential equation given by Eq. (5.23). 

This time, we write the spatial differences on 

the right-hand side in terms of average 

properties between n and (n+1), that is 

 

  The differencing shown in Eq. (5.26) is called 

the Crank-Nicolson form. Examine Eq. (5.26) 

closely. The unknown uin+1 is not only expressed 

in terms of the known quantities at time index 

n, namely uni+1,uni , and uni−1, but also in terms of 

unknown quantities at time index n+1, namely 

un+1i+1 and un+1i−1 . Hence, Eq. (5.26) applied at a 
given grid point i cannot by itself result in the 

solution for u in+1 . Rather, Eq. (5.26) must be 

written at all grid points, resulting in a system 

of algebraic equations from which the 

unknown  u in+1 for all i can be solved 

simultaneously. This is an example of an 

implicit finite-difference solution. Because they 

deal with the solution of large systems of 

simultaneous linear algebraic equations,implicit 
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methods are usually involved with the 

manipulation of large matrices. The relative 

major advantages and disadvantages of these 

two approaches are summarized as follows. 
1. Explicit approach. 

 
   (a) Advantage. Relatively simple to set up and 

program. 
   (b) Disadvantage. In terms of our above 

example, for a given Δx, Δt must be less than 

some limit imposed by stability constraints. In 

many cases, Δt must be very small to maintain 

stability; this can result in long computer 

running times to make calculations over a given 

interval of t. 
2. Implicit approach. 

  (a) Advantage. Stability can be maintained  

over much larger values of Δt, hence using 

considerably fewer time steps to make 

calculations over a given interval of t. This 

results in less computer time. 
  (b) Disadvantage. More complicated to set up 

and program. 
  (c) Disadvantage. Since massive matrix 

manipulations are usually required at each time 

step, the computer time per time step is much 

larger than in the explicit approach. 
  (d) Disadvantage. Since large Δt can be taken, 

the truncation error is larger, and the use of 

implicit methods to follow the exact transients 

(time variations of the independent variable) 

may not be as accurate as an explicit approach. 
However, for a time-dependent solution in 

which the steady state is the desired result, this 

relative time-wise inaccuracy is not important. 
 

During the period 1969 to about 1979, the vast 

majority of practical CFD solutions involving 

‘marching’ solutions (such as in the above 

example) employed explicit methods. Today, 

they are still the most straightforward methods 

for flow field solutions. However, many of the 

more sophisticated CFD applications—those 
requiring very closely-spaced grid points in 

some regions of the flow—would demand 
inordinately large computer running times due 

to the small marching steps required. This has 
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made the advantage listed above for implicit 

methods very attractive, namely the ability to 

use large marching steps even for a very fine 

grid. For this reason, implicit methods are 

today the major focus of CFD applications. 

5.3.1 A General Comment 

  It is clear that finite-difference solutions appear 

to be philosophically straightforward jus 

replace the partial derivatives in the governing 

equations with algebraic difference quotients, 

and grind away to obtain solutions of these 

algebraic equations at each grid point. 

However, this impression is misleading. For 

any given application, there is no guarantee 

that such calculations will be accurate, or even 
stable, under all conditions. Moreover, the 

boundary conditions for a given problem 
dictate the solution, and therefore the proper 

treatment of boundary conditions within the 

framework of a particular finite-difference  

technique is vitally important.For these reasons, 

finite-difference solutions of various  

aerodynamic flow fields are by no means 

routine. Indeed, much of computational fluid 

dynamics today is still more of an art than a 

science; each different problem usually requires 

thought and originality in its solution. 

However, a great deal of research in applied 

mathematics is now being devoted to CFD, and 

the next decade should see a major expansion 

in our understandingof the discipline, as well 

,as the development of more improved efficient 

algorithms.1 

 

5.4 Errors and an Analysis of Stability 

 

  At the end of the last section, we stated that no 

guarantee exists for the accuracy and stability 

of a system of finite-difference ,equations under 

all conditions. However for linear equations 

there is a formal way of examining the accuracy 

and stability and these ideas at least provide 
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guidance for the understanding of the  

behaviour of the more complex non-linear 

system that is our governing flow equations. In 

this section we introduce some of these ideas, 

applied to simple linear equations. The material 

in this section is patterned somewhat after 

section 3–6 of the excellent new book on CFD 

by Dale Anderson, John Tannehill and Richard 

Pletcher (Ref. [1]) which should be consulted 

for more details.Consider a partial differential 

equation, such as for example Eq. (5.23). The 

numerical solution of this equation is 

influenced by two sources of error: 

1 .Discretization error. The difference between 

the exact analytical solution of the 
partial differential equation (for example, Eq. 

(5.23)) and the exact (round-off free) solution of 

the corresponding difference equation (for 

example, Eq. (5.24)). 
From our previous discussion, the 

discretization error is simply the truncation 
error for the difference equation plus any errors 

introduced by the numerical treatment of the 

boundary conditions. 

2 .Round-off error. The numerical error 

introduced after a repetitive number of 
calculations in which the computer is 

constantly rounding the numbers to some 

significant figure. 
If we let 

A = analytical solution of the partial differential 

equation 
D = exact solution of the difference equation 

N = numerical solution from a real computer 

with finite accuracy 
then , 

                                                    Discretization error = A−D 
                             Round-off =ε = N –D                                         (5.27)  

  From Eq. (5.27), we can write 

                                                    N = D+ε                                                              (5.28) 
  where again ε is the round-off error, which for 

the remainder of our discussion in this section, 

we will simply call “error” for brevity. The 
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numerical solution N must satisfy the 

difference equation. Hence from Eq. (5.24), 

 
  By definition, D is the exact solution of the 

difference equation, hence it exactly satisfies: 

 

  Subtracting Eq. (5.30) from (5.29), 

 

  From Eq. (5.31), we see that the error ε also 

satisfies the difference equation.We now 

consider aspects of the stability of the difference 

equation, Eq. (5.24). If errors εi are already 

present at some stage of the solution of this 

equation (as they always are in any real 

computer solution), then the solution will be 

stable if the εi’s shrink, or at best stay the same, 

as the solution progresses from step n to n+1; 

on the other hand, if the εi’s grow larger during 

the progression of the solution from steps n to 

n+1, then the solution is unstable. That is, for a 

solution to be stable, 

 

  For Eq. (5.24), let us examine under what 

conditions Eq. (5.32) holds.Assume that the 

distribution of errors along the x-axis is given 

by a Fourier series in x, and that the time-wise 

variation is exponential in t, i.e. 

 

  where km is the wave number and where the 

exponential factor a is a complex number. Since 

the difference equation is linear, when Eq. 

(5.33) is substituted into Eq. (5.31) the 

behaviour of each term of the series is the same 

as the series itself. Hence, let us deal with just 

one term of the series, and write 
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  Substitute Eq. (5.34) into Eq. (5.31), 

 
  Divide Eq. (5.35) by eat eikmx. 

 
  Recalling the identity that 

 

  Equation (5.36) can be written as 

 

  Recalling another trigonometric identity that 

 

  Equation (5.37) finally becomes 

 

  From Eq. (5.34), 

 

  Combining Eqs. (5.39), (5.38) and (5.32), we 

have 
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  Equation (5.40) must be satisfied to have a 

stable solution, as dictated by Eq. (5.32). In Eq. 

(5.40) the factor 

 

  is called the amplification factor, and is denoted 

by G. Evaluating the inequality in Eq. (5.40), 

namely G ≤ 1, we have two possible situations 

which must hold simultaneously: 

 

 

 

 

 

 

 

 

  Since Δt/(Δx)2 is always positive, this condition 

always holds. 

 

  For the above condition to hold, 

 

  Equation (5.41) gives the stability requirement 

for the solution of the difference equation, Eq. 

(5.24), to be stable. Clearly, for a given Δx, the 

allowed value of Δt must be small enough to 

satisfy Eq. (5.41). Here is a stunning example of 

the limitation placed on the marching variable 

by stability considerations for explicit finite 
difference models. As long as Δt/(Δx)2 ≤ 1/2, the 

error will not grow for subsequent marching 

steps in t, and the numerical solution will 
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proceed in a stable manner. On the other hand, 

if Δt/(Δx)2 > 1/2, then the error will 

progressively become larger, and will 

eventually cause the numerical marching 

solution to ‘blow up’ on the computer.The 

above analysis is an example of a general 

method called the von Neuman stability 

method, which is used frequently to study the 

stability properties of linear difference 

quations. Let us quickly examine the stability 

characteristics of another simple equation, this 

time a hyperbolic equation. Consider the first 

order wave equation: 

 

  Let us replace the spatial derivative with a 

central difference (see Eq. (5.8)). 

 

  Let us replace the time derivative with a first 

order difference, where u(t) is represented by 

an average value between grid points (i+1) and 

(i−1), i.e. 

 
  Substituting Eqs. (5.43) and (5.44) into (5.42), we 

have 

 

  Combining Eqs. (5.18) and (5.19), we obta The 

differencing used in the above equation, where 

Eq. (5.44) is used to represent the time 

derivative, is called the Lax method, after the 

mathematician Peter Lax who first proposed it. 

If we now assume an error of the form          

εm(x, t) = eateikmt as done previously, and 

substitute this form into Eq. (5.45), the 
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amplification factor becomesin 
                                             G = cos(kmΔx)  − iC sin(kmΔx)                                           (5.46) 

  where C = c.Δt/Δx . The stability requirement is 

|eat| ≤ 1,which when applied to Eq. (5.46) yields 

 

  In Eq. (5.47), C is called the Courant number. 

This equation says that Δt ≤ Δx/c for the 

numerical solution of Eq. (5.45) to be stable. 

Moreover, Eq. (5.47) is called the Courant–

Friedrichs–Lewy condition, generally written as 

the CFL condition. It is an important stability 

criterion for hyperbolic equations .                     

Let us examine the physical significance of the 

CFL condition. Consider the second 
order wave equation 

 

  The characteristic lines for this equation (see 

Sect. 4.2) are given by 

 

  and are sketched in Fig. 5.3(a) and (b). In both 

parts (a) and (b) of Fig. 5.3, let point b be the 

intersection of the right-running characteristic 

through grid point (i − 1) and the left-running 

characteristic through grid point (i+1). For Eq. 

(5.48), the CFL condition as given in Eq. (5.47) 

holds as the stability criterion. Let ΔtC=1 denote 

the value of Δt given by Eq. (5.47) when C = 1. 

Then ΔtC=1 = Δx/c, and the intersection point b is 

therefore a distance ΔtC=1 above the x-axis, as 

sketched in Figs. 5.3(a) and (b). Now assume 

that C < 1, which is the case sketched in Fig. 

5.3(a). Then from Eq. (5.47), ΔtC<1 <ΔtC=1, as 

shown in Fig. 5.3(a). Let point d correspond to 

the grid point at point i, existing at time 

(t+ΔtC<1). Since properties at point d are 

calculated numerically from the difference 

equation using grid points (i−1) and (i+1), the 
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numerical domain for point d is the triangle adc 

shown in Fig. 5.3(a). The analytical domain for 

point d is the shaded triangle in Fig. 5.3(a), 

defined by the characteristics through point d. 

Note that in Fig. 5.3(a) the numerical domain of 

point d includes the analytical domain. In 

contrast, consider the case shown in Fig. 5.3(b). 

Here, C > 1. Then, from Eq. (5.47), ΔtC>1 > ΔtC=1, 

as shown in Fig. 5.3(b). Let point d 

 Fig. 5.3 Illustration of the 
physical significance of the 

CFL condition 

  in Fig. 5.3(b) correspond to the grid point i, 

existing at time (t+ΔtC>1). Since properties at 

point d are calculated numerically from the 

difference equation using grid points (i−1) and 

(i+1), the numerical domain for point d is the 

triangle adc shown in Fig. 5.3(b). The analytical 

domain for point d is the shaded triangle in Fig. 

5.3(b),defined by the characteristics through 

point d. Note that in Fig. 5.3(b), the numerical 
domain does not include all of the analytical 

domain, and it is this condition which leads to 

unstable behaviour. Therefore, we can give the 

following physical interpretation of the CFL 

condition: 
 

For stability, the computational domain must 

include all of the analytical domain. 
The above considerations dealt with stability. 

The question of accuracy, which is sometimes 

quite different, can also be examined from the 

point of view of Fig. 5.3. Consider a stable case, 

as shown in Fig. 5.3(a). Note that the analytic 

domain of dependence for point d is the shaded 

triangle in Fig. 5.3(a). From our discussion in 
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Chap. 4, the properties at point d theoretically 

depend only on those points within the shaded 

triangle. However, note that the numerical grid 

points (i−1) and (i+1) are outside the domain of 

dependence, and hence theoretically should not 

influence the properties at point d. On the other 

hand, the numerical calculation of properties 
at point d takes information from grid points    

(i − 1) and (i + 1). This situation is exacerbated 

when ΔtC<1 is chosen to be very small, ΔtC<1 << 

ΔtC=1. In this case, even though the calculations 

are stable, the results may be quite inaccurate 

due to the large mismatch between the domain 

of dependence of point d, and the location of 

the actual numerical data used to calculate 

properties at d. In light of the above discussion, 

we conclude that the Courant number must be 
equal to or less than unity for stability, C ≤ 1,but 

at the same time it is desirable to have C as 

close to unity as possible for accuracy. 

 
Reference 

 
1. Anderson, D.A., Tannehill, John C. and Pletcher, Richard H., Computational Fluid Mechanics 

    and Heat Transfer, McGraw-Hill, New York, 1984. 
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6 (Transformations and Grids)8 

6.1 ���� 

  If all CFD applications dealt with physical 

problems where a uniform, rectangular grid could 

be used in the physical plane, there would be no 

reason to alter the governing equations derived in 

Chap.2 we would simply apply these equations in 

rectangular (x,y,z,t) space, finite-difference these 

equations according to the difference quotients 

derived in Chap. 5, and calculate away, using 

uniform values of  Δx, Δy, Δz and Δt , However 

,few real problems are ever so accommodating, for 

exsample, assume we wish to calculate the flow 

over an airfoil , as sketched in Fig .6.1, where we 

have placed the placed the airfoil in a rectangular 

grid . Note the problems with this rectangular grid 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
8 Mostly from [Wendt et.al. 2009], Chapter 6 (here is the author J.D. Anderson, Jr. 
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: 
(1) Some grid points fall inside the airfoil , where 

they are completely out of the flow .what values of 

the flow properties do we ascribe to these points? 
(2) There are few , if any .grid points that fall on the 

surface of the airfoil . This is not good . because the 

airfoil surface is a vital boundary condition for the 

determination of the flow, and hence the airfoil 

surface must be clearly and strongly seen by the 

numerical solution. 
As a result. we can conclude that the rectangular 

grid in Fig .6.1 is not appropriate for the solution of 

the flow field.In contrast, agrid that is appropriate 

is sketched in Fig. 6.2(a). here we see a non- 

uniform, curvilinear  grid which is literally 

wrapped around the airfoil. New coordinate lines 

?? and ?? = constant. This is called a boundary –

fitted coordinate system , and will be discussed in 

detail later in this chapter. The important point is 

that grid points naturally fall on the airfoil surface, 

as shown in Fig. 6.2(a).What is equally important is 

that ,in the physical space shown in Fig. 6.2(a),the 

conventional difference quotients are difficult to 

use. What must be done is to transform the 

curvilinear grid mesh in physical space to a 

rectangularmesh in terms of ξ and η.This is shown 

in Fig. 6.2(b) which illustrates a rectangular grid in 

terms of ξ and η.The rectangular mesh shown in 

Fig. 6.2(b) is called the computational plane . There 

is a one-to-one correspondence between this 

mesh,and the curvilinear mesh in Fig. 6.2(a),called 

the physical plane . for example,points a,b and c in 

the physical plane (Fig. 6.2a) correspond to points 

a,b and c in the computational plane , which 

involves uniform Δξ and uniform Δη. The 

computed information is then transferred back to 

the physical plane. Moreover, when the governing 

equations are solved in the computational space, 

they must be expressed in terms of the variables ξ 

and η rather than x and y;i.e.,the governing 

equations must be transformed from (x, y) to (ξ, η) 

as the new independent variables. 
The purpose of this chapter is to first describe the 

general transformation of the governing flow 

equations between the physical plane and the 

computational plane . 
following this, various specific grids will be 

discussed. This material is an example of a very 
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active area of CFD research called grid generation. 

 

 

Fig. 6.1: Airfoil on a 

rectangular grid 

 

 

Fig. 6.2 (a) Physical plane 

 

 

(b) Computational plane 

6.2 General Transformation of the Equations  

  For simplicity , we will consider a two-

dimensional unsteady flow ,with independent 

variables x, y and t; the results for a three- 

dimensional unsteady flow, with independent 

variables x, y ,z and t, are analogous, und 

simply involve more terms. 
We will transform the variables in physical 

space(x, y, t) to a transformed space (ξ, η, τ), 

where   
 

                                                    ξ = ξ(x, y, t)                                   (6.1a) 
                                                    η = η(x, y, t)                                   (6.1b) 
                                                    τ = τ(t)                                           (6.1c) 

 

    In the above transformation, τ is considered a 

function of t only, and is frequently given by τ = 

t .This seems rather trivial; however , Eq.(6.1c) 

must be carried through the transformation in a 
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formal manner, or else certain necessary terms 

will not be generated. Form the chain rule of 

differential calculus ,we have   

 

  The subscripts in the above expression are 

added to emphasize what variables are being 

held constant in the partial differentiation.       

In our subsequent expression, subscripts will be 

dropped; however, it is always useful to keep 

them in your mind. Thus , we will write the 

above expression as   
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  Equations (6.2),(6.3) and (6,5) allow the 

derivatives with respect to x, y and t to be 

transformed into derivatives with respect to     

ξ, η and τ. The coefficients of the derivatives 

with respect to ξ, η and τ are called metrics, e.g. 

∂ξ/∂x , ∂ξ/∂y, ∂η/∂x and ∂η/∂y are metric terms 

which can be obtained from the general 

transformation given by Eqs. (6.1a, b and c) .if 

Eqs.(6.1a ,b and c) are given as closed form 
analytic expressions, then the metrics can also 

be obtained in closed form.  However, the 

transformation given by Eqs. (6.1a, b, and c) is 

frequently a purely numerical relationship, in 

which case the metrics can be evaluated by 

finite-difference quotients – typically central 

differences. 

Examining the governing equations derived in 

Chap. 2, we note that the equations for viscous 

flow involve second derivatives.  Therefore, we 

need a transformation for these derivatives; 

they can be obtained as follows.  From Eq. (6.2), 

let 

 

    The mixed derivatives denoted by B and C in 

Eq. (6.6) can be obtained from the chain rule as 

follows: 
 

 

  Recalling the chain rule given by Eq. (6.2), we 

have 

 

  Substituting B and C fro Eqs. (6.7) and (6.8) into 

Eq. (6.6), and rearranging the sequence of 
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terms, we have 

 

  Equation (6.9) gives the second partial 

derivative with respect to x in terms of first, 

second, and mixed derivatives with respect to ξ 

and η, multiplied by various metric terms.  Let 

us now continue to obtain the second partial 

with respect to y.  From Eq. (6.3), let 
 

 

  Substituting Eqs. (6.11) and (6.12) into (6.10), we 

have, after rearranging the sequence of terms: 

 

  Equation (6.13) gives the second partial 

derivative with respect to y in terms of first, 

second, and mixed derivatives with respect to ξ 

and η, multiplied by various metric terms.  We 

now continue to obtain the second partial with 

respect to x and y. 

 

  Substituting Eqs. (6.7) and (6.8) for B and C 
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respectively into Eq. (6.14), and rearranging the 

sequence of terms, we have 

 

  Equation (6.15) gives the second partial 

derivative with respect to x and y in terms of 

first, second, and mixed derivatives with 

respect to ξ and η, multiplied by various metric 

terms. 
Examine all the equations given in the boxed 

above.  They represent all that is necessary to 

transform the governing flow equations 

obtained in Chap. 2 with x, y, and t as the 

independent variables to ξ, η, and T as the new 

independent variables.  Clerely, when this 

transformation is made, the governing 

equations in terms of ξ, η, and T become rather 

lengthy.  Let us consider a simple example, 

namely that for inviscid, irrotational, steady, 

incompressible flow, for which Laplace’s 

Equation is the governing equation. 

 

  Transforming Eq. (6.16) from (x, y) to (ξ, η), 

where ξ = ξ(x, y) and η = η(x, y), we have from 

Eqs. (6.9) and (6.13): 

 

  Examine Eqs. (6.16) and (6.17); the former is 

Laplace’s equation in the physical (x, y) space, 

and the latter is the transformed Laplace’s 
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equation in the computational (ξ, η) space.  The 

transformed equation clearly contains many 

more terms. 
Once again we emphasize that Eqs. (6.1), (6.2), 

(6.3), (6.5), (6.9), (6.13), and (6.15) ar used to 

transform the governing flow equations from 

the physical plane (x. y space) to the 

computational plane (ξ , η space), and that the 

purpose of the transformation in most CFD 

applications is to transform a non-uniform grid 

in physical space (such as shown in Fig. 6.2a) to 

a uniform grid in the computational space 

(such as shown in Fig. 6.2b).  The transformed 

governing partial differential equations are 

then finite-differenced in the computational 

plane, where there exists a uniform ∆ξ and a 

uniform ∆η, as shown in Fig. 6.2(b).  The flow-

field variables are calculated at all grid points 

in the computational plane, such as points, a, b, 

and c in Fig. 6.2(b).  These are the same flow-

field variables which exist in the physical plane 

at the corresponding points a, b, and c in Fig. 

6.2(a).  The transformation that accomplishes all 

this is given in general form by Eqs. (6.1a, b, 

and c).  Of course, to carry out a solution for a 

given problem, the transformation given 

generically by Eqs. (6.1a, b, and c) must be 

explicitly specified.  Examples of some specific 

transformations will be given in subsequent 

sections. 

6.3 6.3 Metrics and Jacobians  

  In Eqs. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), 

(6.9), (6.10), (6.11), (6.12), (6.13), (6.14), (6.15), 

the terms involving the geometry of the grids, 

such as ∂ξ/∂x, ∂ξ/∂y,∂η/∂x, ∂η/∂y, etc., are called 

metrics. If the transformation, Eq. (6.1a, b and 

c), is given analytically, then it is possible to 

obtain analytic values for the metric terms. 
However, in many CFD applications, the 

transformation, Eq. (6.1a, b and c), is given 

numerically, and hence the metric terms are 

calculated as finite differences. 
Also, in many applications, the transformation 

may be more conveniently expressed 
as the inverse of Eqs. (6.1a, b), that is, we may 

have available the inverse 
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transformation. 
x = x(ξ,η,τ)          (6.18a) 

y = y(ξ,η,τ)           (6.18b) 
t = t(τ)                   (6.18c) 

  In Eqs. (6.18a, b and c), ξ, η and τ are the 

independent variables. However, 
in the derivative transformations given by Eqs. 

(6.2), (6.3), (6.4), (6.5), (6.6), 
(6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), 

(6.14), and (6.15), the metric terms 
∂ξ/∂x, ∂η/∂y, etc. are partial derivatives in terms 

of x, y and t as the independent 
variables. Therefore, in order to calculate the 

metric terms in these equations from 
the inverse transformation in Eqs. (6.18a, b and 

c), we need to relate ∂ξ/∂x, ∂η/∂y, 
etc. to the inverse forms ∂x/∂ξ, ∂y/∂η, etc. These 

inverse forms of the metrics are the 
values which can be directly obtained from the 

inverse transformation, Eqs. (6.18a, 
b and c). Let us proceed to find such relations. 

Consider a dependent variable in the governing 

flow equations, such as the xcomponent 
of velocity, u. Let u = u(x, y), where from Eqs. 

(6.18a and b), x = x(ξ, η) 
and y = y(ξ, η). The total differential of u is 

given by 

 
  Equations (6.20) and (6.21) can be viewed as 

two equations for the two unknowns 
∂u/∂x and ∂u/∂y. Solving the system of 

equations (6.20) and (6.21) for ∂u/∂x using 
Cramer’s rule, we have 
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6.22 

 

 

  In Eq. (6.22), the denominator determinant is 

identified as the Jacobian determinant, 
denoted by 

 

    Hence, Eq. (6.22) can be written as 

6.23 

  Now let us return to Eqs. (6.20) and (6.21), and 

solve for ∂u/∂y. 
6.24
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  Examine Eqs. (6.23) and (6.24). They express the 

derivatives of the flow field variables in 

physical space in terms of the derivatives of the 

flowfield variables in computational space. 

Equations (6.23) and (6.24) accomplish the same 

derivative transformations as given by Eqs. 

(6.2) and (6.3). However, unlike Eqs. (6.2) and 
(6.3) where the metric terms are ∂ξ/∂x, ∂η/∂y, 

etc., the new Eqs. (6.23) and (6.24) involve the 

inverse metrics, ∂x/∂ξ, ∂y/∂η, etc. Also notice 

that Eqs. (6.23) and (6.24) include the Jacobian 

of the transformation. Therefore, whenever you 

have the transformation given in the form of 

Eqs. (6.18a, b and c), from which you can 

readily obtain the metrics in the form ∂x/∂ξ, 

∂x/∂η, etc., the transformed governing flow 
equations can be expressed in terms of these 

inverse metrics and the Jacobian, J.A similar but 

more lengthy set of results can be obtained for a 

three-dimensional transformation from (x, y, z) 

to (ξ, η, ζ). Consult Ref. [1] for more details. 

Our discussion above has been intentionally 

limited to two dimensions in order to 

demonstratethe basic principles without 

cluttering the consideration with details. 

6.4 6.3 Coordinate Stretching  

  In the remaining three sections of this chapter, we 

examine three types of grid transformations. 
The simplest is discussed here. It consists of 

stretching the grid in one 
or more coordinate directions. 

For example, consider the physical and 
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computational planes shown in Fig. 6.3(a, 
b). Assume that we are dealing with the viscous 

flow over a flat surface, where the 
velocity varies rapidly near the surface as shown 

in the velocity profile sketched at 
the right of the physical plane (Fig. 6.3a). To 

calculate the details of this flow near 
the surface, a finely spaced grid in the y-direction 

should be used, as sketched in the 
physical plane. However, far away from the 

surface, the grid can be more coarse. 
Therefore, a proper grid should be one in which 

the coordinate lines become progressively 
more closely spaced as the surface is approached. 

On the other hand, we 
wish to deal with a uniform grid in the 

computational plane, as shown in Fig. 6.3(b). 
On examination, we see that the grid in the 

physical space is ‘stretched’, as if a uniform 
grid were drawn on a piece of rubber, and then 

the upper portion of the rubber 
were stretched upward in the y-direction. A 

simple analytical transformation which 
can accomplish this grid stretching is:. 

 

Fi

g. 6.3 Example of grid stretching. (a) Physical plane. (b) Computational plane 

ξ = x                         (6.25a) 
η = ln(y+1)               (6.25b) 

  The inverse transformation is 

x = ξ                        (6.26a) 
y = eη −1                  (6.26b) 

  from which the inverse metrics are obtained as: 

6.22 
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  In Eq. (6.22), the denominator determinant is 

identified as the Jacobian determinant, 
denoted by 

 

    Hence, Eq. (6.22) can be written as 

 

  Let us consider the continuity equation, given by 

Eq. (2.27). For steady, twodimensional flow, this is 

 

  Equation (6.27) is the continuity equation written 

in terms of the physical plane.This equation can 

be formally transformed by means of the general 

results given by Eqs. (6.23) and (6.24), obtaining 

 

  Substituting into Eq. (6.29) the inverse metrics 

from Eq. (6.27), we have 

 

  Equation (6.30) is the continuity equation in the 

computational plane.Equation (6.30) can also be 

obtained from the direct transformation given by 
Eqs. (6.25a and b). Here, the metrics are: 

 

  Using the transformations given by Eqs. (6.2) and 

(6.3), Eq. (6.28) becomes 

 

  Substituting into Eq. (6.32) the metrics from Eq. 

(6.31), we have 

 

  However, from Eq. (6.26b), y+1 = eη. Therefore, 

Eq. (6.33) becomes 
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  Equation (6.34) is identical to Eq. (6.30). All that 

we have done here is to demonstrate how the 

transformed equation can be obtained from either 

the direct transformation or the inverse 

transformation ;  the results are the same. An 

example of more complex grid stretching, in both 

the x- and y-directions, is given in Refs. [2, 3]. 

Here, the supersonic viscous flow over a blunt 

base is studied.The physical and computational 

planes are illustrated in Fig. 6.4. The streamwise 
stretching is accomplished through a 

transformation originally used by Holst [4] 

 

  where ξ0 is the location in the computational 

plane where the maximum clustering is to occur, 

and βx is a constant which controls the degree of 

clustering at ξ0, with larger values of Bx 

providing a finer grid in the clustered region. The 

transverse stretching is accomplished by dividing 

the physical plane into two sections: (1) the space 

directly behind the step, and (2) the space above 

(both in front of and behind) the step. The 

transformation is based on that used by Roberts 

[5], and is given by 
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  and βy and α are appropriate constants, and are 

different for the two sections identified 
above. The algebraic transformations given above 

result in the grid stretching 
shown in Fig. 6.4. 

 

6.5 6.3 Boundary-Fitted Coordinate Systems 

  Consider the flow through the divergent duct 

shown in Fig. 6.5(a). Curve de is the upper wall of 

the duct, and line fg is the centreline. For this flow, 

a simple rectangular grid in the physical plane is 

not appropriate, for the reasons discussed in 
Sect. 6.1. Instead, we draw the curvilinear grid in 

Fig. 6.5(a) which allows both the upper boundary 

de and the centreline fg to be coordinate lines, 

exactly fitting these boundaries. In turn, the 

curvilinear grid in Fig. 6.5(a) must be transformed 

to a rectangular grid in the computational plane, 

Fig. 6.5(b). This can be accomplished as follows. 

Let ys = f (x) be the ordinate of the upper surfacede 
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in Fig. 6.5(a). Then the following transformation 

will result in a rectangular grid in (ξ, η) space: 
                                                               ξ = x 

η = y/ys       where ys = f (x) 
  The above is a simple example of a boundary 

fitted coordinate system. A more sophisticated 

example is shown in Fig. 6.6, which is an 

elaboration of the case illustrated in Fig. 6.2. 

Consider the airfoil shape given in Figure 6.6(a). A 

curvilinear system is wrapped around the airfoil, 

where one coordinate line η = η1 =constant is on 

the airfoil surface. This is the inner boundary of 

the grid, designated by Γ1. The outer boundary of 

the grid is labelled Γ2 in Figure 6.6(a), and is given 
by η = η2 = constant. Examining this grid, we see 

that it clearly fits the boundary, and hence it is a 

boundary-fitted coordinate system. The lines 

which fan out from the inner boundary Γ1 and 

which intersect the outer boundary Γ2 are lines of 

constant ξ, such as line ef for which ξ = ξ1 = 

constant. (Note that in Fig. 6.6(a) the lines 
of constant η totally enclose the airfoil, much like 

elongated circles; such a grid is called an ‘0’ type 

grid for airfoils. Another related curvilinear grid 

can have the η =constant lines trailing 

downstream to the right, not totally enclosing the 

airfoil (except on the inner boundary Γ1). Such a 

grid is called a ‘C’ type grid. We will see an 

example of a ‘C’ type grid shortly.) 
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  Question: What transformation will cast the 

curvilinear grid in Fig. 6.6(a) into a uniform grid 

in the computational plane as sketched in 

Fig.6.6(b)? To answer this question, note from Fig. 

6.6(a) that along the inner boundary Γ1, the 

physical coordinates of the body are known: 
                       (x, y) known along Γ1 

Similarly, the physical coordinates of the outer 

boundary Γ2 are also known, because Γ2 is simply 

a rather arbitrarily drawn loop around the airfoil. 

Once this loop Γ2 is specified, then the physical 

coordinates along it are known: 
                       (x, y) known along Γ2 

This hints of a boundary value problem where the 

boundary conditions (namely the values of x and 

y) are known everywhere along the boundary. 
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Recall from Sect. 4.3.3 that the solution of elliptic 

partial differential equations requires the 

specification of the boundary conditions 

everywhere along a boundary enclosing the 

domain. Therefore, let us consider the 

transformation in Fig. 6.6 to be defined by an 

elliptic partial differential equation (in contrast to an 

algebraic relation as illustrated in Sect. 6.4). One 

of the simplest elliptic equations is Laplace’s 

equation: 

 

  where we have Dirichlet boundary conditions  
                    η = η1 = constant on Γ1 
                    η = η2 = constant on Γ2 

and 
ξ = ξ(x, y) is specified on both Γ1 and Γ2 

  It is important to keep in mind what we are doing 

here. The equations (6.35a and b) have nothing to 

do with the physics of the flow field. They are 

simply elliptic partial differential equations which 

we have chosen to relate ξ and η to x and y,and 

hence constitute a transformation (a one-to-one 

correspondence of grid points) from the physical 

plane to the computational plane. Because this 

transformation is governed by elliptic equations, 

it is an example of a general class of grid 

generation called elliptic grid generation. Such 

elliptic grid generation was first used on a 

practical basis by Joe Thompson at Missippi State 

University, and is described in detail in the 

pioneering paper given in Ref. [6]. 
Let us look more closely at the physical and 

computational planes shown in Fig. 6.6. In order 

to construct a rectangular grid in the 

computational plane plane (Fig. 6.6b), a cut must 

be made in the physical plane (Fig. 6.6a) at the 

trailing edge of the airfoil. This cut can be 

visualized as two lines superimposed on each 

other: the line pq denoted by Γ3 represents a 

boundary line for the physical space above 
pq, and and the line rs denoted by Γ4 represents a 

boundary line for the physical space below rs. In 
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the physical plane, the points p and r are the same 

point, and the points q and s are the same point; in 

Fig. 6.6(a) they are slightly displaced for clarity. 

However, in the computational plane, these 

points are all different. Indeed, the grid in the 

computational plane is obtained by slicing the 

physical grid at the cut, and then ‘unwrapping’ 

the grid from the airfoil. For example, the airfoil 

surface in the physical plane, curve pgecar, 

becomes the lower straight line denoted by Γ1 
in the computational plane. Similarly, the outer 

boundary ghfdbs becomes the upper straight line 

denoted by Γ2 in the computational plane. The left 

and right sides of the rectangle in the 

computational plane are formed from the cut in 

the physical plane; the left side is line rs denoted 

by Γ4 in Fig. 6.6(b), and the right side is line pq 

denoted by Γ3 in Fig. 6.6(b). The computational 

plane is sketched again in Fig. 6.7. Here we 

emphasize that values of (x, y) are known along all 

four boundaries, Γ1, Γ2, Γ3 and Γ4. The key aspect 

of the elliptic grid generation approach is that, 

with the given boundary conditions, Eqs. (6.35a 

and b) are solved for the (x, y) values which apply 

to all the internal points. An example of such an 

internal point is given by point A in Fig. 6.7, 
which corresponds to the same point A in Figs. 

6.6(a) and (b). In reality, the equations 
to be solved are the inverse of Eqs. (6.35a and b), 

that is, equations obtained from Eqs. (6.35a and b) 

by interchanging the dependent and independent 

variables.The result is: 
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  Note in Eqs. (6.36a and b) that x and y are now 

expressed as the dependent variables. Returning 

again to Fig. 6.7, Eqs. (6.36a and b) are solved, 

along with the given boundary conditions for     

(x, y) on Γ1, Γ2, Γ3 and Γ4, to obtain the values of 

(x, y)which correspond to the uniformly spaced 

grid points in the computational (ξ, η)plane. Thus, 

a given grid point (ξi,ηj) in the computational 

plane corresponds to the calculated grid point      

(xi, yj) in physical space. The solution of Eqs. 

(6.36a and b) is carried out by an appropriate 

finite-difference solution for elliptic equations; for 
example, relaxation techniques are popular for 

such equations. Note that the above 

transformation, using an elliptic partial 

differential equation to generate the grid, does not 

involve closed-form analytic expressions; rather, it 
produces a set of numbers which locate a grid 

point (xi, yj) in physical space which correspond 

to a given grid point (ξi, ηj) in computational 

space. In turn, the metrics in the governing flow 

equations (which are solved in the computational 

plane), such as ∂ξ/∂x, ∂η/∂y, etc. are obtained from 

finite differences; central differences are 

frequently used for this purpose.The curvilinear, 

boundary-fitted coordinate system shown in Fig. 

6.6(a) is simply illustrated in a qualitative sense in 

that figure, for purposes of instruction. An actual 
grid generated about an airfoil using the above 

elliptic grid generation approach is shown in    

Fig. 6.8, taken from Ref. [7]. Using Thompson’s 
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grid generation scheme(Ref. [6]), Wright ( [7]) has 

generated a boundary-fitted coordinate system 

around a Miley airfoil. (The Miley airfoil is an 

airfoil specially designed for low Reynolds 

number applications by Stan Miley at Mississippi 

State University.) In Fig. 6.6 the white speck in the 

middle of the figure is the airfoil, and the grid 

spreads far away from the airfoil in all directions. 
In Ref. [7] low Reynolds number flows over 

airfoils were calculated by means of a time 

dependent finite-difference solution of the 

compressible Navier-Stokes equations (such time-

dependent solutions are discussed in Chap. 7). 

The free stream is subsonic, hence the outer 

boundary must be placed far away from the 

airfoil because of the far-reaching propagation of 

disturbances in a subsonic flow. A detail of the 

grid in the near vicinity of the airfoil is shown in 

Fig. 6.9. Note from both Figs. 6.8 and 6.9 that the 

grid is a ‘C’ type grid, in contrast to the ‘0’ type 

grid sketched in Fig. 6.6.We end this section by 

emphasizing again that the elliptic grid 

generation, with its solution of elliptic partial 

differential equations to obtain the internal grid 

points, is completely separate from the finite-

difference solution of the governing equations. 
The grid is generated first, before any solution of 

the governing equations is attempted. The use of 

Laplace’s equation (Eq. (6.35a and b)) to obtain 

this grid has nothing to do whatsoever with the 

physical aspects of the actual flow field.           

Here,Laplace’s equation is simply used to 

generate the grid only. 
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6.6 Adaptive Grids 

  An adaptive grid is a grid network that 

automatically clusters grid points in regions of 

high flow field gradients; it uses the solution of 

the flow field properties to locate the grid points 
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in the physical plane. The adaptive grid evolves in 

steps of time in conjunction with a time 

dependent solution of the governing flow field 

equations,which computes the flow field variables 

in steps of time. During the course of the solution, 

the grid points in the physical plane move in such 

a fashion to ‘adapt’ to regions of large flow field 

gradients. Hence, the actual grid points in the 

physical plane are constantly in motion during the 

solution of the flow field, and become stationary 

only when the flow solution approaches a steady 

state. Therefore, unlike the elliptic grid generation 

discussed in Sect. 6.5 where the generation of the 

grid is completely separate from the flow field 

solution, an adaptive grid is intimately linked to 

the flow field solution, and changes as the flow 

field changes. The hoped-for advantages of an 

adaptive grid are expected because the grid points 

are clustered in regions where the ‘action’ is 

occurring. These advantages are: (1) increased 

accuracy for a fixed number of grid points, or (2), 

for a given accuracy, fewer grid points are 

needed. Adaptive grids are still very new in CFD, 

and whether or not these advantages are always 

acheived is not well established. An example of a 

simple adaptive grid is that used by Corda [8] for 

the solution of viscous supersonic flow over a 

rearward-facing step. Here, the transformation is 
expressed in the form: 

 

  where g is a primitive flow field variable, such as 

p, ρ or T. If g = p, then Eqs. (6.37) 
and (6.38) cluster the grid points in regions of 

large pressure gradients; if g = T, 
the grid points cluster in regions of large 

temperature gradients, and so forth. In 
Eqs. (6.37) and (6.38), Δξ and Δη are fixed, 

uniform grid spacings in the computational 
(ξ, η) plane, b and c are constants chosen to 

increase or decrease the effect of 
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the gradient in changing the grid spacing in the 

physical plane, B and C are scale factors and Δx 

and Δy are the new grid spacings in the physical 

plane. Because ∂g/∂x and ∂g/∂y are changing with 

time during a time-dependent solution of the flow 

field, then clearly Δx and Δy change with time, i.e. 

the grid points move in the physical space. 

Clearly, in regions of the flow where ∂g/∂x and 

∂g/∂y are large, Eqs. (6.37) and (6.38) yield small 

values of Δx and Δy for a given Δξ and Δη; this is 

the mechanism which clusters the grid points.In 

dealing with an adaptive grid, the computational 

plane consists of fixed points in the (ξ, η) space; 

these points are fixed in time, i.e. they do not 

move in the computational space. Moreover, Δξ is 

uniform, and Δη is uniform. Hence, the 

computational plane is the same as we have 

discussed in previous sections.  
The governing flow equations are solved in the 

computational plane, where the x, y and t 

derivatives are transformed according to Eqs. 

(6.2), (6.3) and (6.5). In particular, examine the 

transformation given by Eq. (6.5) for the time 

derivative. In the case of stretched or boundary-

fitted grids as discussed in Sects. 6.4 and 6.5 

respectively, the metrics ∂ξ/∂t and ∂η/∂t were 

zero, and Eq. (6.5) yields ∂/∂t = ∂/∂τ. However, for 

an adaptive grid, 

 

  are finite. Why? Because, although the grid points 

are fixed in the computational plane, the grid 

points in the physical plane are moving with time. 

The physical meaning of (∂ξ/∂t)x,y is the time rate 

of change of ξ at a fixed (x, y) location in the 

physical plane. Similarly, the physical meaning of 

(∂η/∂t)x,y is the time rate of change of η at a fixed 

(x, y) location in the physical plane. Imagine that 

you have your eyes locked to a fixed (x, y) point in 

the physical plane. As a function of time, the 

values of ξ and η associated with this fixed (x, y) 

point will change. This is why ∂ξ/∂t and ∂η/∂t are 
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finite. In turn, when dealing with the transformed 

flow equations in the computational plane, all 

three terms on the right-hand side of Eq. (6.5) are 

finite, and must be included in the transformed 

equations. In this fashion, the time metrics ∂ξ/∂t 

and ∂η/∂t automatically take into account the 

movement of the adaptive grid during the 

solution of the governing flow equations. 
The values of the time metrics in the form shown 

in Eq. (6.5) are a bit cumbersome to evaluate; on 

the other hand, the related time metrics 

 

  are much easier to evaluate, because they come 

from 

 

  where Δx and Δy are obtained directly from the 

transformation given in Eqs. (6.37) and (6.38) 

respectively. Let us find the relationship between 

these two sets of time metrics. Consider 

 

  Note that we are carrying the subscripts on the 

partial derivatives to avoid any confusion over 

what variables are held constant. Now consider 
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  Recognizing that τ = t, and that the denominator is 

the Jacobian J, the above equation becomes 

(dropping subscripts) 

 

  Solving Eqs. (6.41) and (6.42) for   
, we find a likewise fashion that 

 

  Let us recapitulate. For an adaptive grid, the 

governing flow equations, when transformed for 

solution in the computational (ξ, η) plane, must 
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contain all the terms in the time transformation 

given by Eq. (6.5). The time metrics, ∂ξ/∂t and 

∂η/∂t, in Eq. (6.5) can in turn be expressed in terms 

of ∂x/∂t and ∂y/∂t through Eqs. (6.43) and (6.44). 

These new time metrics can in turn be readily 

calculated from Eqs. (6.39) and (6.40), where Δx 

and Δy are given by the basic transformation in 

Eqs. (6.37) and (6.38). An example of an adapted 

grid for the supersonic viscous flow over a 

rearward facing step is given in Fig. 6.10, taken 

from the work of Corda [8]. Flow is from left to 

right. Note that the grid points cluster around the 

expansion wave from the top corner of the step, 

and around the reattachment shock wave 

downstream of the step.It is interesting to note 

that the adapted grid itself is a type of ‘flow field 

visualization method’ that helps to identify the 

location of waves and other gradients in the flow. 
As a final note, there are many different 

approaches for the generation of adaptive grids. 

The above discussion is just one; it is based on 

ideas presented by Dwyer et al. in Ref. [9]. For a 

more complete discussion on adaptive grids, as 

well as grid generation in general, see Ref. [1]. 
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7 Chapter 7 (Explicit Finite Difference Methods: Some Selected 

Applications to Inviscid and Viscous Flows) 

 

 

7.1 Introduction 

 

  In this chapter we round-out our introductory 

treatment of computational fluid dynamics 
by discussing some applications of explicit 

finite difference methods to selected examples 

for inviscid and viscous flows. These examples 

have one thing in common—they are results 

obtained by either the present author and/or 

some of his graduate students over the past few 

years. This is not meant to be chauvinistic; 

rather this choice is intentionally made to 

illustrate what can be done by uninitiated 

students who are new to the ideas of CFD. 

These examples demonstrate the power and 
beauty of CFD in the hands of students much 

like yourselves who may have little or no 

experience in the field. Moreover, in all cases 

the applications are carried out with computer 

programs designed and written completely by 

each student. This is following the author’s 

educational philosophy that each student 

should have the experience of starting with 

paper and pencil, writing down the governing 

equations, developing the appropriate 

numerical solution of these equations, writing 

the FORTRAN program, punching the program 

into the computer, and then going through all 

the trials and tribulations of making the 

program work properly. This is an important 
aspect of CFD education. No established 

computer programs (‘canned’ programs) 
are used; everything is ‘home-grown’, with the 

exception of standard graphics packages which 

are used to plot the results. Therefore, by 

examining these examples, you should obtain a 

reasonable feeling for what you can expect to 

accomplish when youfirst jump into the world 

of CFD applications.Before we discuss some 
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examples, it is important to describe the 

mechanism of explicit finite-difference 

calculations. The distinction between explicit 

and implicit approaches was made in Sect. 5.3, 

which should be reviewed before progressing 
further in this chapter. In the next few sections, 

we will describe two rather straightforward 

and popular explicit methods. The treatment 

and application of implicit methods is given by 

other lectures in this course, and hence will not 

be discussed here. 
Finally, the examples discussed in this chapter 

all incorporate the time-dependent method, i.e. 

forward marching in steps of time. The historic 

break-through made by this method in the 

1960s is discussed in Chap. 1. The vast majority 

of time dependent solutions have as their 

objective the solution of a steady-state flow 

field which is approached by the solution at 

large times; here, the time-dependent 

mechanism is simply a means towards 

achieving that end. In other applications, the 

timedependent method is used to calculate the 

actual transients in an unsteady flow of interest. 

Examples of both are given here. We note, 

however, that although the following sections 

deal with marching forward in time, the same 

techniques are easily applied to a steady flow 

calculation where spatial marching is done 

along some coordinate axis. We have seen in 

Chap. 4 that such forward marching (in time or 

space) is appropriate when the governing 

equations are hyperbolic or parabolic. 

 

7.2 The Lax–Wendroff Method 

  Let us describe this method by considering a 

simple gas-dynamic problem, namely 
the subsonic–supersonic isentropic flow 

through a convergent–divergent nozzle, as 
sketched in Fig. 7.1. Here, a nozzle of specified 

area distribution, A = A(x), is given, 
and the reservoir conditions are known. Let us 

consider a quasi-one-dimensional 
solution where the flow field variables are 

functions of x (in the steady state). For 
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a calorically perfect gas, the solution of this 

flow is classical, and can be found in any 

compressible flow text book (see for example 

Refs. [1,2]).We use this example here only 

because it is an excellent vehicle for introducing 

and describing the time dependent finite-

difference philosophy.The nozzle is divided 

into a number of grid points in the x-direction 

as shown in Fig. 7.1; the spacing between 

adjacent grid points is Δx. Now assume values 

of the flow field variables at all grid points, and 

consider this rather arbitrarily assumed flow as 

an initial condition at time t = 0. In general,these 

assumed values will not be the exact stead state 

results; indeed, the exact steady-state results are 

what we are trying to calculate. Consider a grid 

point, say point i. Let gi denote a flow field 

variable at this point (gi might be pressure, 

density, velocity, etc.). This variable gi will be a 

function of time; however, we know gi at time   

t = 0, i.e. we know gi(0) because we have 

assumed values for all the flow field variables 

at all the grid points at the initial time t = 0 

 

 

 
Fig. 7.1 Flow through a 

convergent-divergent nozzle 

  We now calculate a new value of gi at time t 

+Δt; starting from the initial conditions, the first 

new time is t+Δt = 0+Δt. Here, Δt is a small 

increment in time to be discussed later. The 

new value of gi, i.e. gi(t+Δt), is obtained from a 

Taylor’s series expansion in time as 

 

 

 

  or, using the standard notation of time as a 

superscript, 
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  Here git+Δt is the value of g at grid point i and at 

time t +Δt; (∂g/∂t)it is the first partial of g 

evaluated at grid point i at time t, etc. In Eq. 

(7.1), gti is known and Δt is specified. Therefore, 

we can use Eq. (7.1) to calculate g it+Δt if we have 

numbers for the derivatives (∂g/∂t) it+Δt and 

(∂2g/∂t2) it+Δt. The numbers for the derivatives 

are obtained from the physics of the flow as 

embodied in the governing flow equations. 

(Note that Eq. (7.1) is simply mathematics, and 

by itself is certainly not sufficient to solve the 

problem.) The governing flow equations for the 

quasi-one-dimensional flow through a nozzle 

are (14): 

 

  Note that Eqs. (7.2), (7.3) and (7.4) are written 

with the time derivatives on the left-hand side, 

and spatial derivatives on the right-hand side. 

For the moment, let us calculate density,          

i.e. g ≡ ρ, and let us consider just the continuity 

equation, Eq. (7.2).Expanding the right-hand 

side of Eq. (7.2), we obtain 

 

  At time t = 0, the flow field variables are 

assumed; hence we can replace the spatial 

derivatives with central differences: 

 
  Equation (7.6) gives us a number for (∂ρ/ ∂t)ti , 

which is inserted into Eq. (7.1).However, to 
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complete Eq. (7.1), we need a number for the 

second partial also, namely (∂2ρ/∂t2)ti. To obtain 

this, differentiate the continuity equation, 
Eq. (7.5), with respect to time: 

 
  Also, differentiate the continuity equation, Eq. 

(7.5), with respect to x: 

 
  The procedure now works as follows: 

(1)  In Eq. (7.8), replace all derivatives on the  

right-hand side with central differences, such as 

 

  This now provides a number for (∂2ρ/∂t∂x)ti 
from Eq. (7.8). 

(2) Insert this number for (∂2ρ/∂t∂x) ti into 

Eq.(7.7).  Also in Eq. (7.7), numbers for ∂u/∂t 

and ∂2u/∂x∂t are obtained from a treatment of 

the momentum equation,Eq. (7.3), in a manner 

exactly the same as the continuity equation was 

treated above. The details will not be given 

here. In Eq. (7.7), a number for (∂ρ/∂t) is already 

available, namely from Eq. (7.6). The net result 

is that we now have a number for (∂2ρ/∂t2) ti, 

obtained from Eq. (7.7). 
(3) Insert this number for (∂2ρ/∂t2) tiinto Eq. (7.1) 

remembering that g ≡ ρ for this case. 
(4) Insert the number for (∂ρ/∂t) ti,obtained from 

Eq. (7.6), into Eq. (7.1). 
(5) Every quantity on the right-hand side of Eq. 

(7.1) is now known. This allows the density ρit+Δt 

to be calculated from Eq. (7.1). This is indeed 

what we wanted.We now have the density at 

grid point i at the next step in time, t+Δt. 
(6) Perform the above procedure at every grid 

point to obtain ρ(t +Δt) everywhere throughout 

the nozzle. 
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(7) Perform the above procedure on the 

momentum and energy equations to obtain 
u(t + Δt) and e(t + Δt) everywhere throughout 

the nozzle. We now have the complete 

flowfield at time (t + Δt), obtained from 

theknown flowfield at time t. (Recall that the 

process is started at t = 0 with the assumed 

initial conditions.) 
(8) Repeat the above process for a large number 

of time steps. At each time step, the flow 

properties at all grid points will change from 

one time to the next.However, at large times, 

these changes become very small, and a steady-

state is approached. This steady-state is the 

desired result, and the time-dependent 

technique is simply a means to that end. 
Fig. 7.2 Transient and final steady-state 

temperature distributions for a calorically 
perfect gas obtained from the present time 

dependent analysis, γ = 1.4 

  The behaviour of this type of solution is 

illustrated in Figs. 7.2 and 7.3. In Fig. 7.2, the 

temperature distribution through a given 

nozzle is shown. The dashed line labelled t = 0 

is the initially assumed values for T throughout 

the nozzle. The curve above it labelled 8Δt is 

the temperature distribution after eight time 

steps following the above procedure. The 

curves labeled 16Δt and 32Δt are similar results 
after 16 and 32 time steps respectively. Note 

that the temperature distribution has rapidly 

changed from the assumed initial distribution 

at t = 0. At later times, the changes become 

smaller; note that the curve labelled 120Δt is not 

too different from that for 32Δt. Finally, after 

744 time steps, the changes are so small that the 

temperature distribution is essentially at a 

steady state. This steady state is the desired 
solution. Note that the numerically-obtained 
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steady state agrees virtually perfectly with the 

classical results, as can be obtained from Refs. 

[1, 3], and from Ref. [4].Fig. 7.3 illustrates the 

variation of mass flow, m˙ , through the nozzle. 

The dashed line is the m˙ consistent with the 

assumed initial conditions at t = 0. The curves 

labeled 16Δt and 32Δt graphically demonstrate 

the wild variations in m˙ at early times. 
Fig. 7.3 Transient and final steady-state mass-

flow distributions for a calorically perfect gas 
obtained from the present time-dependent 

analysis, γ = 1.4 

  However, after 120 time steps m˙ has become 

more stable, and after 744 time steps has 

reached a steady state. This steady state 

distribution for m˙ is a straight, horizontal line, 

as it should be for steady flow, where m˙ = 

constant through the nozzle.Moreover, it is the 

correct value of mass flow, as compared to 

results from Ref. [4]. The method described 

above, utilizing Eq. (7.1), which is the first three 

terms of a Taylor’s series expansion and where 

both the first and second partial derivatives in 
Eq. (7.1) are found by finite-differencing the 

spatial derivatives in the governing flow 

equations with central differences, is called the 

Lax-Wendroff method. Note that the method is 

of second-order accuracy, from Eq. (7.1). This 

method was employed with much success in 

the late 1960s until a more straight-forward 

version of the same idea was introduced by 

MacCormack in 1969. This is the subject of the 

next section. For more details about the Lax-

Wendroff method as applied to the nozzle 

problem, see Refs. [5, 6]. 

 

7.3 MacCormack’s Method 

  MacCormack’s method, first introduced in 1969 

(see Ref. [7]), has been the most popular explicit 
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finite-difference method for solving fluid flows. 

It is closely related to the Lax-Wendroff 

method, but is easier to apply. Let us use the 

same nozzle problem discussed in Sect. 7.2 to 

illustrate MacCormack’s method in the present 

section. MacCormack’s method, like the Lax-

Wendroff method, is based on a Taylor’s series 
expansion in time. Once again, as in Sect. 7.2, 

let us consider the density at grid point i. 

 

  Equation (7.9) is a truncated Taylor’s series that 

looks first-order accurate; however, (∂ρ/∂t)ave is 

an average time derivative taken between time 

t and t +Δt. This derivative is evaluated in such 

a fashion that the calculation of ρ it+Δt from      

Eq. (7.9) becomes second-order accurate. The 

average time derivative in Eq. (7.9) is evaluated 
from a predictor-corrector philosophy as 

follows.Predictor step.We repeat the continuity 

equation, Eq. (7.5), below: 

 

  In Eq. (7.5), calculate the spatial derivatives 

from the known flow field values at time t 

using forward differences. That is, from Eq. 

(7.5), 

 

  Obtain a predicted value of density, ¯ρit+Δt , from 

the first two terms of a Taylor’s series, as 

follows 

 

  In Eq. (7.11), ρit is known, and (∂ρ/∂t)ti 
is a known number from Eq. (7.10); 

hence, ρ i -t+Δt is readily obtained. In a similar 

fashion, from the momentum and energy 

equations, predicted values of the other flow 

variables such as u i-t+Δt, e it+Δt, etc. areobtained. 
Corrector step Here, we first obtain a predicted 
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value of the time derivative, ( ∂ρ/∂t ) it+Δt, by 

substituting the predicted values of u i-t+Δt, ρi-t+Δt , 

etc. into     Eq. 7.5, using rearward differences. 

 
  Now calculate the average time derivative as 

the arithmetic mean between Eqs. (7.10) and 

(7.12), i.e. 

 

  where numbers for the two terms on the right-

hand side of Eq. (7.13) come from Eqs (7.10)and 

(7.12) respectively. Finally, we obtain the 

corrected value of ρ it+Δt from Eq. (7.9), repeated 

below: 

 

  The above predictor–corrector approach is 

carried out for all grid points throughout 
the nozzle, and is applied simultaneously to the 

momentum and energy equations 
in order to generate u it+Δt and eit+Δt.In this 

fashion, the flow field through the entire nozzle 

at time t +Δt is calculated. This is repeated for a 

large number of time steps until the steady state 

is achieved, just as in the case of the Lax 

Wendroff method described in Sect. 7.2. 

MacCormack’s technique as described above, 

because a two-step predictor–corrector 

sequence is used with forward differences on 

the predictor and rearward differences on the 

corrector, is a second-order accurate method. 

Therefore, it has the same accuracy as the     

Lax-Wendroff method described in Sect. 7.2. 

However, the MacCormack method is much 

easier to apply, because there is no need to 

evaluate the second time derivatives as was the 

case for the Lax-Wendroff method. To see this 
more clearly, recall Eqs. (7.7) and (7.8), which 

are required for the Lax-Wendroff method. 

These equations represent a large number of 

additional calculations. Moreover, for a more 
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complex fluid dynamic problem, the 

differentiation of the continuity, momentum 

and energy equations to obtain the second 

derivatives, first with respect to time, and then 

the mixed derivatives with respect to time and 

space, can be very tedious, and provides an 

extra source for human error. MacCormack’s 

method does not require such second 

derivatives, and hence does not deal with 

equations such as Eqs. (7.7) and (7.8). 
A few comments are made with regard to the 

specific application to the quasione dimensional 

nozzle flow shown in Fig. 7.1. At the inflow 

boundary (the first grid point at the left), the 

values of p, T and ρ are fixed, independent of 

time, and are assumed to be reservoir values. 

The inflow velocity, which is a very small 

subsonic value, is calculated from linear 

extrapolation using the adjacent internal points, 

or it can be evaluated from the momentum 

equation applied at the first grid point using 
one-sided differences. At the outflow boundary 

(the last grid point at the right in Fig. 7.1), all 

the dependent variables are obtained from 

linear extrapolation from the adjacent internal 

points, or by applying the governing equations 

at this point, using one-sided differences. 
Finally, we note that results obtained from the 

Lax–Wendroff method and from the 

MacCormack method are virtually identical. 

For example, these two methods are compared 

for a vibrationally relaxing, high temperature, 

non-equilibrium nozzle flow in Ref. [8]; there is 

no difference between the two sets of results. 

7.4 Stability Criterion 

  Examine Eq. (7.1), which is vital to the Lax–

Wendroff method. Note that it requires the 

specification of a time increment, Δt. Examine 

Eqs. (7.9) and (7.11), which are vital to the 

MacCormack method. They too require the 

specification of a time increment ,Δt. For 

explicit methods, the value of Δt cannot be 

arbitrary, rather it must be less than some 

maximum value allowable for stability.         

The time-dependent applications described in 

Sects. 7.2 and 7.3 are dealing with governing 
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flow equations which are hyperbolic with 

respect to time. Recall our discussion in Sect. 5.4 

dealing with the stability criteria for such 

equations. There, it was stated that Δt must 

obey the Courant–Friedrichs–Lewy criterion—

the so-called CFL criterion. This is embodied 
in Eq. (5.47), which was derived from the 

simple model equation given by Eq. (5.42). This 

is the linear wave equation, where c is the wave 

propagation speed.If the wave were 

propagating through a gas which already has a 

velocity u, then the wave will travel at the 

velocity (u + c) relative to the stationary 

surroundings. For such a case, Eq. (5.47) 

becomes 

 

  where C is the Courant number, and c is the 

speed of sound, c = (∂p/∂ρ)s. Eq. (7.14) is the 

appropriate CFL criterion for the one 

dimensional, explicit solutions of nozzle flows 

discussed in Sects. 7.2 and 7.3. The CFL 

criterion given by Eq. (7.14) says physically that 

the explicit time step must be no greater than 

the time required for asound wave to propagate 

from one grid point to the next. This author’s 

experience has been that C should be as close to 

unity as possible, but depending upon the 

actual application, themaximumallowable 

value ofC for stability in explicit timedependent 
finite difference calculations can vary from 

approximately 0.5–1.0.Keep in mind that the 

stability criteria exemplified by Eqs. (5.47) and 

(7.14) are based on analysis of linear equations. 

On the other hand, the governing equations for 

a general fluid flow are highly non- linear . 

Therefore,wewould not expect theCFLcriteria 

to apply exactly to such cases; instead, it 

provides a reasonable estimate of Δt for a given 

non-linear problem, and as a result the value of 

the Courant number in Eq. (7.14) can be viewed 
as an adjustable parameter to compensate for 

such non-linearities. Return for a moment to the 

nozzle flow application discussed in Sects. 7.2 
and 7.3. Here, at any given time t, Eq. (7.14) is 

evaluated at each grid point throughout the 
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flow. Because u and c vary with x, then the 

local value of Δt associated with each grid point 

will be different from one point to the next. The 

value of Δt actually employed in Eqs. (7.1) and 

(7.9) to advance the flow field through the next 

step in time should be the minimum Δt 

calculated over all the grid points. 
[Some CFD applications have employed the 

‘local time step method’, wherein the local 

values of Δt are used at each grid point in Eqs. 

(7.1) and (7.9). In this case, the transient 

variations calculated over many time steps do 

not hold physically; a type of ‘time-warped’ 

flow field is developed, where all the new flow 

variables calculated for a subsequent time step 

actually pertain to different total values of 
time. This ‘local time step method’ frequently 

results in a faster convergence to the steady 

state, that is, fewer total time steps are required 

to obtain the steady state. On the other hand, 

the calculated transients have no physical 

meaning, and some CFD experts wonder 

openly about the overall accuracy of such a 

method, even for the final steady state results.] 
Finally, we note that for a two or three-

dimensional flow, an extension of Eq. (7.14) is: 

 

 

7.5 Selected Applications of the Explicit 

 Time-Dependent Technique 

  The purpose of this section is to illustrate 

various applications of the explicit, 

timedependent technique described in the 

previous sections of this chapter. These 

applications contain many of the CFD features 

that have been discussed throughout these 

notes. 



123 

7.5.1 Non-equilibrium Nozzle Flows 

  References [5,6,8] represent the first application 

of the time-dependent technique to vibrational 

and chemical non-equilibrium nozzle flows.     

A purely steady flow analysis of such flows, 

which involves forward marching from the 

reservoir to the exit of the nozzle, encounters a 

saddle-point singularity at the nozzle throat. 

This singularity greatly complicates steady-

state numerical solutions of the flow. On the 

other hand, as first demonstrated in Refs. [5,6], 

the time-dependent numerical solution 

circumvents such problems in the throat region, 

and therefore constitutes a relatively 

straightforward numerical solution of such 

flows.The analysis of vibrational non-

equilibrium nozzle flows requires the inclusion 
of a vibrational rate equation, such as 

 

  where evib is the local non-equilibrium value of 

molecular vibrational energy per unit mass of 

gas, (evib)eq is the local equilibrium value, and 

τ is the vibrational relaxation time which is a 

function of local p and T. The analysis of 

chemical nonequilibrium nozzle flows requires 

the inclusion of species continuity equations— 
one for each chemical species present in the gas 

—which are of the form 

 

  where ηi is the mole–mass ratio (moles of 

species i per unit mass of mixture), and wi is the 

rate of formation (or extinction of species i) due 

to finite-rate chemical reactions. The form of wi 

involves chemical rate constants and the local 

concentrations of the chemical species. For an 

introductory development of Eqs. (7.16) and 

(7.17), see Chaps. 13 and 14 of Ref. [3]. Note 

that, in the same vein as Eqs. (7.2), (7.3) and 

(7.4), Eqs. (7.16) and (7.17) are written in the 

form of a time derivative on the left-hand side, 

and spatial derivatives on the right-hand side. 
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In turn, the nonequilibrium variables evib and 

ηi are calculated in steps of time in the same 

fashion as ρ, u and e from Eqs. (7.2), (7.3) and 

(7.4). Indeed, for the time-dependent solution 
of non-equilibrium nozzle flows, Eqs (7.2), (7.3) 

(7.4), (7.16) and (7.17) are coupled, and are 

solved in the same coupled fashion at each time 

step as described in Sects. 7.2 and 7.3. However, 

there is one additional stability restriction 

brought about by the non-equilibrium 

phenomena. For explicit solutions of non 

equilibrium flows, in addition to the CFL 

criterion discussed in Sect. 7.4, the value of Δt 

must also be less than the characteristic time for 

the fastest finite rate taking place in the system. 

That is 

 

  where Γ = τ for vibrational non-equilibrium, 

and Γ = (∂wi/∂ηi)−1 which is an effective 

chemical relaxation time. (See Refs. [5, 6] for 

more details.) For this problem, no grid 

transformation is necessary; the physical and 

computational planes are one-in-the-same. 
Fig. 7.4   Transient and final steady-state evib 

distributions for the non-equilibrium expansion 

of N2 obtained from the present time-dependent 

analysis 
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  Typical results obtained with the Lax–Wendroff 

time-dependent technique are shown in Figs. 

7.4 and 7.5, from Ref. [5]. The case of the 

vibrational non-equilibrium expansion of pure 

N2 is illustrated in Fig. 7.4. Here, the time-

dependent nature of the non-equilibrium value 

of evib as a function of distance through the 

nozzle is shown. The dashed line represents the 

assumed initial distribution at t = 0. Several 
intermediate distributions, after 100 and 250 

time steps, are shown, along with the final 

steady state after 800 time steps. A different 

case, namely that of the nonequilibrium 
chemically reacting expansion of dissociated 

oxygen, is illustrated in Fig. 7.5. Here, the 

dashed line represents the initially assumed 

variation of the mass fraction of atomic oxygen 

through the nozzle at t = 0. Several intermediate 

curves after 100 and 400 time steps are shown, 

along with the final, converged steady state 

after 2800 time steps. This final steady state 

distribution agrees well with an earlier steady 

flow solution carried out by Hall and Russo [9], 

which is shown as the solid circles in Fig. 7.5. 

Fig. 7.5 Transient and final steady-state atom 

mass fraction distributions for the non-

equilibrium expansion of dissociating oxygen 

obtained from the present time-dependent 

method; the steadystate distribution is 

compared with the steady-flow analysis of Ref. 

[9] 

 

7.5.2 Flow Field Over a Supersonic Blunt Body 

  Here we return to the supersonic blunt body 

problem discussed in Sect. 1.1. We assume 
inviscid flow, hence the governing flow 

equations are represented by Eq. (2.65) with U, 

F, G, and H given by the inviscid expressions in 

Sect. 2.9. For the present case, body forces are 

negligible and hence J = 0.The physical plane is 
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shown at the top of Fig. 7.6; the curve BC is the 

body and curve AD is the shock wave. The x-

coordinates of the shock and body are given by 

s and b respectively. The local shock 

detachment distance is given by δ = s−b. During 

the time-dependent solution, the body is 

stationary, hence b = b(y). However, the shock 

wave will change shape and location with time, 

hence s = s(y, t). Therefore, 

 

  The computational plane (ξ, η) is shown in Fig. 

7.6b, and is obtained from the transformation 

 

  where δ is obtained from Eq. (7.18). Note that 

this transformation is an example of a 

boundary-fitted coordinate system as discussed 

in Sect. 5.5.Typical results, obtained from Ref. 

[10], are shown in Figs. 7.7, 7.8 and 7.9. 
These results were obtained using the Lax–

Wendroff method. In Fig. 7.7, the 

timedependent wave motion is illustrated, 

starting from its initially assumed value of 
t = 0, and progressing to its steady state shape 

and location after 500 time steps. The time 

variations of the centreline wave velocity and 

the stagnation point pressure are shown in Figs. 

7.8 and 7.9 respectively. Note in all three Figs. 

7.7, 7.8 and 7.9, that the most rapid changes 

occur at early times, and the steady state is 

approached rather asymptotically at large 

times. 
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7.5.3 Internal Combustion Engine Flows 

  Consider the flow inside an internal 

combustion engine as modelled by the 

pistoncylinder geometry shown in Fig. 7.10. 

The piston moves up and down inside the 

cylinder, and the flow enters through the intake 

valve and exits through the exhaustvalve.     

The flow field in this problem is truly unsteady, 

and the objective is to calculate this unsteady 

flow by means of the time-dependent 

technique. Here,no asymptotic steady state is 

ever obtained; rather, a repeatable cyclic flow 

field is calculated over the complete four-stroke 

cycle of intake, compression, power and 

exhaust.We will consider inviscid flow, and 

hence the governing equations are Eq. (2.65) 
and the U, F, G, and H column vectors from 

Sect. 2.9 for an inviscid flow.A boundary-fitted 

coordinate system is used, where the 

transformation is 
ξ = x/H(t); η−y, τ = t 

Fig. 7.10 Geometry of two-dimensional 

cylinder-piston I.C. engine model showing 

grid arrangement.(a) Piston positioned at 

TDC, 10 × 17 uniformly spaced grid points; (b) 

Piston positioned at TDC, 10 × 17 variably 

spaced grid points (only in y-direction); (c) 

Piston positioned at BDC, 10×17 uniformly 

spaced grid points 

  and where H(t) is the time-varying distance 

between the top of the cylinder and the top of 

the piston. Note in Fig. 7.10 that the x 

coordinate is along the vertical axis of 
the cylinder, and the y-coordinate is in the 

radial direction across the cylinder.Results for 

this flow are shown in Figs. 7.11, 7.12, 7.13 and 

7.14, taken from Ref. [11]. The solution is 

carried out using MacCormack’s technique as 

described in Sect. 7.3. Figures 7.11, 7.12, 7.13 

and 7.14 show the flow field associated with 
bottom dead centre of the intake stroke, three 

locations of the piston during the compression 
stroke, near bottom dead centre of the power 
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stroke, and an intermediate location of the 

exhaust stroke, respectively. Note that a 

circulatory flow is created during the intake 

stroke, and that this circulatory flow persists 

throughout the fourstroke cycle. 

 

 

 

 

 

7.5.4 Supersonic Viscous Flow Over a Rearward-Facing  

StepWith Hydrogen Injection 

 

  Consider the two-dimensional supersonic 

viscous flow over a rearward facing step, 
where H2 is injected into the flow downstream 

of the step as sketched in Fig. 7.15. Unlike the 

examples mentioned above, this case deals with 

the solution of the complete Navier–Stokes 

Equations, given by Eq. (2.65) with the U, F and 

G column vectors given in essence in Sect. 2.9 

for viscous flow. This system is slightly 

modified for the presence of mass diffusion, 

which adds a diffusion term in the energy 

equation, and adds another equation, namely, 

the species continuity equation with 
diffusion terms. (See Refs. [12, 13] for more 

details.) The numerical technique used 
here is MacCormack’s method discussed in 

Sect. 7.3. The present calculations were made 

on a uniform grid throughout the physical 

space. In combination with the rectangular 

geometry already existing in the physical plane 

(as can be seen by examining Fig. 7.15), this 

means that no grid transformation is needed. 
Typical results obtained from Refs. [12, 13] are 

given in Figs. 7.16, 7.17, 7.18 and 7.19. In Fig. 

7.16, a velocity vector diagram is shown for the 

case with no H2 injection. The external Mach 

number is 2.19, and the Reynolds number 
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based on step height is 70,000. These 

calculations also include a turbulence model 

patterned after that of Baldwin and Lomax [14]. 

Note the recirculating separated flow just 
downstream of the step. Figure 7.17 is a 

velocity vector diagram with H2 injection. 
Recirculating separated flows are now seen 

between the step and the H2 jet, as well 
as downstream of the jet. Figure 7.18 shows 

aMach number contour plot of the flow 
(lines of constant Mach number). Figure 7.19 

illustrates the contours of constant H2 mass 

fraction; this figure serves to define the extent 

and shape of the jet flow. 
Fig. 7.11 Velocity pattern on 

the intake stroke. 

X∗p = 8.78,CA = 161◦,t = 8.95msec = 

3080Δt,22×30mesh 
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7.5.5 Supersonic Viscous Flow Over a Base 
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  In a somewhat related fashion, consider the 

supersonic viscous flow over a base, as 
illustrated in Fig. 7.20. Here, the same viscous 

flow equations are used as discussed in Sect. 

7.5.4 above. However, for this calculation a 

stretched grid is used, as given 
in detail in Sect. 6.4, and as shown in Fig. 6.4. 

Again, MacCormack’s technique is 
used. Some sample results from Refs. [15,16] 

are given in Figs. 7.21 and 7.22, which 
deal with no secondary mass injection at the 

base. Figure 7.21 shows the velocity vector 

diagram for the case with an external Mach 

number of 2.25 and a Reynolds number of 477 

000 based on the height of the base. Note the 

recirculating separated flow downstream of the 

base. Figure 7.22 illustrates the contours of 

constant pressure in the flow; the expansion 

wave around the corner and the recompression 
shock downstream of the base are clearly seen. 

Figures 7.23 and 7.24 show the same type of 

results, except now for the case of air injection 

from the centre of the base. Note that injection 

greatly changes the flow field, as can be seen in 

comparison with Figs. 7.21 and 7.22. 
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7.5.6 Compressible Viscous Flow Over an Airfoil 

  Consider the subsonic compressible, viscous 

two-dimensional flow over an airfoil. 
The governing equations are the Navier–Stokes 

equations discussed in Chap. 2. For this 

application, the choice is made to use the non-

conservation form of the equations, namely, 

Eqs. 2.36(a, b and c), because no shock waves 

will be present in theflow. MacCormack’s 

method is used. Consider the airfoil and the 

elliptically generated boundary-fitted grid 

shown in Figs. 6.8 and 6.9, as discussed in Sect. 

6.5,and as taken from Refs. [17, 18]. Calculated 

results for a free stream Mach number of 0.5 

and a Reynolds number based on chord length 

of 100 000 (this is a low Reynolds number flow, 

which was the objective of the study in Ref. 

[18]) are shown in Figs. 7.25, 7.26 and 7.27. The 

angle-of-attack in these figures is zero. These 

figures illustrate the instantaneous flow over a 

Wortmann airfoil at different times. In Figs. 

7.25 and 7.26, the flow is laminar, and it 

separates over the top surface of the airfoil at 

about the maximum thickness point. The flow 

is clearly unsteady, as can beseen by comparing 

Fig. 7.25(a, b and c); there is a rather periodic 

flow fluctuation over the rearward portion of 

the airfoil, as well as downstream of the trailing 

edge.The calculation of such unsteady flows, 

especially in situations where they may be 
unexpected, is one of the major advantages of 

the time-dependent method in comparison 
to steady-state analyses. In Fig. 7.27, the flow is 

treated as turbulent; note that in this case the 

flow is attached. 
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This author has many more examples of CFD 

applications from the work of his graduate 

students; those listed in Sect. 7.5 are but a 

small fraction. They are picked for discussion 

in these notes on a rather arbitrary basis. Time 

and space do not allow further listing and 

discussion.Also, this brings to an end our 

introduction to CFD. It is the author’s hope 

that these notes have been a reasonable 

beginning for the unitiated reader, and that he 

or she can now greatly expand his or her 

horizons by reading the more advanced 
literature on CFD. If such advanced reading is 

indeed more easy after studying the 
present notes, then this author has 

accomplished his goal In recent years, some 

modern texts on CFD have been published 
(Refs. [19–23]); these texts are recommended 

for advanced studies of the subject. In 

particular, Fletcher’s two volumes (Refs. [19, 

20]) contain a nice theoretical discussion 
of the subject. Of special note are the two 

volumes by Hirsch (Refs. [21, 22([;these 

volumes represent an authoritative 

presentation of the mathematical and 

numerical fundamentals of CFD, the modern 

techniques used in CFD, and how these 

techniques are used in various practical 

applications. Reference [23], by Hoffmann, 
is a crisp presentation of CFD for use by 

engineers. All of these books are 

recommended for more advanced study of 

computational fluid dynamics. Also, for an 
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extended presentation of the elementary, 

introductory ideas contained in the present 
book, as well as a lengthy discussion of the 

overall philosophy of CFD and its role in 

modern engineering, see the book by the 

present author (Ref. [24]); this is written for a 

senior-level undergraduate course in CFD, 

and assumes absolutely no prior knowledge of 

the subject. This author wishes you happy 

reading, and happy computing in your further 

expeditions into the world of computational 

fluid dynamics. 
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8 Chapter 8: Boundary Layer Equations and Methods of Solution 
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9  n� ���� ��L5��� �k���'� �R��f)FEM ( O������� 	
���� 
��������� )CFD(9 

9.1 ���� 

.�O0�+� ����"�� .F!�t (Finite element method)  �'
w�T!' �O�
� [
X! .�O0�+� ����"�� ��
P  ��
P .F!�t 3�

.�
!�F0�� \)
L� 1�`a i1��  .�
{�:0�� ?�1�"E
�
.�*9e� .�
���0�� \)
L� �C .4�{a�� . ��C �L� �E0"!

�´ .�*9e� .�
{�:0�� ?�1�"+� d�A�C 	
� w��*) ?��L� N
.�K�<�� ( .�*9e� .�
{�:0�� ?�1�"+� ]!�F# �'

�C �.���8, .�
{�:# ?�1�"  2�E+� 2� h)�! B���

The finite element method (FEM) is a 

numerical technique for solving partial 

differential equations (PDE’s).  

 

 

 

 

 

 

 

 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
9

9B%8D%84%9D%7A%8D%_9A%8D%82%9D%A8%9D%1B%8D%7B%8D/%wiki/org.wikipedia.ar://http

%A8%9D%87%9D%AA%8D%86%9D%85%9D%84%9D%7A%8D%_1B%8D%5B%8D%7A%8D%86%9D%

AA.8D.7A.8D..829D.A8.9D.8A.8D.7B.8D.AA.8D.#9A%8D 

and [Wendt 2009], Ch. 10.  
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��t (�� M��=07�� �O
% �
!�' .F!�XK) Euler( 
 �' 3A,��J�#)K) Runge-Kutta(.  

 

 

 

 

Its first essential characteristic is that the 

continuum field, or domain, is subdivided 

into cells, called elements, which form a grid.  

The elements (in 2D) have a triangular of a 

quadrilateral form and can be rectilinear or 

curved. The grid itself need not be structured. 

With unstructured grids and curved cells, 

complex geometries can be handled with ease. 

 

The second essential characteristic of the FEM 

is that the solution of the discrete problem is 

assumed a priori to have a prescribed form. 

The solution has to belong to a function space, 

which is built by varying function values in a 

given way, for instance linearly or 

quadratically between values in nodal points. 

The nodal points, or nodes, are typical points 

of the elements such as vertices, mid-side 

points, mid-element points, etc.  Due to this 

choice, the representation of the solution is 

strongly linked to the geometric 

representation of the domain.  

 

The third essential characteristic is that a FEM 

does not look for the solution of the PDE 

itself, but looks for a solution of an integral 

form of the PDE. The most general integral 

form is obtained from a weighted residual 

formulation. By this formulation the method 

acquires the ability to naturally incorporate 

differential type boundary conditions and 

allows easily the construction of higher order 

accurate methods. 

The ease in obtaining higher order accuracy 

and the ease of implementation of boundary 

conditions form a second important 

advantage of the FEM. 

 

A final essential characteristic of the FEM is 

the modular way in which the discretization is 

obtained. The discrete equations are 

constructed from contributions on the element 

level which afterwards are assembled.  
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9.2  p�V��L5��� �k���'� �R��f 

 .F!�X�� µs=07� 2�E+� 2� �Is� 2� B��� &.�O0�+� ����"�� .F!�t ®�v� cX�<� c��U� M�=0<, })7
.��"�� .�1�
+ �EO:0� h)�! h' ���F�� 	
� ]` &��0�� ¶�F��� N والجبر الخطي علم الحسبان. 

 P1 .�q<� 3� ��G'� ����(!��0�� ��v�� 	
� (�X"� &: 

 
��% f � M)
"�u  \)j0E
� \)Ou ���# )�  x� &u''  ���0
� ��U�� [0v+� )� u \)j0E
� .
<���� x.  

3� .X�<
�� �"
�� .�*��p .�q<+� مسألة ديركلت ) Dirichlet (��0�� ��v�� 	
� 	X"#�: 

 
��% Ω �"
�� 3*��U�� i)0<+� N .
/0� .%)0:� .FX�� 3� (x,y) H1��% h)�# i���   (��
� 3�


��g �W .� uxx � uyy c�)j0E ¨�� مضلع �2� .�,�U�� ?�F0v+� 3�x  �y  ]�#�0�� 	
�. 

k�<· �"
�� .!1�%' .�q<+� �% 2�E+� 2� المشتق العكسي. �% N .F!�X�� H�مسألة القيمة  ��2 �

� 1�"�' ?�W �*�<� �C �OE�E"# 2�G  (boundary value problem) الحدية� �"
�� .!1�%' �*�<+� �L �
/#
��v�� �I \�U� �' 	
�' u + u'' = f  h�K ]
<�� ��I� �"
�� 2� w�d�� &.�O0�+� ����"�� .F!�t �!)X# i���T�� 2�

	
�y� 1�"�y� 	
� �OE�E"#� i1�%y�. 

 .!�L� .E�F�� .�q<� �L �EOF�
X# ]��)�� c0�7�7y� c0
%�+� ��"# B��� c0
%�� 	
� l0! })7 ��� ®�v��
.�O0�+� ����"�� .F!�t M��=07��: 

��y� ()XR� :� .�q<� S�<
#.!�L� .E�F� (boundary value problem) �C .��L� D"� 3:0�# S�<� ��g �C 
l
F��� .Z�)�� M��=07�� w�!��! �O
% 2�E+� 2� h)�! �� &�j
� ]7�L� M��=07�. 

.�,�U�� ()XR� :(�% 	
� �/�� �K �%� .�O0�� ����� �C ��v�� .*9§ l0! ��% &��XF0�� 3�. 

�� h)��7 ()XR� H�� �"� B��� .�X� h)�# h' ]` 2�� .���� ?���1 ?�W �*�<� �L .
���0� .A�� ��!
.!�L� .E�F�� .�q<+ w��
!�F# ws% h)�07 �I)
% .	
� .F!�X�� H�� .u�� l0! � 2�� سوبالحا. 

9.3 ��'�?5�� �8�D'�) variational formulation( 

Variational formulation = The minimization of an energy integral over the domain.  
� .�
���# .�"�
t .A�� 3� .��)j0+� .A�/�� .�O0�+� ����"�� .F!�X)FEM ( 2�� � �*�)+� V�,���+� h���� N– 

 M�� ��v�–� o� )�  �{)# h� 2�.��)j0+� .A�/��) variational formulation.(  
  



147 

�!)P )� ��y� ()XR� P1 � P2 �£�¸4��� �C المتحولية. h�K �WC u �� �% )� P1 .��1 i' ��' 2� ����� &
.
/0� v wsU� &i�L� \�F0,�� ���g [F�: v = 0 ��� x = 0 �x = 1��!�� h)�! & 

(1)  
�� (�X"� .E�Z ��' 2� &�K�"� ��v�� u  h�4)1 (.
/0� .��1 i' ��' 2� .FF^ h)�# v(x)  2� ������

h' 2��! h' 2�E+� u �� ws% h)�07 P1 (	
� �E0"! )�� �O<�� ��y�� ��� ��� h���� فضاء سوبوليف). 

M��=07��� �1.  التكامل با1جزاء�"+� cG 	
�)1 (3
!�� 	
� �/j�7: 

(2) 
 ���04� ¹ ��%h' v(0) = v(1) = 0. 

9.3.1 ��(� �( ��$� �L*� ,�#�� 

h' ��
0�� 2�E+� 2�   ���# 2� (��
� )�.�*��U
� [
X� �E0<� (0,1) h' ��· 0 ��� x = 0 �x = 1 (8,�� z��)�)7 d�T4). 

 .:�"{ h)�# ���)0�� H�� �U�)(�%�� (�� ��F0gs� .
��Z((�Y��0+� .�*��U�� .�XR� .X!�R� 2� zv�#�   }�"# � 2�� 3
��1 d���  i���

\)�  �C ?�
� d�T4. �<!y� }�X�� h�4 &���' .�%�, 2��  w�T!' )� 3
��1 d��� (�+� H�� 2��� &

	
� d�T:�� Lp . [�
X#� 9<!�� ��Uº .���+ ?�d�T4 	
���%� �% ��)! D,' �O8! ?�
�  u  ��)2 (.�q<+� �� ��0���� P1. 

9.3.2 q' ��'�?5�� �8�D'� P2 

M��=07�� d�9�y�� ����0�� ¹ �WC مبرھنة غرين h�K �WC D,' �b ��% u �� �% )� P2 ��' 2� D,�4 &
i' v h)�! 

 
��%  [FP التدرج �C 9��#� الجداء الداخلي +� N�"
�� 3*��p i)0<. 

9.4 	�SR5'� )Discretization( 
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���0�� H10  .!�O��� ��F, ��� .!�:/�� l�F�� ��)d�Z�@( �j�E
� 3*9e� 3XR� ]!�F0��� &)d��».( 

+� ����"�� .F!�t N .�7�7y� (��:��.�*�´s�� 1�"�y� ?�W .�XR� .�q<+� \��
07� )� .�O0� :.E�Z ���' 

 h' ��· 

 
.�O0�� .!�"� .A�/�: 

(3) ���'   such that 

 
��% V )� 2 فضاء جزئي خطي� D0�� 1�"�' 1�� �W . �� ?����R� 2� �!�"�� ;��� V.  .F!�t N 2��

�0", .�O0�+� ����"�� V �¼� d�T4 �´' 	
����0
� .�XR� d�9. 

.�q<+� N P1�XF+� ��q, & (0,1) ���0��� n x 2� l�Z 0 = x0 < x1 < ... < xn < xn + 1 = 1 }�",� V  	
�
��v��: 

 

  
  

}�", ��% x0 = 0 � xn + 1 = 1. N ���)0�� h' ¡%� V  z!�"0�� 	
� 1�E0���� ��F0gs� .
��Z o� ���)# 3�
h�
<j
� 3*�
+� .h�K �WC  ! [0v+� h�4i' ��� }�"� o� (1�� h)� x = xk, k = 1,...,n.  ��)! 2��

\)j0E
� .E�Z �K ��� [0v� x ��A� [0v+� ��� M��=07� 2�E+� 2�� التكامل با1جزاء. 

 

1�"�y� 3*��p i)0<+� N �XF� 3X� ���#. 

.�q<+� ��' 2� P2 h)�# h' Q�0½ V 2� ���)0�� 2� .�)Eu 2� (��
� Ω.  &��<��� 	
� �{)+� ��v�� N
�O8! مضلعيتثليث  .FX�+ 2�15  مضلعية�
{  Ω  i)0<+� N)�:7y� N( '9�� 	XR� ���0��� &) N &w�,)
�

	
�y� (��
U0�� 2� �
U� �K 	
� w��X� h)�! i��� �
T+� ��I .d�T:�� h' ��% V 
� i)0j�7 h)�# ���)# 	
��0=+� ��
U0�� 2� �
U� �K 	
� .�X�. 
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�O8# V ��v�� 	
� .�)0�� Vh  �1' \)
% 	
� \)/L� N }�� ��)! D,' ]
<� V�W� &����+� �"� N
 ."XF0+� .�q<E
� �1'�)3 (.�q<E
� .!�L� l�F�� 1�`C N .�
�y� .�q<+� �% �C i1��7 �� �% �C h)��7 i��� 

P2. )�� l0!.�F�F% .E�Z �W ���"� M��=07�� ��
U0�� ., h > 0 (oA� .E�Z �W h)�! i���� . ��� S�� l0! })7
��
U0�� N lnL� 3X7� �
U� �K' ln· ���"+� .3XR� ��XF0�� d�T4 h�4 ��
U0�� .*9§ �!9, ������ V  ]`

�� oA0! h' h 9���0�� �{)! �EK Vh.  

9.5  ����.'� �8�D'�� ���R'� �8�D'��� �(��
������� �-�R'�   (boundary value problem) 
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10 /�"�r  

Writing down the governing equations onto the paper  
developing the appropriate numerical solution of these equations 

writing the C++ / FORTRAN program and putting it into the computer 
going through all the trials and tribulations of making the program work properly 

 

  
  
  
  
  
  



151 

  ) (Introduction to Numerical Combustion مدخل الى الحرق الحسابي

Based on 
Theroretical and Numerical Combustion (Thierry Poinsot, Denis Veynante) and 

Introduction to Combustion – Concepts and Applications, 2nd edition (Stephen R. Turns) 
���� ����� �  
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11 Introduction to mass transfer10 

 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
10 From [Turns], pp. 83-105 
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12 ��"��-5�1� 
1���� ��&Q��� g����' )Conservation equations for reacting 

flows( 

12.1  ���Q 0��V�(General forms)  

12.1.1 �� "��5����#��G'� �'�?5) primitive variables( 
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13 Some Important Chemical Mechanisms  

13.1 11 (The H2-O2 System)  

 

 

                                                      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
11 From [Turns], 148-152 
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14 Laminar premixed flames and Laminar Diffusion flames 
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15 Droplet Evaporation and Burning 
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16 Introduction to Turbulent Flows 
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17 Turbulent Premixed and Nonpremixed flames 
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18 Burning of solids 
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20  
�R?&�)Apprendices( 

20.1 ! >?&� : 4�5[ ,�-.�"	
����  �+����"t >��D'� JV�# �-  
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Conservation form    
conservation form  38:j0�� ��v��  
control volume  l�j0�� ln%  

 

 

 

 



169 

D 

English Deutsch ¿�� 
    
derivate Ableitung, 

Differentialquotient 
  

differential  3
{�:#  
distinct verschiedenr   
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explicit   
    
    

 



171 

F  

finite difference method   
fluid element  �*�� )T� 
fluid dynamics  �*�)+� .�K�%  
Flow Fluss, Stömung h�!�7  
flow field   
finite-difference methods Finite-Differenzen 

Methoden 
� ��t1���� ��:�  

flux Strom h�!�7  
friction Reibung ;��0%�  
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govering equation  .�7�7� .�1�"� 

grid   
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hyperbolic   
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integral  3
���#  
incorporate   
    
    
    
incompressible inkompressibel 3t�AT,� �  
infinitesimal   N �%)��A/�� 
inviscid nicht zähflüssig 3�9� �  
irrotational nicht rotierend ����1 �  
integral form    
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linear algebra Linerare Algebra 3XR� �e� k�<L� l
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momentum  ;�j0�� .�EK  
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numerical analysis  i1�"�� ��
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normal  )E�.!1  

 



180 

 O 

One-dimensional eindimensional �"
�� .!1�%'  
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parabolic   
panel Gruppe, Runde (�t̄��  
property Eigenschaft .��)/� 
partial differential equations  �.�*9e� .�
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(chemical) reaction  3*��EK ���:# 
rectangular   
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shear Scherung 5Z 
Shear stress Scherspannung 3/F�� 1�O�a� 
slope Anstieg (einer Funktion) 

(math.) 
  

steady-state    
source Quelle �
,  
system System .�)8��  
stress Spannung (Druckvektor) 1�O�� 
Substantial Derivate  o
��� ��F0g�� 
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time-dependend method   
Transient   
tangential  .7��  
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Uniform   
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Viscous  3�9� 
source Quelle �
,  
variable x  \)j0� x 
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calculation  Berechnung  
incorporate   
time-dependend method   
steady-state    
flow field   
Transient   
hyperbolic   
parabolic   
   
   
   
   
   
incompressible inkompressibel 3t�AT,� �  
source Quelle �
,  
vortex Wirbel .�*�� .���1  
panel Gruppe, Runde (�t̄��  
numerical analysis  i1�"�� ��
j0��  
inviscid nicht zähflüssig �9� �3  
finite-difference methods Finite-Differenzen 

Methoden 
1���� ��:�� ��t  

irrotational nicht rotierend ����1 �  
    
    
    
    
   
property Eigenschaft .��)/� 
govering equations  .�7�7�� k�1�"+�  
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integral form    
system  .�)8��  
control volume  l�j0�� ln%  
normal  .!1)E�  
tangential  .7��  
flux Strom h�!�7  
    
    
    
    
    
   
   
Uniform   
rectangular   
grid   
stress Spannung (Druckvektor) 1�O�� 
shear Scherung 5Z 
 Scherspannung 3/F�� 1�O�a� 
   
   
   
S   
   
stress Spannung σ (hat Einheit 

N/m² , d.h. die gleiche 

Einheit wie ein Druck) 

1�O��� 

   
Substantial Derivate  o
��� ��F0g�� 
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V   
Viscous  3�9� 
   
   
   
   
   
Flow Fluss, Stömung h�!�7  
calculation  Berechnung  
incorporate   
time-dependend method   
steady-state    
flow field   
Transient   
hyperbolic   
parabolic   
   
   
   
    
    
    

 

 

 


