ديناميكيات الموائع الحسابية
(CFD) (Computational Fluid Dynamics)
والحرق الحسابي
(Numerical Combustion)
including topic specific dictionnary english-arabic

Samir Mourad (Editor)
Translation English to Arab: ...

$$
\begin{gathered}
\text { (CFD) Introduction to Computational Fluid Dynamics } \\
\text { 3rd edition }
\end{gathered}
$$

John F. Wendt (Editor), A von Karman Institute Book Authors of used part: J. Anderson, R.
Grundmann
,
Theoretical and Numerical Combustion (Thierry Poinsot, Denis Veynante) and Introduction to Combustion - Concepts and Applications, $2^{\text {nd }}$ edition (Stephen R. Turns)
و مراجع اخرى
هذا الاصدار ليس بكامل. آخر تعديل:

$$
\text { الاحد، } 01 \text { أيار، } 2011
$$

6.

مدخل الى ديناميكيات الموائع الحسابية (COD) (COMPUTATIONAL FLUID DYNAMICS)
7.
مدخل 1
8. تعريفات اساسية 1.1
9. نظام الوحدات 1.2
9. مضمون الجزء الاول من الكتاب 1.3
10 1.4 الموائع (FLUIDS)
12 1.5 الكمية المتصلة. 1.4
12. 1.6
12 1.71 .7
12 قنون الغاز الكامل(IDEALGAS) 1.8
12 1.9 السريان الرنيب (STEADY FLOW)121.10 السريان المنتظم (UNIFORM FLOW) .13
1.11 خط الانسباب (STREAMLINE)13
.
1.12 أبعاد السريـن (DIMENSIONS OF FLOW)13.1.12
14
\qquad 1.141.15 المنظومة (SYSTEM) وحجم التحكم (CONTROL vOLUME) و موحل في الصغر .عضو مائعي (INFINITESIMAL FLUID (14
16 元 116
16 1.16 الضغط المقياسي و الضـغط الفر اغي
16
1.17 القوة الجسمية و القوة السطحية
16
1.18 الاجهاد القصي
18 المعادلات الاساسبية في ميكانيك الموائع(GOVERNING EQUATIONS OF FLUID DYNAMICS).2
18 2.1 مدخل
18. 2.1.1
19 2.2 الاشتقاق الكبير (The SubStantial Derivate)
22 المعنى الفيزيائية من تباعد السر عة (DIVERGENCE OF VELOCITY) 2.3
22 2.4 حفظ الكتلة (MASS CONSERVATION). 2.4
25. 2.4.1 معادلة الاستمر/ربة (continuity equation)
272.5 حفظ الطاقة(ENERGY CONSERVATION).
31 2.6
31 2.7 تلخيص المعادلات الاساسبة (GOVERNING EQUATIONS) لديناميك المو ائع مع ملاحظات
2.7.1 2 دعادلات السريان اللزجي (viscous flow) دون النظر الـى تفاعلات الكبيبائبة () without considering chemical
31.
without considering (دون النظر الى تفاعلات الكيميائية) 2.7.236.
(chemical reactions
36. 2.7.3 تعلبقات على المعادلات الاساسبية
37. 2.7.4 2.8.
38. 2.8 اشكال للمادلات الاساسية تلائم مع CFD: ملاحظات على الثكل التحفظي (CONSERVATION FORM)462.9
3 سرايين لا انضغاطية و لا لزجية (INCOMPRESSIBLE INVISCID FLOWS) : طرق حسابية معتمدة على47
52 تتصيف المعادلات التفاضلية الجزئية (Classification of Partial Differential Equations) 4.2
56General Behaviour of the different Classes of PDEs and their Relation to Fluid Dynamics 4.3
56. Hyperbolic Equations 4.3.1
59. Parabolic Equations 4.3.2
60. Elliptic Equations 4.3.3
بعض الملاحظات 61 4.3.4
61 Well-Posed Problems 4.3.5
61. References 4.3.6
62 CHAPTER 5: DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS 5
62 5.1 مدخل
63 Derivation of Elementary Finite Difference Quotients 5.2
70 Basic Aspects of Finite-Difference Equations 5.374.A General Comment 5.3.1
74 Errors and an Analysis of Stability 5.4
83 (TRANSFORMATIONS AND GRIDS)6
8385
General Transformation of the Equations 6.1
6.285
90 6.3 METRICS AND JACOBIANS 6.3
93 6.3 COORDINATE STRETCHING 6.4
97. 6.3 Boundary-Fitted Coordinate Systems 6.5
CHAPTER 7 (EXPLICIT FINITE DIFFERENCE METHODS: SOME SELECTED APPLICATIONS 7
TO INVISCID AND VISCOUS FLOWS)
111 InTRODUCTION 7.1
112 The Lax-Wendroff Method 7.2
117 MACCORMACK's METHOD 7.3
120
Stabllity Criterion 7.4
122 Selected Applications of the Explicit Time-Dependent Technique 7.5
123 Non-equilibrium Nozzle Flows 7.5.1
125 Flow Field Over a Supersonic Blunt Body 7.5.2
128. Internal Combustion Engine Flows 7.5.3
129. Supersonic Viscous Flow Over a Rearward-Facing StepWith Hydrogen Injection 7.5.4
133. Supersonic Viscous Flow Over a Base 7.5.5
136. Compressible Viscous Flow Over an Airfoil 7.5.6140.References $\quad 7.5 .7$
143 .. CHAPTER 8: BOUNDARY LAYER EQUATIONS AND METHODS OF SOLUTION 8
144 مدخل الي طريقة العناصر المنتهية (FEM) في ديناميكيات الموائع الحسابية (CFD) 9
144. 9.1 مدخل
9.2 شر حطريقة العناصر المنتية
146 (variational147.
9.3.1 9 برهان بظهر وجود حل وحبي
147. 9.3.2
147. 9.4
149 9.5 الصيغة القوية والصيغة الضعيفة احد المسائل القيمة الحدية) (BOUNDARY VALUE PROBLEM)
153. CONSERVATION EQUATIONS FOR REACTING FLOWS معادلات الاستمرارية لسرايين تفاعلية 12
153 اشكال عامة (GENERAL FORMS) 12.1
153. /ختبار المتحولة البب/هية (primitive variables) 12.1.1
154SOME IMPORTANT CHEMICAL MECHANISMS13
154 (The H2-O2 System) 13.1
155 LAMINAR PREMIXED FLAMES AND LAMINAR DIFFUSION FLAMES 14
156 DROPLET EVAPORATION AND BURNING 15
157 INTRODUCTION TO TURBULENT FLOWS 16
158 TURBULENT PREMIXED AND NONPREMIXED FLAMES 17
159 BURNING OF SOLIDS 18
160 مراجع. 19
160 I 19.1
160 II 19.2
161 ملحقات (APPRENDICES) 20
ملحق أ: مضمون كتاب "ميكانيك الموائع" لمحمد 20.1
161 هاشْم الصديق
162 20.2 ومضمون كتاب [FERZIGER, PERIC]
163 مو اضيع اضافية. 20.3
ملحق أ: مضمون كتاب THERORETICAL AND NUMERICAL CombuStion (Thierry 20.4
164 Poinsot, Denis Veynante)
Introduction to Combustion - Concepts and Applications, $2^{\text {ND }}$ ملحق: مضمون 20.5
164

\qquad
edition (Stephen R. Turns)

مدخل الى ديناميكيات الموائع الحسابية (Computational Fluid Dynamics) (CFD)
Samir Mourad (Editor)

1.1

ميكانيكا الموائع (Fluid Mechanics) هو تخصص فرعي من ميكانيكا المواد المتصلة (Mechanics Continuum) وهو معين أساسا بالموائع، اليت هي أساسا السوائل والغازات، ويدرس هذا التخصص السلوك الفيزيائي الظاهر الكلي لفذه المو اد، ويمكن تقسيمه من ناحية إلى إستاتيكا الموائع- أو دراستها في حالة عدم الحر كة، أو ديناميكا الموائع أو دراستها في حالة الحر كة، ويندرج تختها تخصصات أخرى معينة، فهناك الديناميكيات الهوائية (أيروديناميك) والديناميكيات المائية (هيدروديناميك). يسعى هذا التخصص إلى تحديد الكميات الفيزيائية الخاصة بالموائع، وذلك مثل السرعة، الضغط، الكثافة، ودرجة الحرارة، واللزوجة ومعدل التدفق، وقد ظهرت تطبيقات
حسابية حديثة لإيجاد حلول للمسائل المتصلة بميكانيكا الموائع، ويسمى التخصص المعين بذلك ديناميكيات الموائع (Computational FluidDynamics).

1.2 نظام الوحدات

النظام المستخدم هنا هو النظام العالمي للوحدات (SI).
القائمة أدناه تبين وحداته الاساسية:

الضغط	القدرة	الطاقة	القوة	درجة الحرارة	الزمن	الكتلة	الطول
Pa	W	J	N	K	s	kg	m
باسكال	وات	جول	نبوتن	كلفن	ثانية	كيلو غرام	متر

$$
1.3 \text { مضمون الجزء الاول من الكتاب }
$$

في الجزء الاول من هذا الكتيب يتناول ان شاء الله التالى: - تلخيص لميكانيكا الموائع (بالإنجليزية: Fluid Mechanics) - مدخل ملخص للتحليل عددي (بالإنجليزية: Numerics / Numerical Computation)

- اساليب ديناميكيات الموائع الحسابية (بالإنجليز ية:Computational FluidDynamics) يوجد بالغة العر بية مرجع في المادة ميكانيكا الموائع و هو كتاب ميكانيك الموائع من محمد هاشم صديق ـ 2 1.4

الموائع كجمع لكلمة مائع (fluid) تشكل بجموعة من أطوار المادة، وهي أي مادة قابلة للانسياب تحت تأثير
 .plastic solids

تصنف الموائع عادة إلى:

- موائع قابلة للانضغاط (compressible fluids) وهي الموائع اليت تتغير كثافتها بتغير الضغط الواقع عليها مثل
الغازات. و يسم ايضاً السريان الانضغاطي.
- موائع غير قابلة للانضغاط (incompressible fluids) وهي الموائع الي لا تتغير كثافتها بتغير الوضع الواقع عليها مثل السوائل. و يسم ايضاً السريان اللا انضغاطي.
- موائع نيوتنية: المائع النيوتني هو مائع تكون فيه علاقة الإجهاد ${ }^{3}$ - الانغعال (تشوه المواد نتيجة الإجهاد) علاقة خطية أي على شكل مستتيم مير من مبدأ الإحداثيات، ويعرف اسم ثابت التناسب باللزوجة. سي هذا المائع على اسم العالم اسحق نيوتن
engl. stress ${ }^{3}$


```
- موائع غير نيوتنية: مائع لا نيوتوني هو مائع لا يمكن وصف جريانه باستخدام ثابت اللزو جة. تعتبر أغلب
```

الحاليل البولميرات والبوليمرات الذائبة من الموائع اللانيوتونية والكثير من السوائل الشائعة مثل الكتشب، ذائب
النشا، الدم والشامبو

الكمية المتصلة
 1.5

يككن اعتبار المائع كمية متصلة إذا كانت أصغر مسافة في التحليل أكبر من المتوسط المسار الحر للجزئيات. L >> 1
1.6

باعتبار أن الحجم تعرف كما يلي:

$$
\rho=\lim _{\Delta V \rightarrow V_{0}}\left(\frac{\Delta m}{\Delta V}\right)
$$

حيث m الكتلة بالكيلوغرام و V/ الحجم بالمتر المكعب و وحدة الكثافة kg

$$
1.7 \text { الكثافة النسبية }
$$

هي كثاوِة المادة منسوبة إلى الكثافة المعيارية للماء ، وهي $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
s=\rho / \rho_{w}
$$

1.8 قنون الغاز الكامل (ideal gas)

$$
\begin{equation*}
p=R \rho T . . \tag{1.1}
\end{equation*}
$$

يربط القاتون الضغط المطلق للغاز p بالدرخة المطلقة للحرارة T و الكثافة م . R م ثابت . $287 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$ الغاز و قيمته للمواء
1.9 السريان الرتيب (Steady flow)

هو السريان الذي لا تتغير صفاته مع الزمن عند أي موضع محدد.

يوصف السـريان بأنه منتظم عند مقطع إذا كانت قيمة كل من خواصه ثابتة في كل نقاطط . المeطع 1.11 خط الانسياب (streamline)

يُعرف خط الانسياب بأنه الخط الذي تشكل المماسـات له في كل أخحزائه اتخاهات السـرعة
(dimensions of flow) 1.12 (أبعاد السريان
يوصف السريان بأنه أحادى، ثنائي أو ثلاثي البعد بُناءً على العدد الأدنى من
الإحداثيات المكانية التي يمكن أن يوصف بـبا. الشـكل (1.2) يعطي مثالآ لسريان أحادي البعد وآخر ثنائي البعد، حيث تعتمد السـرعة على الإحداثي h في المثال الأول وتعتمد على الاحداثيين X و h في الثاني.

$u=\mathbf{r}(\mathrm{h})$

الشكل 1.2
1.13 الاجهاد (stress)

الإحِهاد هو القوة السطحية العاملةَ على و>دة مساحة
$\sigma=\lim _{\Delta A \rightarrow 0}\left(\frac{\Delta F}{\Delta A}\right)$
و للإجهاد مركبتين إحداهما عمودية و الأخرى مماسـة $\underline{\sigma}=\underline{\sigma}_{n}+\underline{\sigma}_{t}$
ويُفضّل في ميكانيكا الموائع استخدام تعبير الضغط p في الاتحاه المتعامد حيث

$$
\underline{\sigma}_{n}=-p \underline{n}
$$

ويستخدم تعبير الإخهاد القصي τ في الاتجاه المماس >يث $\underline{\sigma}_{t}=\underline{\tau}$ وبذلك
$\underline{\sigma}=-p \underline{n}+\underline{\tau}$ (1.2)
(turbulent flow) السريان المأر 1.14 السريان الصفائحي (laminar flow)
يتصف السريان الصفائحي بثبات الشكل والانسيابية بحيث يمكن اعتبار طبقاته تنزلق فوق بعضها البعض في شكل صفائح أو رقائق، بينما يتصف السريان المائر بالعنف والاضطربراب. يِمكن استتباط الأسـس التي تحكم تحول السريان من إحدى الحالتين إلى الأخرى بتأملى سريان الماء من صنبور. عند فتح الصنبور قليلاً نلاحط انتظاماً في سـريان الماء وثباتات في شـكله دون اضطراب كأنه مكون من صفائح أسطووانية تنزلق على بعضـيا البعض. يوصف هذا السريان بأنه صفائحي. بزيادة معدل السريان يمُور الماء و يضطرب ويفقد انتظامه ويوصف حينئذِ بأنه مائر.
 يحدث بزيادة السرعة أو زيادة القطر أو إنقاصט اللزوجة. ويحمع المتغيرات الثلاثة مقدار لأُعدي يعرف بعدد رينولز Re يحكم التحول المذكور. و يحدث هذا التحا التحول السريان في الأنابيب في المدى 2000 الان $2000 \geq$. و يسمى عدد رينولز الذي يحدث عنده التحول عدد رينولز الحرج يتسم توزيع السرعة اللسريان الصفائحي داخل الأنابيب بشكل المقطع المكافئ بينما يكون هذا التوزيع معقداً نسبياً في حالة السريان المائر.
1.15 المظرمة (system) وحجم التحكم (control volume) و موحل في الصغر.عضو مائعي (infinitesimal fluid element)

الشكل 1.3

المنظومة معنية بكمية محددة من المادة يحدها عن بقية المائع جدار تخيلي أو حقيقي ويمكن أن يتغير موقعِبا وشكللها مع الوقت. >جم التحكم منطقة محددة وثابتة في المكان، ويمكن أن تتغير المادة داخل >هحم التحكم مع الزمن. الشكل (1.3) يبين أمثلة

للمeهومين.
هذا الحجم التحكم مرسوم في الشكل (1.3.1 a) على اليسار ولكن ايضاً بيكن ان ننظر الى حجم التحكم كما هو في الشكل (1.3.1 a) على اليمين و هو حجم التحكم يتحرك كمع السريان.

Fig. 1.3.1 a, left side: finite control volume V , an a finite control surface S fixed in space:
The fluid equations the we directly obtain by applying the fundamental physical principles to a finite control volume are in integral form. These integral forms of the governing equations can be manipulated to indirectly obtain partial differential equations. The equations so obtained, in either integral or partial differential form, are called the conservation form of the governing equations.

The equations obtained from the finite control volume moving with the fluid (Fig. 1.3.1 a, right side), in either integral or partial differential form, are called the nonconservation form of the governing equations.
If we consider a infinitesimal fluid element, which is fixed is space (Fig. 1.3.1 b, left side), we can directly derive the partial differential equations. This is again the conservation form.
If we consider a infinitesimal fluid element, which is moving is space (Fig. 1.3.1 b, right

| side), we can directly derive the partial
 differential equations. This is again the non- |
| :--- | :--- | :--- |
| conservation form. |

1.16 الضغط المقياسي والضغط الفراغي

> الضغط المقياسـي = الضغط المطلق - الضغط الجوي
> الضغط الفراغي = - الضغط المقياسـي
1.17 القوة الجسمية والقوة السطحية

القوة الجسمية هي التي تنشأ عن كتلةَ الجسـم مثل وَوة الجاذبية والقوة الكهروماغنطيسية. والقوة السطحية هي تلك التي تعمل على سطحَ المادة وتنحصر في الضغط والقصص.
1.18 الاجهاد القصي

$$
\begin{aligned}
& \text { تُنسب إلى نيوتن العلاقة النظرية بين الإحماد القصي } \tau \text { وممال السرعة في الاتجاه } \\
& \text { المتعامد } \frac{\partial u}{\partial y} \text { للسـريان الصفائحي وههي: }
\end{aligned}
$$

تُعطِي علاقة خطية بين القص وممال السرعة موائع لانيوتونِة. أمثلةًّ لـا البوية و النفط الشمعي.

تؤثر در>ة الحرارة في قيمة اللزوجهة >يث تنقص مع ازدياد الحرارة للسوائلل وتزيد مع ازدياد الحرارة للغازات . تُعرّف اللزو>ة الكينماتية v كما يلى:

$$
v=\frac{\mu}{\rho}
$$

2 المعادلات الاساسية في ميكانيك الموائع (Governing Equations of Fluid Dynamics)

التالي منبي على [صديق]، فصل 2 و [Anderson 1991].
2.1

الاساس في CFD هو المعادلاب الاساسية في ميكانيك الموائع و هي معادلات الخظ الثلاث:
حغظ الكتلة) mass conservation) و حفظ الطاق (energy conservation) و حفظ كمية التحرك montum (conservation). و قدم لذلك بتعريف متجه السريان الذي يشكل عنصراً مشتر كاً في كل معادلات الخفظ. 2.1.1 متجه السريان

الشكل 2.1

الحجم التحكمي الموضح في الشكل (2.1) حجمه V و مساحته A. بالتر كيز على المساحة التفاضلية dA فان

$$
\begin{align*}
& \text { تزاو ية } \alpha \text { مع المتجه أحادي الطول nِ المتعامد على المساحة dA } \\
& \mathrm{d} \underline{\mathrm{~A}}=\underline{\mathrm{n}} \mathrm{dA} \\
& d m=\rho d V=\rho \boldsymbol{v} \cos \alpha d A=\rho \underline{\mathbf{v}} \cdot d \underline{A} \\
& \text { m = معدل سـريان الكتلة عبر كل السططة } \\
& \dot{m}=\oiint_{A} \rho \underline{v} \cdot d \underline{A} \tag{2.1}
\end{align*}
$$

$$
\begin{align*}
& \text { نُعرفَ متجه سريان الكتلة كما يلي: } \\
& \rho \underline{\boldsymbol{v}}=\text { متجه سريان الكتلة = (متجه السرعة) (الكتلة في وحدة حمحمية) } \\
& \text { وبالمثل: } \\
& \text { متجه سريان الطاقة = (متجه السرعة) (الطاقة في وخدة >>مية) } \\
& =\rho\left(e+\frac{\mathrm{v}^{2}}{2}+g z\right) \underline{\boldsymbol{v}} \\
& \text { متجه سريان كمية التحرك = (متجه السـرعة) (كمية التحرك في وحدة >جمية) } \\
& =\rho u \underline{\boldsymbol{v}}, \rho \underline{v} \underline{\boldsymbol{V}}, \rho \underline{w} \underline{\boldsymbol{v}} \\
& \text { في الاتجاهات } z, y, x \text { على التوالي. } \\
& \text { وبذلك فان معدل سـريان الطاقة عبر السطة A A } \\
& \left.\oiint \rho\left(e+\frac{\mathrm{v}^{2}}{2}+g z\right) \underline{\boldsymbol{v}} \cdot d \underline{A} \ldots .2\right) \\
& \text { ومعدل سـريان كمية التحرك عبر السطحة A = } \\
& \oiint_{A} \rho \underline{v}(\underline{v} \cdot d \underline{A}) \tag{2.3}
\end{align*}
$$

2.2 الاشتقاق الكبير (The Substantial Derivate)

As a model for the flow, we will adopt the picture shown at the right of Fig. 1.3.1 (b).

كنموذج (model) للسريان سنأخذ الصورة الي هي على اليمين من الشكل (b)1.3.1 وهو

Namely that of an infinitesimally small fluid element moving with the flow. The motion of the fluid element is shown in detail in Fig. 2.2.1.
Here, the fluid element is moving through cartesian space. The unit vectors along the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis are $\vec{i}, \vec{j}, \vec{k}$. The vector velocity field in this cartesian space is given by
$\vec{V}=u \vec{i}+v \vec{j}+w \vec{k}$
Where the components of velocity are given respectively by
$u=u(x, y, z, t)$
$v=v(x, y, z, t)$
$w=w(x, y, z, t)$

Note that we are considering in general an unsteady flow, where u, v, and w are functions of both space and time, t. In addition the scalar density field is given by $\rho=\rho(x, y, z, t)$.
Fig. 2.2.1 ([Wendt 2009], Fig. 2.2)

At the time t_{1} the fluid element is located at point 1 in Fig. 2.2.1. At this point and time, the density of the fluid element is $\rho_{1}=\rho\left(x_{1}, y_{1}, z_{1}, t_{1}\right)$

At a later time t_{2} the fluid element has moved to the point 2 where the density is $\rho_{2}=\rho\left(x_{2}, y_{2}, z_{2}, t_{2}\right)$

Since $\rho=\rho(x, y, z, t)$, we can expand this function in a Taylor's series about point 1 as follows:
$\rho_{2}=\rho_{1}+\left(\frac{\partial \rho}{\partial x}\right)_{1}\left(x_{2}-x_{1}\right)+\left(\frac{\partial \rho}{\partial y}\right)_{1}\left(y_{2}-y_{1}\right)+\left(\frac{\partial \rho}{\partial z}\right)_{1}\left(z_{2}-z_{1}\right)+\left(\frac{\partial \rho}{\partial t}\right)_{1}\left(t_{2}-t_{1}\right)+($ higher order terms $)$
With ignoring the higher order terms we obtain

$$
\begin{equation*}
\frac{\rho_{2}-\rho_{1}}{t_{2}-t_{1}}=\left(\frac{\partial \rho}{\partial x}\right)_{1}\left(\frac{x_{2}-x_{1}}{t_{2}-t_{1}}\right)+\left(\frac{\partial \rho}{\partial y}\right)_{1}\left(\frac{y_{2}-y_{1}}{t_{2}-t_{1}}\right)+\left(\frac{z_{2}-z_{1}}{t_{2}-t_{1}}\right)\left(\frac{\partial \rho}{\partial z}\right)_{1}+\left(\frac{\partial \rho}{\partial t}\right)_{1} \tag{2.1.1}
\end{equation*}
$$

Eq. (2.1.1) is physically the average time-rate-of-change in density of the fluid element as it moves from point 1 to point 2. In the limit, as t_{2} approaches t_{1}, this term becomes
$\lim _{t_{2} \rightarrow t_{1}}\left(\frac{\rho_{2}-\rho_{1}}{t_{2}-t_{1}}\right) \equiv \frac{D \rho}{D t}$
$\frac{D \rho}{D t}$ is a symbol for the instantaneous
time rate of change of density.

By definition, this symbol is called the substantial derivate, D/Dt.
$\frac{D \rho}{D t}$ is the time rate of change of density of the given fluid element. Our eyes are locked with the fluid element, not with the point in the space. So $\frac{D \rho}{D t}$ is different physically and numerically from $\left(\frac{\partial \rho}{\partial t}\right)_{1}$ which is physically the time rate of change of density at the fixed point 1.
Returning to Eq. (2.1.1), note that
$\lim _{t_{2} \rightarrow t_{1}}\left(\frac{x_{2}-x_{1}}{t_{2}-t_{1}}\right) \equiv u$
$\lim _{t_{2} \rightarrow t_{1}}\left(\frac{y_{2}-y_{1}}{t_{2}-t_{1}}\right) \equiv v$
$\lim _{t_{2} \rightarrow t_{1}}\left(\frac{z_{2}-z_{1}}{t_{2}-t_{1}}\right) \equiv w$
Thus, taking the limit of Eq.(2.1.1) as
$t_{2}-t_{2}$, we obtain
$\frac{D \rho}{D t} \equiv \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}$
From (2.1.2) we obtain an expression for the substantial derivate in cartesian coordinates
$\frac{D}{D t} \equiv \frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}$
In cartesian coordinates the vector operator ∇ is defined as
$\nabla \equiv \vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}$
Hence Eq.(2.1.3) can be written as
$\frac{D}{D t} \equiv \frac{\partial}{\partial t}+(\vec{V} \cdot \nabla)$
Eq.(2.1.5) represents a definition of the substantial derivative operator in vector notation; thus it is valid for any coordinate system.
$\frac{\partial}{\partial t}$ is called the local derivative which is physically the time rate the time rate of change at a fixed point; $\vec{V} \cdot \nabla$ is called the consecutive derivative, which is
physically the time rate of change due to the movement of the fluid element from one location to another in the flow field where the flow properties are spatially different. The substantial derivative applies to any flow-field variable, for example, $\mathrm{Dp} / \mathrm{Dt}, \mathrm{DT} / \mathrm{Dt}, \ldots$, where p and T are static pressure and temperature respectively.

The substantial derivative is essentially the same as the total differential from calculus. Therefore, the substantial dervative is nothing more than a total derivative with respect to time.

المعن الفيزيائية من تباعد السرعة

$\nabla \cdot \vec{V}$ (divergence of velocity) تباعد السرعة

$$
\begin{equation*}
\nabla \cdot \vec{V}=\frac{1}{\delta V} \frac{D(\delta V)}{D t} \tag{2.4}
\end{equation*}
$$

is physically the time rate of change of the volume of a moving fluid element, per unit $\nabla \vec{V}$ volume.
 ذلك حسب الحجم التحكمم (per control volume)

2.4

صيغة قانون حفظ الكتلة مطبقاً على سريان المائع:
"معدل تراكم الكتلة داخل الحجم التحكمي مضافاً إليه خالص معدل سريان الكتلة إلى خارج الحجم التحكمي .يساوي صفر
$\oiiint_{V} \rho d V=$ الكتلة الكلية داخل الححم التحكمي
معدل ازدياد الكتلة داخل الحجم التحكمي (control volume):

$$
\begin{aligned}
& \frac{\partial}{\partial t} \oiiint_{V} \rho d V=\oiiint_{V} \frac{\partial \rho}{\partial t} d V \\
& \text { لأن حدود التكامل لا تعتمد على الوقت. } \\
& \text { من المعادلة (2.1) خالص سريان الكتلة إلى خارج الخجم التحكمي } \\
& =\oiint_{A} \rho \underline{\mathrm{v}} \cdot d \underline{A}
\end{aligned}
$$

$$
\left.\oiint_{V} \frac{\partial \rho}{\partial t} d V+\oiint_{A} \rho \underline{\mathrm{v}} \cdot d \underline{A}=0 .4\right) ~(2, ~) ~
$$

المادلة (2.4) هي معادلة حفظ الكتلة في الصورة التكاملية (integral form).

تطبيق على سريان رتيب أحادي البعد (الشكل 2.2): الحد الأول في المعادلة (2.4) يساوي صفر نسبةً لرتابة السريان.
 السطحان (3) و (4) لا تعبرهما كتلة ولذلك يصير فيهما تكامل الحد الثاني من معادلة الكتلة صفراً .

$$
\begin{aligned}
& \text { : تُختزل معادلة الكتلة بذلك إلى الصورة } \iint_{A 1} \rho_{1} \underline{\mathrm{v}}_{1} \cdot d \underline{A}_{1}+\iint_{A 2} \rho_{2} \underline{\mathrm{v}}_{2} \cdot d \underline{A}_{2}=0
\end{aligned}
$$

و بملاحظة أن المتجه A يتجه إلى خارج الحجم التحكمى

$$
-\iint_{A 1} \rho_{1} \mathrm{v}_{1} d A_{1}+\iint_{A 2} \rho_{2} \mathrm{v}_{2} d A_{2}=0
$$

$$
-\rho_{1} \boldsymbol{v}_{1} A_{1}+\rho_{2} \boldsymbol{v}_{2} A_{2}=0
$$

$$
\begin{equation*}
\rho V A=\text { = ثابت... } \tag{2,5}
\end{equation*}
$$

يطلق هذا الاسم عامةً على معادلة حفظ الكتلة في صورچًا التفاضلية. بلدء من المعادلة (2.4) يمكن تويل الحد الثاين من صورة التكامل السطحي الى صورة التكامل الحجمي باستخدام نظرية التباعد (divergence theorem). To obtain the basic equations of fluid motion,

$$
f=f(x, y, z) \quad 1
$$

فان مال f هو المدجه:

$$
\begin{equation*}
\nabla \mathrm{f}=\frac{\partial f}{\partial x} \underline{i}+\frac{\partial f}{\partial y} \underline{j}+\frac{\partial f}{\partial z} \underline{k} . \tag{1}
\end{equation*}
$$

$$
3 \text { تربط نظرية التباعد التكامل الحجمى و التكامل السطكحى بالعلاقة }
$$

$$
\begin{equation*}
\oiiint_{V}(\nabla \cdot \underline{\varphi}) d V=\prod_{A} \underline{\varphi} \cdot d \underline{A} . \tag{3}
\end{equation*}
$$

always the following way is followed:
Choose the appropriate fundamental physical principles from physics
Apply these physical principles to a suitable model of the flow.
From this application, extract the mathematical equations which embody such physical principles.
So, in our case the physical principle is:
"Mass is Conserved".

$$
\begin{align*}
& \oiiint_{V} \frac{\partial \rho}{\partial t} d V+\oiiint_{V}(\nabla \cdot \rho \underline{v}) d V=0 \\
& \oiiint_{V}\left(\frac{\partial \rho}{\partial t}+\nabla \cdot \rho v\right) d V=0 \\
& \text { تبعاً لقو انين التكامل تكون قيمة المكامَل صغر اً إذا كانت قيمة التكامل صغراً و كانت حدود التكامل اختياريةً. } \\
& \frac{\partial \rho}{\partial t}+\nabla . \rho \underline{v}=0 . \\
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0 \\
& \text {.......................(2.6b) } \\
& \text { حيث } w, v, u \text { هي مر كبات السرعة في الاتحاهات } z, y, x \\
& \text { و في حال ان السريان لا انضغاطي (incompressible flow) } \\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 . \tag{2.7}
\end{align*}
$$

الحدان الاوليان في جانب المعادلة الأيمن يعبر ان عن القدرة المبذولة على المائع داخل الخجم التحكمي، و سر يان الحرارة إلى داخل الخجم التحكمي. بتجاهل اللزج (viscosity) يصبح الإجهاد (stress) σ :

$$
\underline{\sigma}=-p \underline{\sim}
$$

$$
\begin{align*}
& \oiiint_{V} \frac{\partial}{\partial t}\left[\rho\left(e+\frac{v^{2}}{2}+g z\right)\right] d V+\oiint_{A} \rho\left(e+\frac{v^{2}}{2}+g z\right) \underline{v} \cdot d \underline{A}=-\oiint_{A} p \underline{v} \cdot d \underline{A}+P+\dot{Q} \\
& \oiiint_{V} \frac{\partial}{\partial t}\left[\rho\left(e+\frac{v^{2}}{2}+g z\right)\right] d V+\oiint_{A} \rho\left(e+\frac{p}{\rho}+\frac{v^{2}}{2}+g z\right) \underline{v} \cdot d \underline{A}=P+\dot{Q} \ldots \ldots \ldots . .(2.8) \tag{2.8}
\end{align*}
$$

تطبيق على سـريان رتيب أحادي البعد:

عبر الأسططح (3) و (4). وبذلك تُختزل المعادلة إلى الصورة

2.5 الشكل

$$
-\rho_{1}\left(e_{1}+\frac{p_{1}}{\rho_{1}}+\frac{v_{1}^{2}}{2}+g z_{1}\right) v_{1} A_{1}+\rho_{2}\left(e_{2}+\frac{p_{2}}{\rho_{2}}+\frac{v_{2}^{2}}{2}+g z_{2}\right) v_{2} A_{2}=P+\dot{Q}
$$

بالاستعانة بمعادلة >فظ الكتلة للسـريان الرتيب أحادي البعد (2.5)

$$
\rho_{1} \boldsymbol{v}_{1} A_{1}=\rho_{2} \boldsymbol{v}_{2} A_{2}=\dot{m}
$$

$$
\dot{m}\left(e_{1}+\frac{p_{1}}{\rho_{1}}+\frac{v_{1}^{2}}{2}+g z_{1}\right)+P+\dot{Q}=\dot{m}\left(e_{2}+\frac{p_{2}}{\rho_{2}}+\frac{v_{2}^{2}}{2}+g z_{2}\right)
$$

$$
\begin{equation*}
\frac{e_{1}}{g}+\frac{p_{1}}{\rho_{1} g}+\frac{v_{1}^{2}}{2 g}+z_{1}+\frac{P}{\dot{m} g}+\frac{\dot{Q}}{\dot{m} g}=\frac{e_{2}}{g}+\frac{p_{2}}{\rho_{2} g}+\frac{v_{2}^{2}}{2 g}+z_{2} \tag{2.9}
\end{equation*}
$$

$$
\dot{Q}=0 \quad \text { في كثير من التطبيقات الهندسيةَ يمكن تجاهل انتقال الحرارة }
$$

$$
T_{1}=T_{2}, e_{1}=e_{2} \quad \text { و تخاهل التغير في درجة الحرارة }
$$

$$
\rho_{1}=\rho_{2}=\rho \quad \text { ويمكن اعتبار السريان لا انضغاطي }
$$

في حال أن القدرة P موحبة فإنها تمثل مضخة و إذا كانت سـالبة فتمثل عنَفة. في >ال عدم وحود مضخة أو عنفة بين المeطعين (1) و (2) تصبح المعادله (2.10)

$$
\begin{equation*}
\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2}=\text { g/S/l caull } \tag{2.11}
\end{equation*}
$$

\qquad
أي: السـمت الكلي = سـمت الرفع + سـمت السـرعة + سـمت الضغط

الشكل (2.6)
(أ) معادلهَ حفظ الكتلة (2.5) للسـريان اللاإنضغاطى تُعطي

$$
\begin{gathered}
\boldsymbol{v}_{u} \cdot A_{u}=\boldsymbol{v}_{d .} \cdot A_{d}=\dot{V}=0.015 \mathrm{~m}^{3} / \mathrm{s} \\
v_{u}=\frac{0.015}{\frac{\pi}{4}(0.154)^{2}}=0.81 \mathrm{~m} / \mathrm{s} \\
v_{d}=\frac{0.015}{\frac{\pi}{4}(0.102)^{2}}=1.84 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

حيث اللاحقة $ل$ تعني صعيد المضخةَ و اللاحقة d تعني سافل المضخة.

$$
\begin{aligned}
& \text { (ب) معادلة الطاقة لهذه الحالة (2.10) } \\
& \frac{p_{1}}{\rho g}+\frac{v_{1}{ }^{2}}{2 g}+z_{1}+\frac{P}{m g}=\frac{p_{2}}{\rho g}+\frac{v_{2}{ }^{2}}{2 g}+z_{2} \\
& P=\dot{m} g\left[\frac{p_{2}-p_{1}}{\rho g}+\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2 g}+\left(z_{2}-z_{1}\right)\right] \\
& \text { المقطعان (1) و (2) مفتو>ان للججو و يعني ذلك } \\
& p_{1}=p_{2}=p_{d} \\
& p_{2}-p_{1}=O \\
& z_{2}-z_{1}=8 \text { كما أن } \\
& \text { السطح (1) سطح النيل: سـرعة نقصانه صفر ! } \\
& v_{1}=0, v_{2}=v_{d} \\
& \text { معدل سـريان الكتلة } \\
& \dot{m}=\rho \dot{V}=1000(0.015)=15.0 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

وتصبح المعادلة

$$
P=(15.0)(9.81)\left[\frac{(1.84)^{2}}{2(9.81)}+8\right]=\mathbf{1 2 0 3 W}
$$

1.2 kW = القدرة الخارجة

يستمد هذا القانون من قانون نيوتن الثاين (Second Newtonian Law) للحر كة مطابقاً على حخم التحكمي: "معدل تراكم كمية التحرك داخل الحجم التحكمي مضافاً اليه خالص معدل سريان كمية التحرك إلى خارج الحجم التحكمي بإنتقال الكتلة يعادل بجموع القوى المؤثرة على المائع."

$$
\frac{\partial}{\partial t} \oiiint_{V}(\rho \underline{v}) d V+\oiint_{A} \rho \underline{v}(\underline{v} \cdot d \underline{A})=\oiiint_{V} \underline{B} d V+\oiint_{A} \underline{\sigma} d A
$$

$$
\begin{equation*}
\oiiint_{V} \frac{\partial}{\partial t}(\rho \underline{v}) d V+\oiint_{A} \rho \underline{v}(\underline{v} \cdot d \underline{A})=\oiiint_{V} \underline{B} d V+\oiint_{A} \underline{\sigma} d A \tag{2.12}
\end{equation*}
$$

نستر>ع هنا أن الإجحباد الجسمية على وحدهَ حجمية و تتمثل في الأحوال الأعم في قوة الجاذبية على وحدة

$$
\text { . } \underline{B}=-\rho g \underline{k} \underline{م ي ة ~ ا ٔ ي ~}
$$

```
تلخيص المعادلات الاساسية (governing equations) لديناميك الموائع مع ملاحظات
```

limiting our considerations to a homogenous, non- chemically reacting gas. Combustion for example is a flow with a chemical reaction. If diffusion were to be included, there would be additional continuity equations - the species continuity equations involving mass transport of chemical species i due to a concentration gradient in the species. Moreover the energy equation would have an additional term to account for energy transport due to the diffusion of species. With the above restrictions in mind, the governing equations for an unsteady, three-dimensional,	
compressible, viscous flow are:	

(Conservation form - [Wendt 2009], Eq. 2.27)	
$\frac{\partial \rho}{\partial t}+\nabla(\rho \cdot \vec{V})=0$	
Equation [Wendt 2009], (2.18) is the continuity equation in non-conservation form. Note that: 1. By applying the model of an infinitesimal fluid element, we have obtained Eq. [Wendt 2009],	
(2.18) directly in partial differential form.	
2. By choosing the model to be moving with the	
flow, we have obtained the non-conservation	
form of the continuity equation, namely Eq.	
[Wendt 2009], (2.18).	
Equation [Wendt 2009], (2.27) is the continuity	
equation in conservation form. Note that:	

${ }^{6}$ Integral form of the continuity equation: ([Wendt 2009], Eq. 2.23) $\frac{\partial}{\partial t} \oiiint_{\mathscr{V}} \rho \mathrm{d} \mathscr{V}+\oiiint_{S} \rho \vec{V} \cdot \overrightarrow{\mathrm{~d}} S=0$

1. By applying the model of an finite control volume, we have obtained Eq. [Wendt 2009], (2.23) directly in integral form. ${ }^{6}$ Only after some manipulation of the integral form the partial differential form, namely Eq. [Wendt 2009], (2.27), is obtained.
2. By choosing the model to be fixed in space, we have obtained the conservation form of the continuity equation, namely Eqs. [Wendt 2009], (2.13) and (2.27).

in the x -direction $=\rho f_{x}(d x d y d z)$. Surface forces, which act directly on the surface of the fluid element. They are due to only two sources: (a) pressure distribution acting on the surface, imposed by the outside fluid surrounding the fluid element, and (b) the shear and normal stress distributions acting on the surface, also imposed by the outside fluid "tugging" or "pushing" on the surface by means of friction.	والمغناطسية. 2 2 قوات سطحية التي تتفاعل مباشنرة على سطع
(Conservation form - [Wendt 2009], Eqs. 2.42a-c)	
$\begin{aligned} & \text { x-component: } \frac{\partial(\rho u)}{\partial t}+\nabla \cdot(\rho u \vec{V})=-\frac{\partial p}{\partial x}+\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y} \\ & \text { y-component: } \frac{\partial(\rho u)}{\partial t}+\nabla \cdot(\rho v \vec{V})=-\frac{\partial p}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y} \\ & \text { z-component: } \frac{\partial(\rho w)}{\partial t}+\nabla \cdot(\rho w \vec{V})=-\frac{\partial p}{\partial z}+\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y} \end{aligned}$	$\begin{aligned} & -\frac{\partial \tau_{z x}}{\partial z}-\rho f_{x} \\ & -\frac{\partial \tau_{z y}}{\partial z}-\rho f_{y} \\ & +\frac{\partial \tau_{z z}}{\partial z}-\rho f_{z} \end{aligned}$
Energy equation (Non-conservation form - [Wendt 2009], Eq. 2.52)	معادلة الطاقة
$\begin{aligned} & \rho \frac{D}{D t}\left(e+\frac{V^{2}}{2}\right)=\rho q+\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}(k) \\ & -\frac{\partial(u p)}{\partial x}-\frac{\partial(v p)}{\partial y}-\frac{\partial(w p)}{\partial z}+\frac{\partial\left(u \tau_{x x}\right)}{\partial x} \\ & +\frac{\partial\left(u \tau_{y x}\right)}{\partial y}+\frac{\partial\left(u \tau_{z x}\right)}{\partial z}+\frac{\partial\left(v \tau_{x y}\right)}{\partial x}+\frac{\partial\left(v \tau_{y y}\right)}{\partial y} \\ & +\frac{\partial\left(v \tau_{z y}\right)}{\partial z}+\frac{\partial\left(w \tau_{x z}\right)}{\partial x}+\frac{\partial\left(w \tau_{y z}\right)}{\partial y}+\frac{\partial\left(w \tau_{z z}\right)}{\partial z}+\rho \vec{f} \cdot \vec{V} \end{aligned}$	
(Conservation form - [Wendt 2009], Eq. 2.64)	

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\rho\left(e+\frac{V^{2}}{2}\right)\right]+\nabla \cdot\left[\rho\left(e+\frac{V^{2}}{2} \vec{V}\right)\right] \\
& =\rho q+\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right) \\
& +\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)-\frac{\partial(u p)}{\partial x}-\frac{\partial(v p)}{\partial y}-\frac{\partial(w p)}{\partial z}+\frac{\partial\left(u \tau_{x x}\right)}{\partial x} \\
& +\frac{\partial\left(u \tau_{y x}\right)}{\partial y}+\frac{\partial\left(u \tau_{z x}\right)}{\partial z}+\frac{\partial\left(v \tau_{x y}\right)}{\partial x}+\frac{\partial\left(v \tau_{y y}\right)}{\partial y} \\
& +\frac{\partial\left(v \tau_{z y}\right)}{\partial z}+\frac{\partial\left(w \tau_{x z}\right)}{\partial x}+\frac{\partial\left(w \tau_{y z}\right)}{\partial y}+\frac{\partial\left(w \tau_{z z}\right)}{\partial z}+\rho \vec{f} \cdot \vec{V}
\end{aligned}
$$

2.7.2 معادلات السريان الا لزجي (inviscous flow) دون النظر الى تفاعلات الكيميائية (without considering chemical reactions) (

Here are the viscous terms of the above equations dropped.
2.7.3 تعليقات على المعادلات الاساسية

Surveying the above governing equations, several comments and observations can be made:

1. They are coupled system of non-linear partial differential equations, and hence are very difficult to solve analytically. To date, there is no general closed-form solution to these equations.
2. For the momentum and energy equations, the difference between the non-conservation and conservation forms of the equation is just the lefthand side.
3. Note that the conservation form of the equationscontain terms on the left-hand side which include the divergence of some quantity, such as $\nabla \cdot(\rho \cdot \vec{V}), \nabla \cdot(\rho u \vec{V})$, etc. For this reason, the conservation form of the governing equations is sometimes called the divergence form.
4. The normal and stress terms in these equations are functions of the velocity gradients, as given by [Wendt 2009], Eqs. (2.43a-f).
5. The system contains five equations in terms of six
unknown flow-field variables, ρ, p, u, v, w, e. In aerodeynamics, it is generally reasonable to assume the gas is a perfect gas (which assumes that intermolecular forces are negligible). For a perfect gas, the equation of state is
$p=\rho R T$,
where R is the specific gas constant. This provides a sixth equation, but it also introduces a seventh unknown, namely temperature, T. A seventh equation to close the entire system must be a thermodynamic relation between state variables. For example,
$e=e(T, p)$
For a calorically perfect gas (constant specific heats), this relation would be
$e=c_{v} T$
where c_{v} is the specific heat at constant volume.
6. Historically, the momentum equations for a viscous flow are called the Navier-Stokes equations. However, in modern CFD literature, "a Navier-Stokes solution" simply means a solution of a viscous flow problem using full governing equations (including continuity as well as energy and momentum).

(boundary conditions) لاحوال الجدارية

The boundary conditions, and sometimes the initial conditions, dictate the particular solutions to be obtained from the governing equations. (This makes the difference for example between the flow over a Boing 757 or past a wind mill, although the equations are the same). For a viscous fluid, the boundary condition on a surface assumes no relative velocity between the surface and the gas immediately at the surface. This is called the no-slip condition. If the surface is stationary, then
$u=v=w=0$ at the surface
(for a viscous flow)
For an inviscid fluid, the flow slips over the surface (there is
no friction to promote its 'sticking' to the surface); hence, at the surface, the flow must be tangent to the surface.
$\vec{V} \cdot \vec{n}=0$ at the surface
(for a inviscid flow)
where \vec{n} is a unit vector perpendicular (that means orthogonal) to the surface. The boundary conditions elsewhere in the flow depend on the type of problem being considered, and usually pertain to inflow and outflow boundaries at a finite distance from the surfaces, or an 'infinity' boundary condition infinitely far from surface.

The boundary conditions discussed above are physically boundary conditions in nature.
In CFD we have a additional concern, namely the proper numerical implementation of the boundary conditions.
2.8 اشكال للمادلات الاساسية تلاثم مع CFD: ملاحظات على الشكل التحظظي (conservation form)

نستطيع ان نكتب بمموعة المعادلات الاساسية بالشكل التحفظي (conservation form) بالشكل العام التالي:

$$
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}+\frac{\partial H}{\partial z}=J
$$

[Wendt], Eq. 2.65

\square

In [Wendt], Eq. 2.65, the column vectors F, and H are called the flux terms (or flux vecto and J represents a 'source term' (which is zero body forces are negligible). For an unste problem, U is called the solution vector beca the elements in $U\left(\rho, \rho u, \rho_{v}\right.$, etc. $)$ are dependent variables which are usually solv numerically in steps of time. Please note that this formalism, it is the elements of U that obtained computationally, i.e. numbers obtained for the products $\rho, \rho u, \rho v, \rho w$ $\rho\left(e+V^{2} / 2\right)$. Of course, once numbers known for these dependent variables (wh includes ρ by itself), obtaining the primitive variables is simple:	في المعادلة ، الموجهات العودية F G G G تسم الموجهات الجريانية.
$\begin{aligned} \rho & =\rho \\ u & =\frac{\rho u}{\rho} \\ v & =\frac{\rho v}{\rho} \\ w & =\frac{\rho w}{\rho} \\ e & =\frac{\rho\left(e+V^{2} / 2\right)}{\rho}-\frac{u^{2}+v^{2}+w^{2}}{2} \end{aligned}$	
For an inviscid flow, [Wendt et. al. 2009], Eq.(2.65) remains the same, except the elements of the column vectors are simplified. Examining the conservation form of the inviscid equations summerized in Sect. 2.7.2, we find that	لسريان لا لزجي المعادلة تبقى كما هي، الا ان الموجهات العامودئ Eq.(2.65) اصبحت ابسط. اذا تأملنا الشكل التحفظي للمعادلات اللا لزجية في 2.7.2 نجد ان

$U=\left\{\begin{array}{l} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho\left(e+V^{2} / 2\right) \end{array}\right\}$	$F=\left\{\begin{array}{l} \rho u \\ \rho u^{2}+p \\ \rho v u \\ \rho w u \\ \rho u\left(e+V^{2} / 2\right) u+p u \end{array}\right\}$
$G=\left\{\begin{array}{l} \rho v \\ \rho u v \\ \rho v^{2}+p \\ \rho w v \\ \rho v\left(e+V^{2} / 2\right)+p v \end{array}\right\}$	$\begin{aligned} & H=\left\{\begin{array}{l} \rho w \\ \rho u w \\ \rho v w \\ \rho w^{2}+p \\ \rho w\left(e+V^{2} / 2\right)+p w \end{array}\right\} \\ & J=\left\{\begin{array}{l} 0 \\ \rho f_{x} \\ \rho f_{y} \\ \rho f_{z} \\ \rho\left(u f_{x}+v \rho f_{y}+w \rho f_{z}\right)+p \dot{q} \end{array}\right\} \end{aligned}$
For the numerical solution of an unsteady inviscid flow, once again the solution vector is U, and the dependent variables for which numbers are directly obtained are products $\rho, \rho u, \rho v, \rho w$ and $\rho\left(e+V^{2} / 2\right)$. For a steady inviscid flow, $\partial U / \partial t=0$. Frequently, the numerical solution to such problems takes the form of 'marching' techniques; for example, if the solution is being obtained by marching in the x direction, then [Wendt et. al. 2009], Eq.(2.65) can be written as	
	$\frac{\partial F}{\partial x}=J-\frac{\partial G}{\partial y}+\frac{\partial H}{\partial z} \quad$ [Wendt], Eq. 2.66
Here, F becomes the 'solution vector', and th dependent variables for which numbers a obtained are $\rho, \rho u, \rho v, \rho w$ and $\rho\left(e+V^{2} / 2\right)$ From these dependent variables, it is still possible to obtain the primitive variable although the algebra is more complex than the previously discussed case. Notice that the governing equations whe written in the form of [Wendt et. al. 2009]	

Eq.(2.65), have no flow variables outside the single x, y, z, and t derivates. Indeed, the terms in [Wendt et. al. 2009], Eq.(2.65) have everything buried inside these derivates. The flow equations in the form of [Wendt et. al. 2009], Eq.(2.65) are said to be in strong conservation form. In contrast, examine the forms [Wendt et. al. 2009], Eq.(2.42a,b and c) and [Wendt et. al. 2009], Eq.(2.64). These equations have a number of x, y and z derivates exipliticly appearing on the right -hand side. These are the weak conservation form of the equations.
The form of the governing equations giving by Eq. (2.65) is popular in CFD; let us explain why. In flow fields involving shock waves, there are sharp, discontinuous changes in the primitive flow-field variables p, p, u, T, etc., across the shocks. Many computations of flows with shocks are designed to have the shock waves appear naturally within the computational space as a direct result of the overall flow field solution, i.e. as a direct result of the general algorithm, without any special treatment to take care of the shocks themselves. Such approaches are called shock capturing methods. This is in contrast to the alternate approach, where shock waves are explicitly introduced into the flowfield solution, the exact Rankine-Hugoniot relations for changes across a shock are used to relate the flow immediately ahead of and behind the shock, and the governing flow equations are used to calculate the remainder of the flow field. This approach is called the shock-fitting method. These two different approaches are illustrated in Figs. 2.8 and 2.9. In Fig.2.8, the computational domain for calculating the supersonic flow over the body extends both upstream and downstream of the nose. The shock wave is allowed to form within the computational domain as a consequence of the general flowfield algorithm,
[Wendt et.al.2009], Fig.2.8: Mesh for the
shock-capturing approach
without any special shock relations being introduced.
In this manner, the shock wave is captured within the
domain by means of the computational solution of the
governing partial differential equations. Therefore,
Fig. 2.8 is an example of the shock-capturing method.
In contrast, Fig. 2.9 illustrates the same flow problem,
except that now the computational domain is the flow
between the between the shock and the body. The
shock wave is introduced directly into the solution as
an explicit discontinuity, and the standard oblique
shock relations (the Rankine-Hugoniot relations) are
used the freestream supersonic flow ahead of the
shock to the flow computed by the partial differential
equations downstream of the shock. Therefore, Fig.
2.9 is an example of the shock-fitting method. There
are advantages and disadvantages of both methods.
For example, the shock-capturing method is ideal for
complex flow problems involving shock waves for
which we do not know either the location or number
of shocks. Here, the shocks simply form within the
computational domain as nature would have it.
Moreover, this takes place without requiring any
special treatment of the shock within the algorithm,
and hence simplifies the computer programming.
However, a disadvantage of this approach is that the
shocks are generally smeared over a number of grid conditions
points in the computational mesh, and hence the
numerically obtained shock thickness bears no
relation what-so-ever to the actual physical shock
thickness, and the precise location of the shock
discontinuity is uncertain within a few mesh sizes. In
contrast, the advantage of the shock-fitting method is
[Wendt et.al.2009], Fig.2.9: Mesh for the shock-fitting approach

That the shock is always treated as a discontinuity, and its location is well-defined numerically. However, for a given problem you have to know in advance approximately where to put the shock waves, and how many there are. For complex flows, this can be a distinct disadvantage. Therefore, there are pros and cons associated with both shock-capturing and shock-fitting methods, and both have been employed extensively in CFD. In fact, a combination of these two methods is used to predict the formation and approximate location of shocks, and then these shocks are fit with explicitly in those parts of a flow field where you know in advance they occur, and to employ a shock-capturing method for the remainder of the flow field in order to generate shocks that you cannot predict in advance.
Again, what does all of this discussion have to do with the conservation form of the governing equations as given by Eq. (2.65)? Simply this. For the shockcapturing method, experience has shown that the conservation form of the governing equations should be used. When the conservation form is used, the computed flow-field results are generally smooth and stable. However, when the non-conservation form is used for a shock-capturing solution, the computed flow-field results usually exhibit unsatisfactory spatial oscillations (wiggles) upstream and downstream of the shock wave, the shocks may appear in the wrong location and the solution may even become unstable. In contrast, for the shock-fitting method, satisfactory results are usually obtained for either form of the

equations-conservation or non-conservation.	
Why is the use of the conservation form of the equations so important for the shock-capturing method? The answer can be see by considering the flow across a normal shock wave, as illustrated in Fig. 2.10. Consider the density distribution across the shock, as sketched in Fig. 2.10(a). Clearly, there is a discontinuous increase in p across the shock. If the non-conservation from of the governing equations were used to calculate this flow, where the primary dependent variables are the primitive variables such as p and p, then the equations would see a large discontinuity in the dependent variable p. This in turn would compound the numerical errors associated with the calculation of p. On the other hand, recall the continuity equation for a normal shock wave (see Refs.[1,3]):	
$\rho_{1} u_{1}=\rho_{2} u_{2}$	
From Eq. (2.67), the mass flux, ρu, is constant across the shock wave, as illustrated in Fig. 2.10(b). The conservation form of the governing equations uses the product ρu as a dependent variable, and hence the conservation form of the equations see no discontinuity in this dependent variable across the shock wave. In turn, the numerical accuracy and stability of the solution should be greatly enhanced. To reinforce this discussion, consider the momentum equation across a normal shock wave [1,3]:	
$\rho_{1}+\rho_{1} u_{1}^{2}=\rho_{2}+\rho_{2} u_{2}^{2}$	
As show in Fig. 2.10(c), the pressure itself is discontinuous across the shock ; however, from Eq. (2.68) the flux variable ($\left.\rho+\rho u^{2}\right)$ is constant across the shock.	

> the use of the conservation form in contrast to the non-conservation form, which uses the primitive variables as dependent variables.
> In summary, the previous discussion is one of the primary reasons why CFD makes a distinction between the two forms of the governing equations-conservation and nonconservation. And this is why we have gone to great lengths in this chapter to derive these different forms, and why we should be aware of the differences between the two forms.

2.9 مراجع References

Anderson, John D., Jr.., Fundamentals of Aerodynamics, $2^{\text {nd }}$ Edition McGraw-Hill, New York, 1991. Liepmann, H.W. and Roshko, A., Elements of Gasdynamics, Wiley, New York, 1957.
Anderson, J.D., Jr., Modern Compressible Flow: With Historical Perspective, ${ }^{\text {nd }}$ Edition McGrawHill, New York, 1990.
Bird, R.B,. Stewart, W.E. and Lightfoot, E.N. Transport Phenomena, $2^{\text {nd }}$ edition, Wiley, 2004.
Kutler, P., 'Computation of Three-Dimensional, Inviscid Supersonic Flows,' in H.J. Wirz (ed.), Progress in Numerical Fluid Dynamics, Springer-Verlag, Berlin, 1975, pp. 293-374.

3 سرايين لا انضغاطية و لا لزجية (Incompressible Inviscid Flows) : طرق حسابية معتمدة على مؤطرات النبع و الدوامة (Source and Vortex Panel Methods)
3.1

في هذا الفصال سنظر ان شاء الله الى التحليل العددي (numerical analysis) لسر ايين (flows) لا انضغاطية finite-difference (وأبئياً يمكن ان يستخدم طريقة الغرق الخدود (inviscid) لا لز جية (incompressible) (method عدة الى حلول اكثر مناسبة لسرايين لا انضغاطية (incompressible) و لا لز جية (inviscid). هذا الفصل يناقش احد هذه الطرق - المساة طرق حسابية معتمدة على مؤطرات النبع و الدوامة (Source and Vortex Panel Methods تصنع الطياران و هذا منذ العقد 1960

طرق المؤطرات هي طرق حسابية عددية (numerical methods) تُتاج الى قوة حسابية ضخمة و لذلك كومبيوترات سريعة.
3.2 بعض الاوجهة الاساسية لسريان لا انضغاطي و لا لزجي

$$
\text { السريان الغير انضغاطي (incompressible flow) هو سر يان بكثافة (density) ثابتة (. (} \rho \text {)). }
$$

تصور عضو مائع (fluid element) بكتلة ثابتة (.) (m = const) يمري في سريان غير انضغاطي (incompressible (flow) في موازاة خط انسياب (streamline). لأن الكثافة ثابتة فبالتالي الحجم (volume) لمذا العضو مائعي هو ايضا ثابت (. V = const). و لأن نستطيع ان نكتب:
$\nabla \vec{V}=0$
ه هنا الNABLA-Operator

و إلى هذا فاذا العضو مائعي (fluid element) ايضاً لا يدور لما يتحرك في موازاة الخط الانسياب (streamline) فبالتالي هذا السريان (flow) يسم لا دوراني (irrotational). لهاذا النوع من السرايين، يمكن ان يعبر عن السرعة

$$
\operatorname{grad} \phi=\nabla \phi=\left(\begin{array}{l}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right) \phi=\left(\begin{array}{c}
\frac{\partial \phi}{\partial x} \\
\frac{\partial \phi}{\partial y} \\
\frac{\partial \phi}{\partial z}
\end{array}\right)
$$

إذا جمعنا الآن معادلة (3.1) و (3.2) نصل الى:

$$
\nabla \cdot \nabla \phi=0
$$

او،
${ }^{7} \phi$ بُعولم
$\vec{V}=\nabla \phi$

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{3.3}
\end{equation*}
$$

(3.3) تسمى معادلة Laplace’s equation) Laplace)، احد المعادلات المشهورة والمدروسة جيداً في بحال الفيزيك الرياضية (mathematical physics).
من معادلة (3.3) نرى ان سرايين (flows) لا انضغاطية (incompressible) و لا لز جية (inviscid) تُحَكَّمْ . Laplace's equation) Laplace rerادلة. و معادلة Laplace's equation) Laplace) هي خطية (linear). و لذلك كل عدد من حلول خصوصية لمعادلة (3.3) يمكن ان تز اد (added) مع بعض ليستنتج حل آخر. و هذا يُري فلسفة اساسية للم من سريان غير انضغاطي (incompressible flow) و هو ان:
 (elementary flows) من سرايين اساسية (synthesized) بالتالي سنظر إن شاء الله الى بعض السرايين اساسية (elementary flows) اليت تلائم (satisfy) مع معادلة .(Laplace's equation) Laplace

Uniform flow	
$\phi=V_{\infty} x$	

Source flow	
$\phi=\frac{\Lambda}{2 \pi} \ln r$	

Vortex flow	
$\phi=-\frac{\Gamma}{2 \pi} \theta$	

In [Wendt et. al. 2009] there are two methods described which use these elementary flows:

- Non-lifting Flows Over Arbitrary Two-Dimensional Bodies: The Source Panel Method
- Lifting Flows Over Arbitrary Two-Dimensional Bodies: The Vortex Panel Method

Also the application "The Aerodynamics of Drooped Leading-Edge Wings Below and Above Stall" is described.

Fluid (Mathematical Properties) (الخصوصيات الرياضية (المات ديناميك الموائع

(Dynamic Equations

4.1
المعادلات الاساسية من ديناميك الموائع اليت استخلصت في الباب الثاين (Chapter 2) هي اما في الشكل التفاضلي (او الشكل التكاملي (integral form).

Integral form of the continuity equation.
Eq. 2.23

Partial differential form of the momentum equations
Momentum equations
(Non-conservation form - [Wendt 2009], Eqs. 2.36a-c)
x-component: $\rho \frac{D u}{D t}=-\frac{\partial p}{\partial x}+\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+\rho f_{x}$
y-component: $\rho \frac{D v}{D t}=-\frac{\partial p}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}+\rho f_{y}$
z-component: $\rho \frac{D w}{D t}=-\frac{\partial p}{\partial z}+\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}+\rho f_{z}$

> The governing equations in the form of partial differential forms (as [Wendt et.al.2009], Eqs. 2.36 a-c, see Chapter 2.7) are by far the most prevalent form used in computational fluid dynamics (CFD). Therefore, before studying numerical methods for the solution of these equations, it is useful to examine some mathematical properties of partial differential equations themselves. Any valid numerical solution of the equations should exhibit the property of obeying the general mathematical properties of the governing equations.
> Examine the governing equations of fluid dynamics as derived in Chap. 2 . Note that in all cases the highest order derivates occur linearly, i.e. there are no products or
exponentials of the highest order derivates they appear by themselves, multiplied by coefficients which are functions of the dependent variables themselves. Such a system of equations is called a quasilinear system. For example, for inviscid flows, examining the equations in Sect. 2.7.2 we find the highest order derivates are first order and all of them appear linearly. For viscid flows, examining the equations in Sect. 2.7.1 we find the highest order derivates are second order and all of them appear linearly.
For this reason, in the next section, let us examine some properties of a system of quasilinear partial differential equations. In the process we will establish a classification of three types of partial differential equations all three of which are encountered in fluid dynamics.

4.2

(Equations

For simplicity, let us consider a fairly simple system of quasilinear equations. They will not be the flow equations, but they are similar in some respects. Therefore, this section serves as a simplified example.
Consider the system of quasilinear equations given below:

$$
\begin{aligned}
& a_{1} \frac{\partial u}{\partial x}+b_{1} \frac{\partial u}{\partial y}+c_{1} \frac{\partial v}{\partial x}+d_{1} \frac{\partial v}{\partial y}=f_{1} \\
& a_{2} \frac{\partial u}{\partial x}+b_{2} \frac{\partial u}{\partial y}+c_{2} \frac{\partial v}{\partial x}+d_{2} \frac{\partial v}{\partial y}=f_{2}
\end{aligned}
$$

[Wendt et. al. 2009], Eq. (4.1a)
[Wendt et. al. 2009], Eq. (4.1b)
where u and v are the dependent variables, functions of x and y , and the coefficients $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}, f_{1}$ and f_{2} can be functions of x, y, u and v.
Consider any point in the $x y$-plane. Let us seek the lines (or directions) through this point (if any exist) along which the derivates of u and v are indeterminant, and across which may be discontinuous. Such lines are called characteristic lines. To find such lines, we assume that are continuous, and hence
since $u=u(x, y): d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y \quad$ [Wendt et. al. 2009], Eq. (4.2a)
since $v=v(x, y): d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y \quad$ [Wendt et. al. 2009], Eq. (4.2b)

Equations [Wendt et. al. 2009], Eq. (4.1a and b) and [Wendt et. al. 2009], Eq. (4.2a and b) constitute a system of four linear equations with four unknowns $(\partial u / \partial x, \partial u / \partial y, \partial v / \partial x$, and $\partial v / \partial y)$. These equations can be written in matrix form as
$\left[\begin{array}{cccc}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ d x & d y & 0 & 0 \\ 0 & 0 & d x & d y\end{array}\right]\left[\begin{array}{l}\partial u / \partial x \\ \partial u / \partial y \\ \partial v / \partial x \\ \partial v / \partial y\end{array}\right]=\left[\begin{array}{l}f_{1} \\ f_{2} \\ d u \\ d v\end{array}\right]$

Let $[A]$ denote the coefficient matrix.
$[A]=\left[\begin{array}{cccc}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ d x & d y & 0 & 0 \\ 0 & 0 & d x & d y\end{array}\right]$

Moreover, let $|A|$ be the determinant of $[A]$. From Cramer's rule, if $|A| \neq 0$, then unique solutions can be obtained for $\partial u / \partial x, \partial u / \partial y, \partial v / \partial x$, and $\partial v / \partial y$. On the other hand, if $|A|=0$, then $\partial u / \partial x, \partial u / \partial y, \partial v / \partial x$, and $\partial \nu / \partial y$ are, at best, indeterminant. We are seeking the particular directions in the $x y$ plane along which these derivates of u and v and indeterminant. Therefore, let us set $|A|=0$, and see what happens.

| $\left\|\begin{array}{cccc}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ d x & d y & 0 & 0 \\ 0 & 0 & d x & d y\end{array}\right\|=0$ | | |
| :---: | :---: | :---: | :---: |
| Hence | | |

$$
\left(a_{1} c_{2}-a_{2} c_{1}\right)(\mathrm{d} y)^{2}-\left(a_{1} d_{2}-a_{2} d_{1}+b_{1} c_{2}-b_{2} c_{1}\right)(\mathrm{d} x)(\mathrm{d} y)+\left(b_{1} d_{2}-b_{2} d_{1}\right)(\mathrm{d} x)^{2}=0
$$

[Wendt et. al. 2009], Eq. (4.4)
Divide [Wendt et. al. 2009], Eq. (4.4) by $(d x)^{2}$.

$$
\left(a_{1} c_{2}-a_{2} c_{1}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}-\left(a_{1} d_{2}-a_{2} d_{1}+b_{1} c_{2}-b_{2} c_{1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+\left(b_{1} d_{2}-b_{2} d_{1}\right)=0
$$

[Wendt et. al. 2009], Eq. (4.5)

Equation (4.5) is a quadratic equation in dy/dx. For any point in the xy-plane, the solution of	
Eq. (4.5) will give the slopes of the lines along which the derivatives of u and v are indeterminant. These lines in the xy space along are called characteristic lines fo the system of	
equations given by Wendt et. al. 2009], Eq. (4.1a	
and 4.1b).	

Then Eq. (4.5) can be written as	

$a\left(\frac{d y}{d x}\right)^{2}+b\left(\frac{d y}{d x}\right)^{2}+c=0 \quad[$ Wendt et. al. 2009], Eq. (4.6)
Hence from the quadratic formula:

$$
\frac{d y}{d x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad[\text { Wendt et. al. 2009], Eq. (4.7) }
$$

Equation (4.7) gives the direction of the characteristic lines through a given xy point. These lines have a different nature, depending on the value of the discriminant in Eq. (4.7). Denote the dicriminant by D .
$D=b^{2}-4 a c \quad$ [Wendt et. al. 2009], Eq. (4.8)
The characteristic lines may be real and distinct, real and equal, or imaginary, depending on the value of D. Specially:
If $\mathrm{D}>0$: Two real and distinct lines exist through each point in the xy-plane. When this is the case, the system of equations given by [Wendt et. al. 2009], Eqs. (4.1 a and b) is called hyperbolic.

If $D=0$: One real characteristic exists. Here the system of equations given by [Wendt et. al. 2009], Eqs. (4.1 a and b) is called parabolic.

If $\mathrm{D}<0$: The characteristic lines are imaginary. Here the system of equations given by [Wendt et. al. 2009], Eqs. (4.1 a and b) is called elliptic.	
The classification of quasilinear PDEs as either elliptic, parabolic or hyperbolic is common in the analysis of such equations. These three classes of equations have totally different behaviour. The origin of the words elliptic, parabolic and hyperbolic is simply a direct analogy with the case for conic sections. The general equations for a conic section from analytic geometry is	
$a x^{2}+b x y+c y^{2}+d x+e y+f=0$	
Where, if $b^{2}-4 a c>0$, the conic is a hyperbola $b^{2}-4 a c=0$, the conic is a parabola $b^{2}-4 a c<0$, the conic is a ellipse	
We note, that for hyperbolic PDEs, the fact, that two real and distinct characteristics exist, allows the development of a method for the ready solution of these equations. If we return to [Wendt et. al. 2009], Eq. (4.3), and actually attempt to solve for, say $\partial u / \partial y$, using Cramer's rule, we have	
$\partial u / \partial y=\frac{\|N\|}{\|A\|}=\frac{0}{0}$	
where the numerator determinant is	
$\|N\|=\left\|\begin{array}{cccc} a_{1} & f_{1} & c_{1} & d_{1} \\ a_{2} & f_{2} & c_{2} & d_{2} \\ d x & d u & 0 & 0 \\ 0 & d v & d x & d y \end{array}\right\|$ [Wendt et. al. 200	Eq. (4.9)
The reason why $\|N\|$ must be zero is that $\partial u / \partial y$ is indeterminant, of the form $0 / 0$. Since $\|A\|$ has already been made to zero, then $\|N\|$ must be zero to allow $\partial u / \partial y$ to be indeterminant. The expansion of [Wendt et. al. 2009], Eq. (4.9) will lead to equations involving the flow field variables which are ordinary differential equations, and in some cases are algebraic equations; these equations obtained from [Wendt et. al. 2009], Eq. (4.9) are called the compatibility equations. They hold only along	

> the characteristic lines. This is the essence of solving the original hyperbolic PDE: simply integrate simpler, ordinary differential equations (the compatibility equations) along the the characteristic lines in the xy-plane. This is called the method of characteristics. This method is highly developed for the solution of inviscid supersonic flows, for which the system of governing flow equations is hyperbolic. The method of characteristics is a classical technique for the solution of inviscid supersonic flows, and therefor it will not be considered in this book about CFD in any detail.

General Behaviour of the different Classes of PDEs and their 4.3 Relation to Fluid Dynamics

```
In this section we simply discuss, without
proof, some of the behaviour of hyperbolic,
parabolic and elliptic PDEs, and relate this
behaviour to the solution of problems in fluid
dynamics.
```

Hyperbolic Equations 4.3.1

For hyperbolic equations, information at a
given point P influences only those regions
between the advancing characteristics. For
example, examine Fig.4.1, which is sketched
for a two-dimensional problem with two
independent space variables.
Point P is located at a given (x, y). Consider the
left- and right-running characteristics as
shown in Fig. 4.1.
Fig. 4.1 boundaries for the solution of hyperbolic equations. Two- dimensional steady flow.
Information at point P influences only the shaded region - the region labelled I between the two advancing characteristics through P.

> This has a collorary effect on boundary conditions for hyperbolic equations. Assume that the x-axis is a given boundary condition for the problem, i.e. the dependent variables u and v are known along the x-axis. Then the solution can be obtained by 'marching forward' in the distance y, starting from the given boundary. However, the solution for u and v at point P will depend only on the part of the boundary between a and b, as shown in Fig.4.1. Information at point c, which is outside the interval ab, is propagated along characteristics through c, and influences only region II. Point P is outside region II, and hence daes not feel information from point c. For this reason, point P depends on only that part of the boundary which is intercepted by and included between the two retreating characteristic lines through point P, i.e. interval ab.
> In fluid dynamics, the following types of flows are governed by hyperbolic PDEs, and hence exhibit the behaviour described above: Steady, inviscid supersonic flow. If the flow in two-dimensional, the behaviour is like this discussed in Fig. 4.1. If the flow in threedimensional, there are characteristic surfaces in xyz space, as sketched in Fig. 4.2 . Consider point P at a given (x,y,z) location. Information at P influences the shaded volume within the advancing characteristic surface. In addition, if the x-y plane is a boundary surface, then only that portion of the boundary shown as the cross-hatched area in the x-y plane, intercepted by the retreating characteristic surface, has any effect on P. In Fig. 4.2, the dependent variables are solved by starting with the data given in the xy-plane, and 'marching' in the z-direction. For an inviscid supersonic flow problem, the general flow direction would also be the z-direction.

For parabolic equations, information at point P in the $x y$-plane influences the entire region of the plane to one side of P . This is sketched in Fig. 4.5, where the single characteristic line through point P is drawn. Assume the x - and y-axes are boundaries; the solution at P depends on the boundary conditions along the entire y axis, as well as on that portion of the x-axis from a to b. Solutions to parabolic equations are also 'marching' solutions; starting with boundary conditions along both the x - and y-axes, the flow-field solution is obtained by 'marching' in the general x direction.

In fluid dynamics, there are reduced forms of the Navier-Stokes equations which exhibit parabolic-type behaviour. If the viscous stress terms involving derivatives with respect to x are ignored in these equations, we obtain the 'parabolized' Navier-Stokes equations, which allows a solution to march downstream in the x-direction, starting with some prescribed data along the x - and y-axes. A further reduction of the Navier-Stokes equations for the case of high Reynolds numbers leads to the well-known boundary layer equations. These boundary layer equations exhibit the parabolic behaviour shown in Fig. 4.5.

For elliptic equations, information at point P in the xy-plane influences all other regions of the domain. This is sketched in Fig. 4.6, which shows a rectangular domain. Here, the domain is fully closed, surrounded by the closed boundary $a b c d$. For elliptic equations, because point P influences all points in the domain, then in turn the solution at point P is influenced by the entire closed boundary abcd. Therefore, the solution at point P must be carried out simultaneously with the solution at all other points in the domain. This is in be in stark contrast to the 'marching' solutions germaine to hyperbolic and parabolic equations.
In fluid dynamics steady, subsonic, inviscid flow is governed by elliptic equations. As a sub-case, this also includes incompressible flow (which theoretically implies that the Mach number is zero). Hence, for such flows, physically boundary conditions must be applied over a closed boundary that totally surrounds the flow, and the flow-field solution at all points in the flow must be obtained simultaneously, because the solution at one point influences the solution at all other points. In terms of Fig. 4.6, boundary conditions must be applied over the entire boundary abcd. These boundary conditions can take the following forms:
A specification of the dependent variables u and v along the boundary. This type of boundary conditions is called the Dirichlet condition.
A specification of derivatives of the dependent variables u and v, such as $\partial u / \partial y$ along the boundary. This type of boundary conditions is called the Neumann condition.

4.3.4 بعض الملاحظات

Abstract

At this stage it would be worthwhile for the student to examine the actual, closed-form solution to some linear PDE of the elliptic, parabolic and hyperbolic types. Numerous classical solutions can be found for example in Refs. [2] and [3].

Well-Posed Problems 4.3.5

In the solution of PDEs it is sometimes easy to attempt a solution using incorrect or insufficient boundary and initial conditions. Such an 'ill-posed' problem will usually lead to spurious (مزوّر) results.

Therefor we define a well-posed problem as follows: If the solution to a PDE exists and is unique, and if the solution depends continuously upon the initial and boundary conditions, then the problem is well-posed.

References 4.3.6
[1] Anderson J.D., Modern Compressible Flow: With Historical Perspective, $2^{\text {nd }}$ ed., 1990 [2] Hildebrand, Advanced Calculus for Applications, 1976 [3] Anderson, Tannehill and Pletcher, Computational Fluid Mechanics and Heat Transfer, 1984 [4] Moretti and Abbett, "A Time-dependent Computational Method for Blunt Body Flows", AIAA Journal, Vol.4, No.12, Dec 1966, 2136-2141

Chapter 5: Discretization of Partial Differential Equations 5

	5.1
Analytical solutions of partial differential equations involve closed-form expressions which give the variation of the dependent variables continuously throughout the domain. In contrast, numerical solutions can give answers at only discrete points in the domain, called grid points. For example, consider Fig. 5.1, which shows a section of a discrete grid in the xy-plane. For convenience, let us assume that the spacing of the grid points in the x-direction is uniform, given by Δx, and that the spacing in y direction is also uniform, given by Δy, as shown in Fig. 5.1.In general, Δx and Δy are different. However, the vast majority of CFD applications involve numerical solutions on a grid which involves uniform spacing in each direction, because this greatly simplifies the programming of the solution, saves storage space and usually results in greater accuracy. This uniform spacing does not have to occur in physical xy space; as is frequently done in CFD, the numerical calculations are carried out in a transformed computational space which has uniform spacing in the transformed independent variables, but which corresponds to non-uniform spacing in the physical plane. These matters are discussed in Chapter 6. In any event, in this chapter we will assume uniform spacing in each coordinate direction, but not necessarily equal spacing for both directions, i.e. we will assume Δx and Δy to be constants, but that Δx does not have to equal Δy. Returning to Fig. 5.1, the grid points are identified by an index i which runs in the x direction, and an index j which runs in the y direction. Hence, if (i, j) is the index for point P in Fig.5.1, then the point immediately to the right of P is labelled as $(i+1, j)$, the point direct above is ($\mathrm{i}, \mathrm{j}+1$) etc. The method of finite differences is widely used in CFD, and therefore most of this chapter will	

5.2 Derivation of Elementary Finite Difference Quotients

Finite difference representations of derivatives are based on Taylor's series expansions.For example, if ui, j denotes the x-component of velocity at point (i, j), then the velocity $\mathrm{u}_{\mathrm{i}+1, \mathrm{j}}$ at point ($\mathrm{i}+1, \mathrm{j}$) can be expressed in terms of a Taylor's series expanded about point (i, j), as follows:

$$
\begin{equation*}
u_{\mathrm{i}+1, \mathrm{j}}=u_{\mathrm{i}, \mathrm{j}}+\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}} \Delta x+\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{\mathrm{i}, \mathrm{j}} \frac{(\Delta x)^{2}}{2}+\left(\frac{\partial^{3} u}{\partial x^{3}}\right)_{\mathrm{i}, \mathrm{j}} \frac{(\Delta x)^{3}}{6}+\cdots \tag{5.1}
\end{equation*}
$$

Equation (5.1) is mathematically an exact expression for ui+1,j if:
(a) the number of terms is infinite and the series converges,
(b) and/or $\Delta x \rightarrow 0$.

For numerical computations, it is impractical to carry an infinite number of terms in Eq. (5.1). Therefore, Eq. (5.1) is truncated. For example, if terms of magnitude $(\Delta x)^{3}$ and higher order are neglected, Eq. (5.1) reduces to

$$
\begin{equation*}
u_{\mathrm{i}+1, \mathrm{j}} \approx u_{\mathrm{i}, \mathrm{j}}+\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}} \Delta x+\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{\mathrm{i}, \mathrm{j}} \frac{(\Delta x)^{2}}{2} \tag{5.2}
\end{equation*}
$$

We say that Eq. (5.2) is of second-order accuracy, because terms of order $(\Delta x)^{3}$ and higher have been neglected. If terms of order $(\Delta \mathrm{x})^{2}$ and higher are neglected, we obtain from Eq. (5.1),

$$
u_{\mathrm{i}+1, \mathrm{j}} \approx u_{\mathrm{i}, \mathrm{j}}+\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}} \Delta x
$$

where Eq. (5.3) is of first-order accuracy. In Eqs. (5.2) and (5.3), the neglected higher-order terms represent the truncation error in the finite series representation. For example, the truncation error for Eq. (5.2) is

	$\sum_{n=3}^{\infty}\left(\frac{\partial^{\mathrm{n}} u}{\partial x^{\mathrm{n}}}\right)_{\mathrm{i}, \mathrm{j}} \frac{(\Delta x)^{\mathrm{n}}}{n!}$
and the truncation error for Eq. (5.3) is	
$\sum_{n=2}^{\infty}\left(\frac{\partial^{\mathrm{n}} u}{\partial x^{\mathrm{n}}}\right)_{\mathrm{i}, \mathrm{j}} \frac{(\Delta x)^{\mathrm{n}}}{n!}$	

The truncation error can be reduced by:
(a) Carrying more terms in the Taylor's series,

Eq. (5.1). This leads to higherorder accuracy in the representation of $\mathrm{u}_{\mathrm{i}+1, \mathrm{j}}$.
(b) Reducing the magnitude of Δx. Let us return to Eq. (5.1), and solve for $(\partial u / \partial x)_{i, j}$

$$
\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}+1, \mathrm{j}}-u_{\mathrm{i}, \mathrm{j}}}{\Delta x}-\underbrace{\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{\mathrm{i}, \mathrm{j}} \frac{\Delta x}{2}-\left(\frac{\partial^{3} u}{\partial x^{3}}\right)_{\mathrm{i}, \mathrm{j}} \frac{\Delta x^{2}}{6}-\cdots}_{\text {Truncation error }}
$$

or,

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}+1, \mathrm{j}}-u_{\mathrm{i}, \mathrm{j}}}{\Delta x}+O(\Delta x) \tag{5.4}
\end{equation*}
$$

In Eq. (5.4), the symbol $\mathrm{O}(\Delta \mathrm{x})$ is a formal mathematical notation which represents'terms of-order-of Δx^{\prime}. Eq. (5.4) is more precise notation than Eq. (5.3), which involves the 'approximately equal' notation; in Eq. (5.4)

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}+1, \mathrm{j}}-u_{\mathrm{i}-1, \mathrm{j}}}{2 \Delta x}+O(\Delta x)^{2} \tag{5.8}
\end{equation*}
$$

Equation (5.8) is a second order central difference for the derivative $(\partial u / \partial x)$ at grid point (i, j).To obtain a finite-difference expression for the second partial derivative $\left(\partial^{2} u / \partial x^{2}\right)_{i, j}$, first recall that the order-of magnitude term in Eq. (5.8) comes from Eq. (5.7), and that Eq. (5.8) can be written

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}+1, \mathrm{j}}-u_{\mathrm{i}-1, \mathrm{j}}}{2 \Delta x}-\left(\frac{\partial^{3} u}{\partial x^{3}}\right)_{\mathrm{i}, \mathrm{j}} \frac{(\Delta x)^{2}}{6}+\cdots \tag{5.9}
\end{equation*}
$$

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial y}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}, \mathrm{j}+1}-u_{\mathrm{i}, \mathrm{j}}}{\Delta y}+O(\Delta y) & \text { Forward difference } \\
\left(\frac{\partial u}{\partial y}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}, \mathrm{j}}-u_{\mathrm{i}, \mathrm{j}-1}}{\Delta y}+O(\Delta y) & \text { Rearward difference } \\
\left(\frac{\partial u}{\partial y}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}, \mathrm{j}+1}-u_{\mathrm{i}, \mathrm{j}-1}}{2 \Delta y}+O(\Delta y)^{2} & \text { Central difference } \\
\left(\frac{\partial^{2} u}{\partial y^{2}}\right)_{\mathrm{i}, \mathrm{j}}=\frac{u_{\mathrm{i}, \mathrm{j}+1}-2 u_{\mathrm{i}, \mathrm{j}}+u_{\mathrm{i}, \mathrm{j}-1}}{(\Delta y)^{2}}+O(\Delta y)^{2} & \text { Central second difference }
\end{array}
$$

It is interesting to note that the central second difference given for example by Eq. (5.11) can be intepreted as a forward difference of the first derivatives, with rearward differences used for the first derivatives. Dropping the O notation for convenience, we have

$$
\begin{align*}
\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{\mathrm{i}, \mathrm{j}} & =\left[\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)\right]_{\mathrm{i}, \mathrm{j}} \approx \frac{\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}+1, \mathrm{j}}-\left(\frac{\partial u}{\partial x}\right)_{\mathrm{i}, \mathrm{j}}}{\Delta x} \\
\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{\mathrm{i}, \mathrm{j}} & \approx\left[\left(\frac{u_{\mathrm{i}+1, \mathrm{j}}-u_{\mathrm{i}, \mathrm{j}}}{\Delta x}\right)-\left(\frac{u_{\mathrm{i}, \mathrm{j}}-u_{\mathrm{i}-1, \mathrm{j}}}{\Delta x}\right)\right] \frac{1}{\Delta x} \\
\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{\mathrm{i}, \mathrm{j}} & \approx \frac{u_{\mathrm{i}+1, \mathrm{j}}-2 u_{\mathrm{i}, \mathrm{j}}+u_{\mathrm{i}-1, \mathrm{j}}}{(\Delta x)^{2}} \tag{5.12}
\end{align*}
$$

Equation (5.12) is the same difference quotient as Eq. (5.11). The same philosophy can be used to quickly generate a finite difference quotient for the mixed derivative $\left(\partial^{2} u / \partial x \partial y\right)$ at grid point
(i, j). For example,

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right) \tag{5.13}
\end{equation*}
$$

In Eq. (5.13), write the x-derivative as a central difference of the y-derivatives, and then cast the y-derivatives also in terms of central differences.

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=\frac{\left(\frac{\partial u}{\partial y}\right)_{\mathrm{i}+1, \mathrm{j}}-\left(\frac{\partial u}{\partial y}\right)_{\mathrm{i}-1, \mathrm{j}}}{2 \Delta x} \\
\frac{\partial^{2} u}{\partial x \partial y} & \approx\left[\left(\frac{u_{\mathrm{i}+1, \mathrm{j}+1}-u_{\mathrm{i}+1, \mathrm{j}-1}}{2 \Delta y}\right)-\left(\frac{u_{\mathrm{i}-1, \mathrm{j}+1}-u_{\mathrm{i}-1, \mathrm{j}-1}}{2 \Delta y}\right)\right] \frac{1}{2 \Delta x} \\
\frac{\partial^{2} u}{\partial x \partial y} & \approx \frac{1}{4 \Delta x \Delta y}\left(u_{\mathrm{i}+1, \mathrm{j}+1}+u_{\mathrm{i}-1, \mathrm{j}-1}-u_{\mathrm{i}+1, \mathrm{j}-1}-u_{\mathrm{i}-1, \mathrm{j}+1}\right)
\end{aligned}
$$

or

$$
\begin{align*}
\left(\frac{\partial^{2} u}{\partial x \partial y}\right)_{\mathrm{i}, \mathrm{j}}= & \frac{1}{4 \Delta x \Delta y}\left(u_{\mathrm{i}+1, \mathrm{j}+1}+u_{\mathrm{i}-1, \mathrm{j}-1}-u_{\mathrm{i}+1, \mathrm{j}-1}-u_{\mathrm{i}-1, \mathrm{j}+1}\right) \tag{5.14}\\
& +O\left[(\Delta x)^{2},(\Delta y)^{2}\right]
\end{align*}
$$

Many other difference approximations can be obtained for the above derivatives , as well as for derivatives of even higher order. The philosophy is the same. For a detailed tabulation of many forms of difference quotients, see pages 44 and 45 of Ref. [1]. What happens at a boundary? What type of differencing is possible when we have only one direction to go, namely, the direction away from the boundary? For example, consider Fig. 5.2, which illustrates a portion of the boundary, with the yaxis perpendicular to the boundary. Let grid point 1 be on the boundary, with points 2 and 3 a distance Δy and $2 \Delta y$ above the boundary respectively.We wish to construct a finite difference approximation for $\partial u / \partial y$ at the boundary. It is easy to construct a forward difference as

$$
\begin{equation*}
\left(\frac{\partial u}{\partial y}\right)_{1}=\frac{u_{2}-u_{1}}{\Delta y}+O(\Delta y) \tag{5.15}
\end{equation*}
$$

which is of first-order accuracy. However, how do we obtain a result which is of second-order accuracy? Our central difference in Eq. (5.8) fails us because it requires another point beneath the boundary, such as illustrated as point 2_ in Fig. 5.2. Point 2_is outside the domain of computation, and we generally have no information about u at this point. In the early days of CFD, many solutions attempted to sidestep this problem by assuming that $u 2 _=u 2$. This is called the reflection boundary

$$
\begin{equation*}
\left(\frac{\partial u}{\partial y}\right)_{1}=\frac{-3 u_{1}+4 u_{2}-u_{3}}{2 \Delta y}+O(\Delta y)^{2} \tag{5.22}
\end{equation*}
$$

Fig. 5.2 Grid points at a boundary

This is our desired second-order-accurate difference quotient at the boundary.Both Eqs. (5.15) and (5.22) are called one-sided differences, because they express a derivative at a point in terms of dependent variables on only one side of the point. Many other one-sided differences can be formed, with higher degrees of accuracy,using additional grid points to one side of the given point. It is not unusual to see four- and five point one-sided differences applied at a boundary.

5.3 Basic Aspects of Finite-Difference Equations

The essence of finite-difference solutions in CFD is to use the difference quotients derived in Sect. 5.2 (or others that are similar) to replace the partial derivatives in the governing flow equations, resulting in a system of algebraic difference equations for the dependent variables at each grid point. In the present section, we examine some of the basic aspects of a difference equation.Consider the following model equation, in which we assume that the dependent variable u is a function of x and t.

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \tag{5.23}
\end{equation*}
$$

We choose this simple equation for
convenience; at this stage in our discussions
there is no advantage to be obtained by dealing with the much more complex flow equations. The basic aspects of finite-difference equations to be examined in this section can just as well be developed using Eq. (5.23). It should be noted that Eq. (5.23) is parabolic. If we replace the time derivative in Eq. (5.23) with a forward difference, and the spatial derivative with a central difference, the result is:

$$
\begin{equation*}
\frac{u_{\mathrm{i}}^{\mathrm{n}+1}-u_{\mathrm{i}}^{\mathrm{n}}}{\Delta t}=\frac{u_{\mathrm{i}+1}^{\mathrm{n}}-2 u_{\mathrm{i}}^{\mathrm{n}}+u_{\mathrm{i}-1}^{\mathrm{n}}}{(\Delta x)^{2}} \tag{5.24}
\end{equation*}
$$

In Eq. (5.24), some common notation is used for the difference of the time derivative. The index for time usually appears as a superscript in CFD, where n denotes conditions at time $t,(n+1)$ denotes conditions at time $(t+\Delta t)$, and so forth. The subscript still denotes the grid point location; for the one spatial dimension considered here, clearly we need only one index, i.
Question: What is the truncation error for the complete finite-difference equation?
Obviously, there must be a truncation error because each one of the finitedifference quotients has its own truncation error. Let us address this question. Combining Eqs. (5.23) and (5.24), and explicitly writing the truncation errors associated with the difference quotients (from Eqs. (5.4) and (5.10)), we have

$$
\begin{align*}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}} & =\frac{u_{\mathrm{i}}^{\mathrm{n}+1}-u_{\mathrm{i}}^{\mathrm{n}}}{\Delta t}-\frac{\left(u_{\mathrm{i}+1}^{\mathrm{n}}-2 u_{\mathrm{i}}^{\mathrm{n}}+u_{\mathrm{i}-1}^{\mathrm{n}}\right)}{(\Delta x)^{2}} \\
& +\left[-\left(\frac{\partial^{2} u}{\partial t^{2}}\right)_{\mathrm{i}}^{\mathrm{n}} \frac{\Delta t}{2}+\left(\frac{\partial^{4} u}{\partial x^{4}}\right)_{\mathrm{i}}^{\mathrm{n}} \frac{(\Delta x)^{2}}{12}+\cdots\right] \tag{5.25}
\end{align*}
$$

Examining Eq. (5.25), on the left-hand side is the original partial differential equation, the first two terms on the right-hand side are the finite difference representation of this equation and the terms in the square brackets are the truncation error for the complete equation. Note that the truncation error for this representation is $\mathrm{O}\left[\Delta \mathrm{t},(\Delta \mathrm{x})^{2}\right]$.
Does the finite-difference equation reduce to
the original differential equation as the number of grid points goes to infinity, i.e. as $\Delta x \rightarrow 0$ and $\Delta t \rightarrow 0$? Examining Eq. (5.25), we note that the truncation error approaches zero, and hence the difference equation does indeed approach the original differential equation. When this is the case, the finite-difference representation of the partial differential equation is said to be consistent. The solution of Eq. (5.24) takes the form of a 'marching' solution in steps of time. (Recall from Sect. 4.3.2 that such marching solutions are a characteristic of parabolic equations.) Assume that we know the dependent variable at all x at some instant in time, say from given initial conditions. Examining Eq. (5.24), we see that it contains only one unknown, namely $u \quad j^{n+1}$.

In this fashion, the dependent variable at time $(t+\Delta t)$ can be obtained explicitly from
the known results at time t, i.e. $\mathrm{u}^{\mathrm{n}+1}$ is obtained directly from the known values ${u^{n_{j+1}}}^{2}$, $\mathrm{u}^{\mathrm{n}_{\mathrm{j}}}$, and $\mathrm{u}^{\mathrm{n}_{\mathrm{j}-1}}$. This is an example of an explicit finite-difference solution. As a counter example, let us be daring and return to the original partial differential equation given by Eq. (5.23). This time, we write the spatial differences on the right-hand side in terms of average properties between n and $(n+1)$, that is

$$
\begin{equation*}
\frac{u_{\mathrm{i}}^{\mathrm{n}+1}-u_{\mathrm{i}}^{\mathrm{n}}}{\Delta t}=\frac{1}{2}\left[\frac{u_{\mathrm{i}+1}^{\mathrm{n}+1}+u_{\mathrm{i}+1}^{\mathrm{n}}-2 u_{\mathrm{i}}^{\mathrm{n}+1}-2 u_{\mathrm{i}}^{\mathrm{n}}+u_{\mathrm{i}-1}^{\mathrm{n}+1}+u_{\mathrm{i}-1}^{\mathrm{n}}}{(\Delta x)^{2}}\right] \tag{5.26}
\end{equation*}
$$

The differencing shown in Eq. (5.26) is called the Crank-Nicolson form. Examine Eq. (5.26) closely. The unknown $\mathrm{ii}^{\mathrm{n+1}}$ is not only expressed in terms of the known quantities at time index n , namely $\mathrm{u}^{\mathrm{n}_{i+1}}, \mathrm{u}^{\mathrm{n}_{\mathrm{i}}}$, and $\mathrm{u}^{\mathrm{n}_{\mathrm{i}-1}}$, but also in terms of unknown quantities at time index $n+1$, namely
$u^{n+1}{ }_{i+1}$ and $u^{n+1}{ }_{i-1}$. Hence, Eq. (5.26) applied at a given grid point i cannot by itself result in the solution for $\mathrm{u}_{\mathrm{i}}{ }^{\mathrm{n+1}}$. Rather, Eq. (5.26) must be written at all grid points, resulting in a system of algebraic equations from which the unknown $u^{i^{n+1}}$ for all i can be solved simultaneously. This is an example of an implicit finite-difference solution. Because they deal with the solution of large systems of simultaneous linear algebraic equations,implicit
methods are usually involved with the manipulation of large matrices. The relative major advantages and disadvantages of these two approaches are summarized as follows.

1. Explicit approach.
(a) Advantage. Relatively simple to set up and program.
(b) Disadvantage. In terms of our above example, for a given $\Delta x, \Delta t$ must be less than some limit imposed by stability constraints. In many cases, Δt must be very small to maintain stability; this can result in long computer running times to make calculations over a given interval of t . 2. Implicit approach. (a) Advantage. Stability can be maintained over much larger values of Δt, hence using considerably fewer time steps to make calculations over a given interval of t. This results in less computer time.
(b) Disadvantage. More complicated to set up and program.
(c) Disadvantage. Since massive matrix manipulations are usually required at each time step, the computer time per time step is much
larger than in the explicit approach. (d) Disadvantage. Since large $\Delta \mathrm{t}$ can be taken, the truncation error is larger, and the use of implicit methods to follow the exact transients (time variations of the independent variable) may not be as accurate as an explicit approach. However, for a time-dependent solution in which the steady state is the desired result, this relative time-wise inaccuracy is not important.

During the period 1969 to about 1979, the vast majority of practical CFD solutions involving 'marching' solutions (such as in the above example) employed explicit methods. Today, they are still the most straightforward methods for flow field solutions. However, many of the more sophisticated CFD applications-those requiring very closely-spaced grid points in
some regions of the flow - would demand inordinately large computer running times due to the small marching steps required. This has
made the advantage listed above for implicit methods very attractive, namely the ability to use large marching steps even for a very fine grid. For this reason, implicit methods are today the major focus of CFD applications.
It is clear that finite-difference solutions appear
to be philosophically straightforward jus
replace the partial derivatives in the governing
equations with algebraic difference quotients,
and grind away to obtain solutions of these
algebraic equations at each grid point.
However, this impression is misleading. For
any given application, there is no guarantee
that such calculations will be accurate, or even
stable, under all conditions. Moreover, the
boundary conditions for a given problem
dictate the solution, and therefore the proper
treatment of boundary conditions within the
framework of a particular finite-difference
technique is vitally important.For these reasons,
finite-difference solutions of various
aerodynamic flow fields are by no means
routine. Indeed, much of computational fluid
dynamics today is still more of an art than a
science; each different problem usually requires
thought and originality in its solution.
However, a great deal of research in applied
mathematics is now being devoted to CFD, and
the next decade should see a major expansion
in our understandingof the discipline, as well
as the development of more improved efficient
algorithms. ${ }^{1}$

5.4 Errors and an Analysis of Stability

> At the end of the last section, we stated that no guarantee exists for the accuracy and stability of a system of finite-difference, equations under all conditions. However for linear equations there is a formal way of examining the accuracy and stability and these ideas at least provide

| guidance for the understanding of the |
| :--- | :--- | :--- |
| behaviour of the more complex non-linear |
| system that is our governing flow equations. In |
| this section we introduce some of these ideas, |

applied to simple linear equations. The material
in this section is patterned somewhat after
section 3-6 of the excellent new book on CFD
by Dale Anderson, John Tannehill and Richard
Pletcher (Ref. [1]) which should be consulted
Consider a partial differential .for more details,

numerical solution N must satisfy the
difference equation. Hence from Eq. (5.24),

$$
\begin{equation*}
\frac{D_{\mathrm{i}}^{\mathrm{n}+1}+\varepsilon_{\mathrm{i}}^{\mathrm{n}+1}-D_{\mathrm{i}}^{n}-\varepsilon_{\mathrm{i}}^{\mathrm{n}}}{\Delta t}=\frac{D_{\mathrm{i}+1}^{\mathrm{n}}+\varepsilon_{\mathrm{i}+1}^{\mathrm{n}}-2 D_{\mathrm{i}}^{\mathrm{n}}-2 \varepsilon_{\mathrm{i}}^{\mathrm{n}}+D_{\mathrm{i}-1}^{\mathrm{n}} \varepsilon_{\mathrm{i}-1}^{\mathrm{n}}}{(\Delta x)^{2}} \tag{5.29}
\end{equation*}
$$

By definition, D is the exact solution of the difference equation, hence it exactly satisfies:

$\frac{D_{\mathrm{i}}^{\mathrm{n}+1}-D_{\mathrm{i}}^{\mathrm{n}}}{\Delta t}=\frac{D_{\mathrm{i}+1}^{\mathrm{n}}-2 D_{\mathrm{i}}^{\mathrm{n}}+D_{\mathrm{i}-1}^{\mathrm{n}}}{(\Delta x)^{2}}$
Subtracting Eq. (5.30) from (5.29),
$\frac{\varepsilon_{\mathrm{i}}^{\mathrm{n}+1}-\varepsilon_{\mathrm{i}}^{\mathrm{n}}}{\Delta t}=\frac{\varepsilon_{\mathrm{i}+1}^{\mathrm{n}}-2 \varepsilon_{\mathrm{i}}^{\mathrm{n}}+\varepsilon_{\mathrm{i}-1}^{\mathrm{n}}}{(\Delta x)^{2}}$

From Eq. (5.31), we see that the error ε also satisfies the difference equation.We now consider aspects of the stability of the difference equation, Eq. (5.24). If errors εi are already present at some stage of the solution of this equation (as they always are in any real computer solution), then the solution will be stable if the ε i's shrink, or at best stay the same, as the solution progresses from step n to $\mathrm{n}+1$; on the other hand, if the ε i's grow larger during the progression of the solution from steps n to $\mathrm{n}+1$, then the solution is unstable. That is, for a solution to be stable,

$$
\begin{equation*}
\mid \varepsilon_{\mathrm{i}}^{\mathrm{n}+1} / \varepsilon_{\mathrm{i}}^{\mathrm{n}} \leq 1 \tag{5.32}
\end{equation*}
$$

For Eq. (5.24), let us examine under what conditions Eq. (5.32) holds.Assume that the distribution of errors along the x-axis is given by a Fourier series in x, and that the time-wise variation is exponential in t, i.e.

$$
\begin{equation*}
\varepsilon(x, t)=e^{\mathrm{at}} \sum_{m} e^{i k_{\mathrm{m}} x} \tag{5.33}
\end{equation*}
$$

where km is the wave number and where the exponential factor a is a complex number. Since the difference equation is linear, when Eq. (5.33) is substituted into Eq. (5.31) the behaviour of each term of the series is the same as the series itself. Hence, let us deal with just one term of the series, and write

$$
\varepsilon_{\mathrm{m}}(x, t)=e^{\mathrm{at}} e^{i k_{\mathrm{m}} x}
$$

Substitute Eq. (5.34) into Eq. (5.31),		
$\underline{e^{\mathrm{a}(\mathrm{t}+\Delta \mathrm{t})} e^{i k_{\mathrm{m}} x}-e^{\mathrm{at}} e^{i k_{\mathrm{m}} x}}=\underline{e^{\mathrm{at}} e^{i k_{\mathrm{m}}(x+\Delta x)}-2 e^{\mathrm{at}} e^{i k_{\mathrm{m}} x}+e^{\mathrm{at}} e^{i k_{\mathrm{m}}(x-\Delta x)}}$		(5.35)
	$\Delta t \quad-\frac{}{(\Delta x)^{2}}$	
Divide Eq. (5.35) by e ${ }^{\text {at }} \mathrm{e}^{\mathrm{i} \mathrm{k}_{\mathrm{m}} x}$.		
$\frac{e^{\mathrm{a} \Delta \mathrm{t}}-1}{\Delta t}=\frac{e^{i k_{\mathrm{m}} \Delta x}-2+e^{-i k_{\mathrm{m}} \Delta x}}{(\Delta x)^{2}}$ or, $\begin{equation*} e^{\mathrm{a} \Delta \mathrm{t}}=1+\frac{\Delta t}{(\Delta x)^{2}}\left(e^{i k_{\mathrm{m}} \Delta x}+e^{-i k_{\mathrm{m}} \Delta x}-2\right) \tag{5.36} \end{equation*}$		
Recalling the identity that		
$\cos \left(k_{\mathrm{m}} \Delta x\right)=\frac{e^{i k_{\mathrm{m}} \Delta x}+e^{-i k_{\mathrm{m}} \Delta x}}{2}$		
Equation (5.36) can be written as		
$e^{\mathrm{a} \Delta t}=1+\frac{2 \Delta t}{(\Delta x)^{2}}\left[\cos \left(k_{\mathrm{m}} \Delta x\right)-1\right]$		
Recalling another trigonometric identity that		
$\sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right]=\frac{1-\cos \left(k_{\mathrm{m}} \Delta x\right)}{2}$		
Equation (5.37) finally becomes		
$\begin{equation*} e^{\mathrm{a} \Delta \mathrm{t}}=1-\frac{4 \Delta t}{(\Delta x)^{2}} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right] \tag{5.38} \end{equation*}$		
From Eq. (5.34),		
$\begin{equation*} \frac{\varepsilon_{\mathrm{i}}^{\mathrm{n}+1}}{\varepsilon_{\mathrm{i}}^{\mathrm{n}}}=\frac{e^{\mathrm{a}(\mathrm{t}+\Delta \mathrm{t})} e^{i k_{\mathrm{m}} x}}{e^{\mathrm{at}} e^{i k_{\mathrm{m}} x}}=e^{\mathrm{a} \Delta \mathrm{t}} \tag{5.39} \end{equation*}$		
Combining Eqs. (5.39), (5.38) and (5.32), we have		
$\begin{equation*} \left\|\frac{\varepsilon_{\mathrm{i}}^{\mathrm{n}+1}}{\varepsilon_{\mathrm{i}}^{\mathrm{n}}}\right\|=\left\|e^{\mathrm{a} \Delta \mathrm{t}}\right\|=\left\|1-\frac{4 \Delta t}{(\Delta x)^{2}} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right]\right\| \leq 1 \tag{5.40} \end{equation*}$		

Equation (5.40) must be satisfied to have a stable solution, as dictated by Eq. (5.32). In Eq. (5.40) the factor	
$\left\|1-\frac{4 \Delta t}{(\Delta x)^{2}} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right]\right\| \equiv G$	
is called the amplification factor, and is denoted by G. Evaluating the inequality in Eq. (5.40), namely $\mathrm{G} \leq 1$, we have two possible situations which must hold simultaneously:	
(1) $1-\frac{4 \Delta t}{(\Delta x)^{2}} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right] \leq 1$ Thus $\frac{4 \Delta t}{(\Delta x)} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right] \geq 0$	
Since $\Delta \mathrm{t} /(\Delta \mathrm{x})^{2}$ is always positive, this condition always holds.	
(2) $1-\frac{4 \Delta t}{(\Delta x)^{2}} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right] \geq-1$ Thus $\frac{4 \Delta t}{(\Delta x)^{2}} \sin ^{2}\left[\left(k_{\mathrm{m}} \Delta x\right) / 2\right]-1 \leq 1$	
For the above condition to hold,	
$\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}$	(5.41)
Equation (5.41) gives the stability requirement for the solution of the difference equation, Eq (5.24), to be stable. Clearly, for a given Δx, the allowed value of Δt must be small enough to satisfy Eq. (5.41). Here is a stunning example of the limitation placed on the marching variable by stability considerations for explicit finite difference models. As long as $\Delta t /(\Delta x)^{2} \leq 1 / 2$, the error will not grow for subsequent marching steps in t , and the numerical solution will	

proceed in a stable manner. On the other hand, if $\Delta t /(\Delta x)^{2}>1 / 2$, then the error will progressively become larger, and will eventually cause the numerical marching solution to 'blow up' on the computer.The above analysis is an example of a general method called the von Neuman stability method, which is used frequently to study the stability properties of linear difference quations. Let us quickly examine the stability characteristics of another simple equation, this time a hyperbolic equation. Consider the first order wave equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 \tag{5.42}
\end{equation*}
$$

Let us replace the spatial derivative with a central difference (see Eq. (5.8)).

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{u_{\mathrm{i}+1}^{\mathrm{n}}-u_{\mathrm{i}-1}^{\mathrm{n}}}{2 \Delta x} \tag{5.43}
\end{equation*}
$$

Let us replace the time derivative with a first order difference, where $u(t)$ is represented by an average value between grid points (i+1) and (i-1), i.e.

$$
u(t)=\frac{1}{2}\left(u_{\mathrm{i}+1}^{\mathrm{n}}+u_{\mathrm{i}-1}^{\mathrm{n}}\right)
$$

Then

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{u_{\mathrm{i}}^{\mathrm{n}+1}-\frac{1}{2}\left(u_{\mathrm{i}+1}^{\mathrm{n}}+u_{\mathrm{i}+1}^{\mathrm{n}}\right)}{\Delta t} \tag{5.44}
\end{equation*}
$$

Substituting Eqs. (5.43) and (5.44) into (5.42), we have

$$
\begin{equation*}
u_{\mathrm{i}}^{\mathrm{n}+1}=\frac{u_{\mathrm{i}+1}^{\mathrm{n}}+u_{\mathrm{i}-1}^{\mathrm{n}}}{2}-c \frac{\Delta t}{\Delta x}\left(\frac{u_{\mathrm{i}+1}^{\mathrm{n}}-u_{\mathrm{i}-1}^{\mathrm{n}}}{2}\right) \tag{5.45}
\end{equation*}
$$

Combining Eqs. (5.18) and (5.19), we obta The differencing used in the above equation, where Eq. (5.44) is used to represent the time derivative, is called the Lax method, after the mathematician Peter Lax who first proposed it. If we now assume an error of the form $\varepsilon_{\mathrm{m}}(\mathrm{x}, \mathrm{t})=\mathrm{e}^{\text {ate } \mathrm{e}^{\mathrm{j} \mathrm{k}_{\mathrm{t}} \mathrm{t}}}$ as done previously, and substitute this form into Eq. (5.45), the

amplification factor becomesin	
$\mathrm{G}=\cos \left(k_{m} \Delta \mathrm{x}\right)-\mathrm{iC} \sin \left(\mathrm{km}_{\mathrm{m}} \Delta \mathrm{x}\right)$	- iC $\sin (\mathrm{km} \Delta \mathrm{x})$
where $\mathrm{C}=\mathrm{c} . \Delta \mathrm{t} / \Delta \mathrm{x}$. The stability requirement is $\left\|\mathrm{e}^{\mathrm{at}}\right\| \leq 1$,which when applied to Eq. (5.46) yields	
$C=c \frac{\Delta t}{\Delta x} \leq 1$	(5.47)
In Eq. (5.47), C is called the Courant number. This equation says that $\Delta t \leq \Delta x / c$ for the numerical solution of Eq. (5.45) to be stable. Moreover, Eq. (5.47) is called the Courant-Friedrichs-Lewy condition, generally written as the CFL condition. It is an important stability criterion for hyperbolic equations Let us examine the physical significance of the CFL condition. Consider the second order wave equation	
$\frac{\partial^{2} u}{\partial t^{2}}=c \frac{\partial^{2} u}{\partial x^{2}}$	(5.48)
The characteristic lines for this equation (see Sect. 4.2) are given by	
and	$x=c t \quad$ (right running) $x=-c t \quad$ (left running)
and are sketched in Fig. 5.3(a) and (b). In both parts (a) and (b) of Fig. 5.3, let point b be the intersection of the right-running characteristic through grid point ($\mathrm{i}-1$) and the left-running characteristic through grid point (i+1). For Eq. (5.48), the CFL condition as given in Eq. (5.47) holds as the stability criterion. Let $\Delta \mathrm{t} \mathrm{c}=1$ denote the value of $\Delta \mathrm{t}$ given by Eq. (5.47) when $\mathrm{C}=1$. Then $\Delta \mathrm{t}=1=\Delta \mathrm{x} / \mathrm{c}$, and the intersection point b is therefore a distance $\Delta \mathrm{t}=1$ above the x -axis, as sketched in Figs. 5.3(a) and (b). Now assume that $\mathrm{C}<1$, which is the case sketched in Fig. 5.3(a). Then from Eq. (5.47), $\Delta \mathrm{tc}<1<\Delta \mathrm{tc}=1$, as shown in Fig. 5.3(a). Let point d correspond to the grid point at point i, existing at time $(t+\Delta t c<1)$. Since properties at point d are calculated numerically from the difference equation using grid points ($\mathrm{i}-1$) and ($\mathrm{i}+1$), the	

numerical domain for point d is the triangle adc shown in Fig. 5.3(a). The analytical domain for point d is the shaded triangle in Fig. 5.3(a), defined by the characteristics through point d. Note that in Fig. 5.3(a) the numerical domain of point d includes the analytical domain. In contrast, consider the case shown in Fig. 5.3(b). Here, $C>1$. Then, from Eq. (5.47), $\Delta \mathrm{t} \circ \gg \Delta \mathrm{tc}=1$, as shown in Fig. 5.3(b). Let point d

in Fig. 5.3(b) correspond to the grid point i, existing at time $(t+\Delta t c>1)$. Since properties at point d are calculated numerically from the difference equation using grid points (i-1) and $(i+1)$, the numerical domain for point d is the triangle adc shown in Fig. 5.3(b). The analytical domain for point d is the shaded triangle in Fig. 5.3 (b), defined by the characteristics through point d. Note that in Fig. 5.3(b), the numerical domain does not include all of the analytical domain, and it is this condition which leads to unstable behaviour. Therefore, we can give the following physical interpretation of the CFL condition:

For stability, the computational domain must include all of the analytical domain. The above considerations dealt with stability. The question of accuracy, which is sometimes quite different, can also be examined from the point of view of Fig. 5.3. Consider a stable case, as shown in Fig. 5.3(a). Note that the analytic domain of dependence for point d is the shaded triangle in Fig. 5.3(a). From our discussion in

> Chap. 4, the properties at point d theoretically depend only on those points within the shaded triangle. However, note that the numerical grid points ($\mathrm{i}-1$) and ($\mathrm{i}+1$) are outside the domain of dependence, and hence theoretically should not influence the properties at point d . On the other
> hand, the numerical calculation of properties at point d takes information from grid points ($\mathrm{i}-1$) and ($\mathrm{i}+1$). This situation is exacerbated when $\Delta \mathrm{tc}<1$ is chosen to be very small, $\Delta \mathrm{tc}<1 \ll$ $\Delta \mathrm{tc}=1$. In this case, even though the calculations are stable, the results may be quite inaccurate due to the large mismatch between the domain of dependence of point d, and the location of the actual numerical data used to calculate properties at d. In light of the above discussion, we conclude that the Courant number must be equal to or less than unity for stability, $C \leq 1$, but at the same time it is desirable to have C as close to unity as possible for accuracy.

Reference

1. Anderson, D.A., Tannehill, John C. and Pletcher, Richard H., Computational Fluid Mechanics and Heat Transfer, McGraw-Hill, New York, 1984.

(Transformations and Grids) ${ }^{8} 6$

6.1

If all CFD applications dealt with physical
problems where a uniform, rectangular grid could
be used in the physical plane, there would be no
reason to alter the governing equations derived in
Chap. 2 we would simply apply these equations in
rectangular ($x, y, z, t)$ space, finite-difference these
equations according to the difference quotients
derived in Chap. 5, and calculate away, using
uniform values of $\Delta x, \Delta y, \Delta z$ and Δt, However
,few real problems are ever so accommodating, for
exsample, assume we wish to calculate the flow
over an airfoil, as sketched in Fig .6.1, where we
have placed the placed the airfoil in a rectangular
grid . Note the problems with this rectangular grid

grid. Note the problems with this rectangular grid
(1) Some grid points fall inside the airfoil, where they are completely out of the flow .what values of the flow properties do we ascribe to these points?
(2) There are few , if any .grid points that fall on the surface of the airfoil. This is not good . because the airfoil surface is a vital boundary condition for the determination of the flow, and hence the airfoil surface must be clearly and strongly seen by the numerical solution.
As a result. we can conclude that the rectangular grid in Fig .6.1 is not appropriate for the solution of the flow field.In contrast, agrid that is appropriate is sketched in Fig. 6.2(a). here we see a nonuniform, curvilinear grid which is literally wrapped around the airfoil. New coordinate lines ?? and ?? = constant. This is called a boundary fitted coordinate system, and will be discussed in detail later in this chapter. The important point is that grid points naturally fall on the airfoil surface, as shown in Fig. 6.2(a).What is equally important is that ,in the physical space shown in Fig. 6.2(a),the conventional difference quotients are difficult to use. What must be done is to transform the curvilinear grid mesh in physical space to a rectangularmesh in terms of ξ and η.This is shown in Fig. 6.2(b) which illustrates a rectangular grid in terms of ξ and η. The rectangular mesh shown in Fig. 6.2(b) is called the computational plane. There is a one-to-one correspondence between this mesh,and the curvilinear mesh in Fig. 6.2(a),called the physical plane . for example,points a, b and c in the physical plane (Fig. 6.2a) correspond to points a, b and c in the computational plane, which involves uniform $\Delta \xi$ and uniform $\Delta \eta$. The computed information is then transferred back to the physical plane. Moreover, when the governing equations are solved in the computational space, they must be expressed in terms of the variables ξ and η rather than x and y;i.e.,the governing equations must be transformed from (x, y) to (ξ, η) as the new independent variables. The purpose of this chapter is to first describe the general transformation of the governing flow equations between the physical plane and the computational plane . following this, various specific grids will be discussed. This material is an example of a very

Fig. 6.1: \begin{tabular}{c}

Airfoil on | and |
| :---: |
| rectangular grid |

Fig. 6.2 (a) Physical plane
\end{tabular}

General Transformation of the Equations

For simplicity , we will consider a two- dimensional unsteady flow, with independent variables x, y and t; the results for a three- dimensional unsteady flow, with independent variables x, y, z and t, are analogous, und simply involve more terms.	
We will transform the variables in physical space (x, y, t) to a transformed space ($\xi, \eta, \tau)$, where	

$$
\begin{aligned}
& \text { formal manner, or else certain necessary terms } \\
& \text { will not be generated. Form the chain rule of } \\
& \text { differential calculus, we have }
\end{aligned} \left\lvert\, \begin{array}{r}
\qquad \begin{array}{r}
\left(\frac{\partial}{\partial x}\right)_{\mathrm{y}, \mathrm{t}}=\left(\frac{\partial}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial \xi}{\partial x}\right)_{\mathrm{y}, \mathrm{t}}+\left(\frac{\partial}{\partial \eta}\right)_{\xi, \tau}\left(\frac{\partial \eta}{\partial x}\right)_{\mathrm{y}, \mathrm{t}} \\
\\
+\left(\frac{\partial}{\partial \tau}\right)_{\xi, \eta}\left(\frac{\partial \tau}{\partial x}\right)_{\mathrm{y}, \mathrm{t}}^{0}
\end{array}
\end{array}\right.
$$

The subscripts in the above expression are added to emphasize what variables are being held constant in the partial differentiation. In our subsequent expression, subscripts will be dropped; however, it is always useful to keep them in your mind. Thus, we will write the above expression as

$$
\begin{equation*}
\frac{\partial}{\partial x}=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial x}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial x}\right) \tag{6.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial}{\partial y}=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial y}\right) \tag{6.3}
\end{equation*}
$$

Also,

$$
\begin{align*}
\left(\frac{\partial}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}= & \left(\frac{\partial}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}+\left(\frac{\partial}{\partial \eta}\right)_{\xi, \eta}\left(\frac{\partial \eta}{\partial t}\right)_{\mathrm{x}, \mathrm{y}} \\
& +\left(\frac{\partial}{\partial \tau}\right)_{\xi, \eta}\left(\frac{\partial \tau}{\partial t}\right)_{\mathrm{x}, \mathrm{y}} \tag{6.4}
\end{align*}
$$

or,

$$
\frac{\partial}{\partial t}=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial t}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial t}\right)+\left(\frac{\partial}{\partial \tau}\right) \frac{\mathrm{d} \tau}{\mathrm{~d} t}
$$

terms, we have
$\frac{\partial^{2}}{\partial x^{2}}=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial x^{2}}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial x^{2}}\right)+\left(\frac{\partial^{2}}{\partial \xi^{2}}\right)\left(\frac{\partial \xi}{\partial x}\right)^{2}$ $+\left(\frac{\partial^{2}}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial x}\right)^{2}+2\left(\frac{\partial^{2}}{\partial \eta \partial \xi}\right)\left(\frac{\partial \eta}{\partial x}\right)\left(\frac{\partial \xi}{\partial x}\right)$

Equation (6.9) gives the second partial derivative with respect to x in terms of first, second, and mixed derivatives with respect to ξ and η, multiplied by various metric terms. Let us now continue to obtain the second partial with respect to y. From Eq. (6.3), let

$$
D \equiv \frac{\partial}{\partial y}=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial y}\right)
$$

Then,

$$
\begin{align*}
& \frac{\partial^{2}}{\partial y^{2}}=\frac{\partial D}{\partial y}=\frac{\partial}{\partial y}\left[\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial y}\right)\right] \\
&=\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial y^{2}}\right)+\left(\frac{\partial \xi}{\partial y}\right)\left(\frac{\partial^{2}}{\partial \xi}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial y^{2}}\right)+\left(\frac{\partial \eta}{\partial y}\right)\left(\frac{\partial^{2}}{\partial \eta \partial y}\right) \tag{6.10}\\
&\underset{F}{-})
\end{align*}
$$

Using Eq. (6.3),

$$
\begin{equation*}
E=\frac{\partial}{\partial y}\left(\frac{\partial}{\partial \xi}\right)=\left(\frac{\partial^{2}}{\partial \xi^{2}}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial^{2}}{\partial \eta \partial \xi}\right)\left(\frac{\partial \eta}{\partial y}\right) \tag{6.11}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\frac{\partial}{\partial y}\left(\frac{\partial}{\partial \eta}\right)=\left(\frac{\partial^{2}}{\partial \eta \partial \xi}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial^{2}}{\partial \eta^{2}}\right)\left(\frac{\partial \eta}{\partial y}\right) \tag{6.12}
\end{equation*}
$$

Substituting Eqs. (6.11) and (6.12) into (6.10), we
have, after rearranging the sequence of terms:

$$
\begin{align*}
\frac{\partial^{2}}{\partial y^{2}}= & \left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial y^{2}}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial y^{2}}\right)+\left(\frac{\partial^{2}}{\partial \xi^{2}}\right)\left(\frac{\partial \xi}{\partial y}\right)^{2} \tag{6.13}\\
& +\left(\frac{\partial^{2}}{\partial \eta^{2}}\right)\left(\frac{\partial \eta}{\partial y}\right)^{2}+2\left(\frac{\partial^{2}}{\partial \eta \partial \xi}\right)\left(\frac{\partial \eta}{\partial y}\right)\left(\frac{\partial \xi}{\partial y}\right)
\end{align*}
$$

Equation (6.13) gives the second partial derivative with respect to y in terms of first, second, and mixed derivatives with respect to ξ and η, multiplied by various metric terms. We now continue to obtain the second partial with respect to x and y.

$$
\begin{align*}
\frac{\partial^{2}}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\right)=\frac{\partial D}{\partial x}=\frac{\partial}{\partial x}\left[\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial \eta}{\partial y}\right)\right] \\
& =\left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial x \partial y}\right)+\left(\frac{\partial \xi}{\partial y}\right)\left(\frac{\partial^{2}}{\partial \xi \partial x}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial x \partial y}\right)+\left(\frac{\partial \eta}{\partial y}\right)\left(\frac{\partial^{2}}{\partial \eta \partial x}\right) \tag{6.14}
\end{align*}
$$

Substituting Eqs. (6.7) and (6.8) for B and C
respectively into Eq. (6.14), and rearranging the
sequence of terms, we have

$$
\begin{align*}
\frac{\partial^{2}}{\partial x \partial y}= & \left(\frac{\partial}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial x \partial y}\right)+\left(\frac{\partial}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial x \partial y}\right)+\left(\frac{\partial^{2}}{\partial \xi^{2}}\right)\left(\frac{\partial \xi}{\partial x}\right)\left(\frac{\partial \xi}{\partial y}\right) \tag{6.15}\\
& +\left(\frac{\partial^{2}}{\partial \eta^{2}}\right)\left(\frac{\partial \eta}{\partial x}\right)\left(\frac{\partial \eta}{\partial y}\right)+\left(\frac{\partial^{2}}{\partial \eta \partial \xi}\right)\left[\left(\frac{\partial \eta}{\partial x}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial \xi}{\partial x}\right)\left(\frac{\partial \eta}{\partial y}\right)\right]
\end{align*}
$$

Equation (6.15) gives the second partial derivative with respect to x and y in terms of first, second, and mixed derivatives with respect to ξ and η, multiplied by various metric terms.
Examine all the equations given in the boxed above. They represent all that is necessary to transform the governing flow equations obtained in Chap. 2 with x, y, and t as the independent variables to ξ, η, and T as the new independent variables. Clerely, when this transformation is made, the governing equations in terms of ξ, η, and T become rather lengthy. Let us consider a simple example, namely that for inviscid, irrotational, steady, incompressible flow, for which Laplace's Equation is the governing equation.

$$
\begin{equation*}
\text { Laplace's Equation: } \quad \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{6.16}
\end{equation*}
$$

Transforming Eq. (6.16) from (x, y) to (ξ, η), where $\xi=\xi(x, y)$ and $\eta=\eta(x, y)$, we have from

Eqs. (6.9) and (6.13):

$$
\begin{aligned}
& \left(\frac{\partial^{2} \phi}{\partial \xi^{2}}\right)\left(\frac{\partial \xi}{\partial x}\right)^{2}+2\left(\frac{\partial^{2} \phi}{\partial \xi \partial \eta}\right)\left(\frac{\partial \eta}{\partial x}\right)\left(\frac{\partial \xi}{\partial x}\right)+\left(\frac{\partial^{2} \phi}{\partial \eta^{2}}\right)\left(\frac{\partial \eta}{\partial x}\right)^{2} \\
& \quad+\left(\frac{\partial \phi}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial x^{2}}\right)+\left(\frac{\partial \phi}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial x^{2}}\right)+\left(\frac{\partial^{2} \phi}{\partial \xi^{2}}\right)\left(\frac{\partial \xi}{\partial y}\right)^{2} \\
& \quad+2\left(\frac{\partial^{2} \phi}{\partial \eta \partial \xi}\right)\left(\frac{\partial \eta}{\partial y}\right)\left(\frac{\partial \xi}{\partial y}\right)+\left(\frac{\partial^{2} \phi}{\partial \eta^{2}}\right)\left(\frac{\partial \eta}{\partial y}\right)^{2} \\
& \quad+\left(\frac{\partial \phi}{\partial \xi}\right)\left(\frac{\partial^{2} \xi}{\partial y^{2}}\right)+\left(\frac{\partial \phi}{\partial \eta}\right)\left(\frac{\partial^{2} \eta}{\partial y^{2}}\right)=0
\end{aligned}
$$

Rearranging terms, we obtain

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial \xi^{2}}\left[\left(\frac{\partial \xi}{\partial x}\right)^{2}+\left(\frac{\partial \xi}{\partial y}\right)^{2}\right]+\frac{\partial^{2} \phi}{\partial \eta^{2}}\left[\left(\frac{\partial \eta}{\partial x}\right)^{2}+\left(\frac{\partial \eta}{\partial y}\right)^{2}\right] \\
& \quad+2 \frac{\partial^{2} \phi}{\partial \xi \partial \eta}\left[\left(\frac{\partial \eta}{\partial x}\right)\left(\frac{\partial \xi}{\partial x}\right)+\left(\frac{\partial \eta}{\partial y}\right)\left(\frac{\partial \xi}{\partial y}\right)\right] \\
& \quad+\frac{\partial \phi}{\partial \xi}\left[\frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \xi}{\partial y^{2}}\right]+\frac{\partial \phi}{\partial \eta}\left[\frac{\partial^{2} \eta}{\partial x^{2}}+\frac{\partial^{2} \eta}{\partial y^{2}}\right]=0 \tag{6.17}
\end{align*}
$$

Examine Eqs. (6.16) and (6.17); the former is Laplace's equation in the physical (x, y) space, and the latter is the transformed Laplace's
equation in the computational (ξ, η) space. The transformed equation clearly contains many more terms.
Once again we emphasize that Eqs. (6.1), (6.2), (6.3), (6.5), (6.9), (6.13), and (6.15) ar used to transform the governing flow equations from the physical plane (x. y space) to the computational plane (ξ, η space), and that the purpose of the transformation in most CFD applications is to transform a non-uniform grid in physical space (such as shown in Fig. 6.2a) to a uniform grid in the computational space (such as shown in Fig. 6.2b). The transformed governing partial differential equations are then finite-differenced in the computational plane, where there exists a uniform $\Delta \xi$ and a uniform $\Delta \eta$, as shown in Fig. 6.2(b). The flowfield variables are calculated at all grid points in the computational plane, such as points, a, b, and c in Fig. 6.2(b). These are the same flowfield variables which exist in the physical plane at the corresponding points a, b, and c in Fig. 6.2(a). The transformation that accomplishes all this is given in general form by Eqs. (6.1a, b, and c). Of course, to carry out a solution for a given problem, the transformation given generically by Eqs. (6.1a, b, and c) must be explicitly specified. Examples of some specific transformations will be given in subsequent sections.

In Eqs. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14), (6.15), the terms involving the geometry of the grids, such as $\partial \xi / \partial x, \partial \xi / \partial y, \partial \eta / \partial x, \partial \eta / \partial y$, etc., are called metrics. If the transformation, Eq. (6.1a, b and c), is given analytically, then it is possible to obtain analytic values for the metric terms. However, in many CFD applications, the transformation, Eq. (6.1a, b and c), is given numerically, and hence the metric terms are calculated as finite differences. Also, in many applications, the transformation may be more conveniently expressed as the inverse of Eqs. $(6.1 \mathrm{a}, \mathrm{b})$, that is, we may have available the inverse

transformation.		
	$\begin{aligned} x & =x(\xi, \eta, \tau) \\ y & =y(\xi, \eta, \tau) \\ t & =t(\tau) \end{aligned}$	$\begin{aligned} & (6.18 a) \\ & (6.18 b) \\ & (6.18 c) \end{aligned}$
In Eqs. (6.18a, b and $c), \xi, \eta$ and τ are the independent variables. However, in the derivative transformations given by Eqs. (6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14), and (6.15), the metric terms $\partial \xi / \partial x, \partial \eta / \partial y$, etc. are partial derivatives in terms of x, y and t as the independent variables. Therefore, in order to calculate the metric terms in these equations from the inverse transformation in Eqs. (6.18a, b and c), we need to relate $\partial \xi / \partial x, \partial \eta / \partial y$, etc. to the inverse forms $\partial x / \partial \xi, \partial y / \partial \eta$, etc. These inverse forms of the metrics are the values which can be directly obtained from the inverse transformation, Eqs. (6.18a, b and c). Let us proceed to find such relations. Consider a dependent variable in the governing flow equations, such as the x component of velocity, u. Let $u=u(x, y)$, where from Eqs. (6.18a and b$), x=x(\xi, \eta)$ and $y=y(\xi, \eta)$. The total differential of u is given by		
$\frac{\partial u}{\partial \xi}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \xi}$		(6.20)
Equations (6.20) and (6.21) can be viewed as two equations for the two unknowns $\partial u / \partial x$ and $\partial u / \partial y$. Solving the system of equations (6.20) and (6.21) for $\partial u / \partial x$ using Cramer's rule, we have		

$$
\frac{\partial u}{\partial y}=\frac{\left|\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial u}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial u}{\partial \eta}
\end{array}\right|}{\left|\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right|}
$$

or,

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{1}{J}\left[\left(\frac{\partial u}{\partial \eta}\right)\left(\frac{\partial x}{\partial \xi}\right)-\left(\frac{\partial u}{\partial \xi}\right)\left(\frac{\partial x}{\partial \eta}\right)\right] \tag{6.24}
\end{equation*}
$$

Examine Eqs. (6.23) and (6.24). They express the derivatives of the flow field variables in physical space in terms of the derivatives of the flowfield variables in computational space. Equations (6.23) and (6.24) accomplish the same derivative transformations as given by Eqs.
(6.2) and (6.3). However, unlike Eqs. (6.2) and (6.3) where the metric terms are $\partial \xi / \partial x, \partial \eta / \partial y$, etc., the new Eqs. (6.23) and (6.24) involve the inverse metrics, $\partial x / \partial \xi, \partial y / \partial \eta$, etc. Also notice that Eqs. (6.23) and (6.24) include the Jacobian of the transformation. Therefore, whenever you have the transformation given in the form of Eqs. (6.18a, b and c), from which you can readily obtain the metrics in the form $\partial x / \partial \xi$,
$\partial x / \partial \eta$, etc., the transformed governing flow equations can be expressed in terms of these inverse metrics and the Jacobian, J.A similar but more lengthy set of results can be obtained for a three-dimensional transformation from (x, y, z) to (ξ, η, ζ). Consult Ref. [1] for more details. Our discussion above has been intentionally limited to two dimensions in order to demonstratethe basic principles without cluttering the consideration with details.

6.3 Coordinate Stretching

In the remaining three sections of this chapter, we examine three types of grid transformations. The simplest is discussed here. It consists of stretching the grid in one or more coordinate directions. For example, consider the physical and
computational planes shown in Fig. 6.3(a, b). Assume that we are dealing with the viscous flow over a flat surface, where the velocity varies rapidly near the surface as shown in the velocity profile sketched at the right of the physical plane (Fig. 6.3a). To calculate the details of this flow near the surface, a finely spaced grid in the y-direction should be used, as sketched in the physical plane. However, far away from the surface, the grid can be more coarse. Therefore, a proper grid should be one in which
the coordinate lines become progressively more closely spaced as the surface is approached.

On the other hand, we wish to deal with a uniform grid in the computational plane, as shown in Fig. 6.3(b). On examination, we see that the grid in the physical space is 'stretched', as if a uniform grid were drawn on a piece of rubber, and then the upper portion of the rubber were stretched upward in the y-direction. A simple analytical transformation which can accomplish this grid stretching is:.

In Eq. (6.22), the denominator determinant is
identified as the Jacobian determinant,
denoted by
---:
$\frac{\partial x}{\partial \xi}=1 ; \quad \frac{\partial x}{\partial \eta}=0 ; \quad \frac{\partial y}{\partial \xi}=0 ; \quad \frac{\partial y}{\partial \eta}=e^{\eta}$

Let us consider the continuity equation, given by
Eq. (2.27). For steady, twodimensional flow, this is

$$
\begin{equation*}
\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}=0 \tag{6.28}
\end{equation*}
$$

Equation (6.27) is the continuity equation written in terms of the physical plane.This equation can be formally transformed by means of the general results given by Eqs. (6.23) and (6.24), obtaining

$$
\begin{equation*}
\frac{1}{J}\left[\frac{\partial(\rho u)}{\partial \xi}\left(\frac{\partial y}{\partial \eta}\right)-\frac{\partial(\rho u)}{\partial \eta}\left(\frac{\partial y}{\partial \xi}\right)\right]+\frac{1}{J}\left[\frac{\partial(\rho v)}{\partial \eta}\left(\frac{\partial x}{\partial \xi}\right)-\frac{\partial(\rho v)}{\partial \xi}\left(\frac{\partial x}{\partial \eta}\right)\right]=0 \tag{6.29}
\end{equation*}
$$

Substituting into Eq. (6.29) the inverse metrics from Eq. (6.27), we have

$$
\begin{equation*}
e^{\eta} \frac{\partial(\rho u)}{\partial \xi}+\frac{\partial(\rho v)}{\partial \eta}=0 \tag{6.30}
\end{equation*}
$$

Equation (6.30) is the continuity equation in the computational plane.Equation (6.30) can also be obtained from the direct transformation given by

Eqs. (6.25a and b). Here, the metrics are:

$$
\begin{equation*}
\frac{\partial \xi}{\partial x}=1 ; \quad \frac{\partial \xi}{\partial y}=0 ; \quad \frac{\partial \eta}{\partial x}=0 ; \quad \frac{\partial \eta}{\partial y}=\frac{1}{y+1} \tag{6.31}
\end{equation*}
$$

Using the transformations given by Eqs. (6.2) and

> (6.3), Eq. (6.28) becomes

$$
\begin{equation*}
\frac{\partial(\rho u)}{\partial \xi}\left(\frac{\partial \xi}{\partial x}\right)+\frac{\partial(\rho u)}{\partial \eta}\left(\frac{\partial \eta}{\partial x}\right)+\frac{\partial(\rho v)}{\partial \xi}\left(\frac{\partial \xi}{\partial y}\right)+\frac{\partial(\rho v)}{\partial \eta}\left(\frac{\partial \eta}{\partial y}\right)=0 \tag{6.32}
\end{equation*}
$$

Substituting into Eq. (6.32) the metrics from Eq. (6.31), we have

$$
\begin{equation*}
\frac{\partial(\rho u)}{\partial \xi}+\frac{1}{(y+1)} \frac{\partial(\rho v)}{\partial \eta}=0 \tag{6.33}
\end{equation*}
$$

However, from Eq. (6.26b), $y+1=e \eta$. Therefore,
Eq. (6.33) becomes

$$
\frac{\partial(\rho u)}{\partial \xi}+\frac{1}{e^{\eta}} \frac{\partial(\rho v)}{\partial \eta}=0
$$

or

$$
\begin{equation*}
e^{\eta} \frac{\partial(\rho u)}{\partial \xi}+\frac{\partial(\rho v)}{\partial \eta}=0 \tag{6.34}
\end{equation*}
$$

Equation (6.34) is identical to Eq. (6.30). All that we have done here is to demonstrate how the transformed equation can be obtained from either the direct transformation or the inverse transformation ; the results are the same. An example of more complex grid stretching, in both the x - and y-directions, is given in Refs. [2, 3]. Here, the supersonic viscous flow over a blunt base is studied.The physical and computational
planes are illustrated in Fig. 6.4. The streamwise stretching is accomplished through a transformation originally used by Holst [4]

$$
x=\frac{\xi_{0}}{A}\left[\sinh \left(\left(\xi-x_{0}\right) \beta_{\mathrm{x}}\right)+A\right]
$$

where

$$
A=\sinh \left(\beta_{\mathrm{x}} x_{0}\right)
$$

and

$$
x_{0}=\frac{1}{2 \beta_{\mathrm{x}}} \ln \left[\frac{1+\left(e^{\beta_{\mathrm{x}}}-1\right) \xi_{0}}{1+\left(e^{-\beta_{\mathrm{x}}}-1\right) \xi_{0}}\right]
$$

where $\xi 0$ is the location in the computational plane where the maximum clustering is to occur, and $\beta \mathrm{x}$ is a constant which controls the degree of clustering at $\xi 0$, with larger values of $B x$ providing a finer grid in the clustered region. The transverse stretching is accomplished by dividing the physical plane into two sections: (1) the space directly behind the step, and (2) the space above (both in front of and behind) the step. The transformation is based on that used by Roberts
[5], and is given by

6.3 Boundary-Fitted Coordinate Systems 6.5

Consider the flow through the divergent duct shown in Fig. 6.5(a). Curve $d e$ is the upper wall of the duct, and line $f g$ is the centreline. For this flow, a simple rectangular grid in the physical plane is not appropriate, for the reasons discussed in Sect. 6.1. Instead, we draw the curvilinear grid in Fig. 6.5(a) which allows both the upper boundary $d e$ and the centreline $f g$ to be coordinate lines, exactly fitting these boundaries. In turn, the curvilinear grid in Fig. 6.5(a) must be transformed to a rectangular grid in the computational plane, Fig. 6.5(b). This can be accomplished as follows. Let $y s=f(x)$ be the ordinate of the upper surfacede

| in Fig. 6.5(a). Then the following transformation
 will result in a rectangular grid in (ξ, η) space: |
| :--- | ---: |
| The above is a simple example of a boundary
 fitted coordinate system. A more sophisticated
 example is shown in Fig. 6.6, which is an
 elaboration of the case illustrated in Fig. 6.2. |
| Consider the airfoil shape given in Figure 6.6(a). A |
| curvilinear system is wrapped around the airfoil, |
| where one coordinate line $\eta=\eta 1=$ =constant is on |
| the airfoil surface. This is the inner boundary of |
| the grid, designated by $\Gamma 1$. The outer boundary of |
| the grid is labelled $\Gamma 2$ in Figure $6.6(a)$ and is given |
| by $\eta=\eta 2=$ constant. Examining this grid, we see |
| that it clearly fits the boundary, and hence it is a |
| boundary-fitted coordinate system. The lines |
| which fan out from the inner boundary $\Gamma 1$ and |
| which intersect the outer boundary $\Gamma 2$ are lines of |
| constant ξ, such as line ef for which $\xi=\xi 1=$ |
| constant. (Note that in Fig. $6.6(a)$ the lines |

Recall from Sect. 4.3.3 that the solution of elliptic partial differential equations requires the specification of the boundary conditions everywhere along a boundary enclosing the domain. Therefore, let us consider the transformation in Fig. 6.6 to be defined by an elliptic partial differential equation (in contrast to an algebraic relation as illustrated in Sect. 6.4). One of the simplest elliptic equations is Laplace's equation:

$$
\begin{align*}
& \frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \xi}{\partial y^{2}}=0 \tag{6.35a}\\
& \frac{\partial^{2} \eta}{\partial x^{2}}+\frac{\partial^{2} \eta}{\partial y^{2}}=0 \tag{6.35b}
\end{align*}
$$

where we have Dirichlet boundary conditions

$$
\eta=\eta 1=\text { constant on } \Gamma 1
$$

$\eta=\eta 2=$ constant on $\Gamma 2$ and

$$
\xi=\xi(x, y) \text { is specified on both } \Gamma 1 \text { and } \Gamma 2
$$

It is important to keep in mind what we are doing here. The equations (6.35 a and b) have nothing to do with the physics of the flow field. They are simply elliptic partial differential equations which we have chosen to relate ξ and η to x and y,and hence constitute a transformation (a one-to-one correspondence of grid points) from the physical plane to the computational plane. Because this transformation is governed by elliptic equations, it is an example of a general class of grid generation called elliptic grid generation. Such elliptic grid generation was first used on a practical basis by Joe Thompson at Missippi State University, and is described in detail in the pioneering paper given in Ref. [6]. Let us look more closely at the physical and computational planes shown in Fig. 6.6. In order to construct a rectangular grid in the computational plane plane (Fig. 6.6b), a cut must be made in the physical plane (Fig. 6.6a) at the trailing edge of the airfoil. This cut can be visualized as two lines superimposed on each other: the line $p q$ denoted by $Г 3$ represents a boundary line for the physical space above $p q$, and and the line $r s$ denoted by $\Gamma 4$ represents a boundary line for the physical space below r s. In
the physical plane, the points p and r are the same point, and the points q and s are the same point; in Fig. 6.6(a) they are slightly displaced for clarity. However, in the computational plane, these points are all different. Indeed, the grid in the computational plane is obtained by slicing the physical grid at the cut, and then 'unwrapping' the grid from the airfoil. For example, the airfoil surface in the physical plane, curve pgecar, becomes the lower straight line denoted by $\Gamma 1$ in the computational plane. Similarly, the outer boundary ghfdbs becomes the upper straight line denoted by $\Gamma 2$ in the computational plane. The left and right sides of the rectangle in the computational plane are formed from the cut in the physical plane; the left side is line $r s$ denoted by $\Gamma 4$ in Fig. 6.6(b), and the right side is line $p q$ denoted by $Г 3$ in Fig. 6.6(b). The computational plane is sketched again in Fig. 6.7. Here we emphasize that values of (x, y) are known along all four boundaries, $Г 1, ~ Г 2, ~ Г 3$ and Г4. The key aspect of the elliptic grid generation approach is that, with the given boundary conditions, Eqs. (6.35a and b) are solved for the (x, y) values which apply to all the internal points. An example of such an internal point is given by point A in Fig. 6.7, which corresponds to the same point A in Figs. 6.6(a) and (b). In reality, the equations to be solved are the inverse of Eqs. (6.35a and b), that is, equations obtained from Eqs. (6.35a and b) by interchanging the dependent and independent variables.The result is:

Fig. 6.7 Computational plane, illustrating the boundary conditions and an internal point

$$
\begin{align*}
& \alpha \frac{\partial^{2} x}{\partial \xi^{2}}-2 \beta \frac{\partial^{2} x}{\partial \xi \partial \eta}+\gamma \frac{\partial^{2} x}{\partial \eta^{2}}=0 \tag{6.36a}\\
& \alpha \frac{\partial^{2} y}{\partial \xi^{2}}-2 \beta \frac{\partial^{2} y}{\partial \xi \partial \eta}+\alpha \frac{\partial^{2} y}{\partial \eta^{2}}=0 \tag{6.36b}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha & =\left(\frac{\partial x}{\partial \eta}\right)^{2}+\left(\frac{\partial y}{\partial \eta}\right)^{2} \\
\beta & =\left(\frac{\partial x}{\partial \xi}\right)\left(\frac{\partial x}{\partial \eta}\right)+\left(\frac{\partial y}{\partial \xi}\right)\left(\frac{\partial y}{\partial \eta}\right) \\
\gamma & =\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}
\end{aligned}
$$

Note in Eqs. (6.36a and b) that x and y are now expressed as the dependent variables. Returning again to Fig. 6.7, Eqs. (6.36a and b) are solved, along with the given boundary conditions for (x, y) on $Г 1, Г 2, \Gamma 3$ and $\Gamma 4$, to obtain the values of (x, y) which correspond to the uniformly spaced grid points in the computational (ξ, η) plane. Thus, a given grid point ($(\mathfrak{i}, \eta j)$ in the computational plane corresponds to the calculated grid point ($x \mathrm{i}, y \mathrm{j}$) in physical space. The solution of Eqs. (6.36a and b) is carried out by an appropriate finite-difference solution for elliptic equations; for example, relaxation techniques are popular for such equations. Note that the above transformation, using an elliptic partial differential equation to generate the grid, does not involve closed-form analytic expressions; rather, it produces a set of numbers which locate a grid point ($x \mathrm{i}, y \mathrm{j}$) in physical space which correspond to a given grid point ($\xi \mathrm{i}, \mathrm{\eta} \mathrm{j}$) in computational space. In turn, the metrics in the governing flow equations (which are solved in the computational plane), such as $\partial \xi / \partial x, \partial \eta / \partial y$, etc. are obtained from finite differences; central differences are frequently used for this purpose.The curvilinear, boundary-fitted coordinate system shown in Fig. 6.6(a) is simply illustrated in a qualitative sense in that figure, for purposes of instruction. An actual grid generated about an airfoil using the above elliptic grid generation approach is shown in Fig. 6.8, taken from Ref. [7]. Using Thompson's
grid generation scheme(Ref. [6]), Wright ([7]) has generated a boundary-fitted coordinate system around a Miley airfoil. (The Miley airfoil is an airfoil specially designed for low Reynolds number applications by Stan Miley at Mississippi State University.) In Fig. 6.6 the white speck in the middle of the figure is the airfoil, and the grid spreads far away from the airfoil in all directions. In Ref. [7] low Reynolds number flows over airfoils were calculated by means of a time dependent finite-difference solution of the compressible Navier-Stokes equations (such timedependent solutions are discussed in Chap. 7). The free stream is subsonic, hence the outer boundary must be placed far away from the airfoil because of the far-reaching propagation of disturbances in a subsonic flow. A detail of the grid in the near vicinity of the airfoil is shown in Fig. 6.9. Note from both Figs. 6.8 and 6.9 that the grid is a ' C ' type grid, in contrast to the ' 0 ' type grid sketched in Fig. 6.6.We end this section by emphasizing again that the elliptic grid generation, with its solution of elliptic partial differential equations to obtain the internal grid points, is completely separate from the finite-
difference solution of the governing equations. The grid is generated first, before any solution of the governing equations is attempted. The use of Laplace's equation (Eq. (6.35a and b)) to obtain this grid has nothing to do whatsoever with the physical aspects of the actual flow field. Here,Laplace's equation is simply used to generate the grid only.

Fig. 6.8 Boundary fitted grid (from Ref. [7])

Fig. 6.9 A detail of the boundary fitted grid (from Ref. [7])

An adaptive grid is a grid network that automatically clusters grid points in regions of high flow field gradients; it uses the solution of the flow field properties to locate the grid points
in the physical plane. The adaptive grid evolves in steps of time in conjunction with a time dependent solution of the governing flow field equations, which computes the flow field variables in steps of time. During the course of the solution, the grid points in the physical plane move in such a fashion to 'adapt' to regions of large flow field gradients. Hence, the actual grid points in the physical plane are constantly in motion during the solution of the flow field, and become stationary only when the flow solution approaches a steady state. Therefore, unlike the elliptic grid generation discussed in Sect. 6.5 where the generation of the grid is completely separate from the flow field solution, an adaptive grid is intimately linked to the flow field solution, and changes as the flow field changes. The hoped-for advantages of an adaptive grid are expected because the grid points are clustered in regions where the 'action' is occurring. These advantages are: (1) increased accuracy for a fixed number of grid points, or (2), for a given accuracy, fewer grid points are needed. Adaptive grids are still very new in CFD, and whether or not these advantages are always acheived is not well established. An example of a simple adaptive grid is that used by Corda [8] for the solution of viscous supersonic flow over a rearward-facing step. Here, the transformation is expressed in the form:

$$
\begin{align*}
& \Delta x=\frac{B \Delta \xi}{1+b \frac{\partial g}{\partial x}} \tag{6.37}\\
& \Delta y=\frac{C \Delta \eta}{1+c \frac{\partial g}{\partial y}} \tag{6.38}
\end{align*}
$$

where g is a primitive flow field variable, such as
p, @ or T. If $g=p$, then Eqs. (6.37)
and (6.38) cluster the grid points in regions of
large pressure gradients; if $g=T$,
the grid points cluster in regions of large temperature gradients, and so forth. In Eqs. (6.37) and (6.38), $\Delta \xi$ and $\Delta \eta$ are fixed, uniform grid spacings in the computational
(ξ, η) plane, b and c are constants chosen to increase or decrease the effect of
the gradient in changing the grid spacing in the physical plane, B and C are scale factors and Δx and Δy are the new grid spacings in the physical plane. Because $\partial g / \partial x$ and $\partial g / \partial y$ are changing with time during a time-dependent solution of the flow field, then clearly Δx and Δy change with time, i.e. the grid points move in the physical space. Clearly, in regions of the flow where $\partial g / \partial x$ and $\partial g / \partial y$ are large, Eqs. (6.37) and (6.38) yield small values of Δx and Δy for a given $\Delta \xi$ and $\Delta \eta$; this is the mechanism which clusters the grid points.In dealing with an adaptive grid, the computational plane consists of fixed points in the (ξ, η) space; these points are fixed in time, i.e. they do not move in the computational space. Moreover, $\Delta \xi$ is uniform, and $\Delta \eta$ is uniform. Hence, the computational plane is the same as we have discussed in previous sections. The governing flow equations are solved in the computational plane, where the x, y and t derivatives are transformed according to Eqs. (6.2), (6.3) and (6.5). In particular, examine the transformation given by Eq. (6.5) for the time derivative. In the case of stretched or boundaryfitted grids as discussed in Sects. 6.4 and 6.5 respectively, the metrics $\partial \xi / \partial t$ and $\partial \eta / \partial t$ were zero, and Eq. (6.5) yields $\partial / \partial t=\partial / \partial \tau$. However, for an adaptive grid,

$$
\frac{\partial \xi}{\partial t} \equiv\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}
$$

and

$$
\frac{\partial \eta}{\partial t} \equiv\left(\frac{\partial \eta}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}
$$

are finite. Why? Because, although the grid points are fixed in the computational plane, the grid points in the physical plane are moving with time. The physical meaning of $(\partial \xi / \partial t) x, y$ is the time rate of change of ξ at a fixed (x, y) location in the physical plane. Similarly, the physical meaning of $(\partial \eta / \partial t) x, y$ is the time rate of change of η at a fixed (x, y) location in the physical plane. Imagine that you have your eyes locked to a fixed (x, y) point in the physical plane. As a function of time, the values of ξ and η associated with this fixed (x, y) point will change. This is why $\partial \xi / \partial t$ and $\partial \eta / \partial t$ are
finite. In turn, when dealing with the transformed flow equations in the computational plane, all three terms on the right-hand side of Eq. (6.5) are finite, and must be included in the transformed equations. In this fashion, the time metrics $\partial \xi / \partial t$ and $\partial \eta / \partial t$ automatically take into account the movement of the adaptive grid during the solution of the governing flow equations. The values of the time metrics in the form shown in Eq. (6.5) are a bit cumbersome to evaluate; on the other hand, the related time metrics

$$
\left(\frac{\partial x}{\partial t}\right)_{\xi, \eta} \text { and }\left(\frac{\partial y}{\partial t}\right)_{\xi, \eta}
$$

are much easier to evaluate, because they come

> from

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{\xi, \eta} \approx \frac{\Delta x}{\Delta t} \tag{6.39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial y}{\partial t}\right)_{\xi, \eta} \approx \frac{\Delta y}{\Delta t} \tag{6.40}
\end{equation*}
$$

where Δx and Δy are obtained directly from the transformation given in Eqs. (6.37) and (6.38) respectively. Let us find the relationship between
these two sets of time metrics. Consider

$$
x=x(\xi, \eta, \tau)
$$

Hence

$$
\mathrm{d} x=\left(\frac{\partial x}{\partial \xi}\right)_{\eta, \tau} \mathrm{d} \xi+\left(\frac{\partial x}{\partial \eta}\right)_{\xi, \tau} \mathrm{d} \eta+\left(\frac{\partial x}{\partial \tau}\right)_{\xi, \eta} \mathrm{d} \tau
$$

From this result, we write

$$
\left(\frac{\partial x}{\partial t}\right)_{x, y}^{0}=\left(\frac{\partial x}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial \xi}{\partial t}\right)_{x, y}+\left(\frac{\partial x}{\partial \eta}\right)_{\xi, \tau}\left(\frac{\partial \eta}{\partial t}\right)_{x, y}+\left(\frac{\partial x}{\partial \tau}\right)_{\xi, \eta}\left(\frac{\partial \tau}{\partial t}\right)_{x, y} 1
$$

or

$$
\begin{equation*}
-\left(\frac{\partial x}{\partial \tau}\right)_{\xi, \eta}=\left(\frac{\partial x}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}+\left(\frac{\partial x}{\partial \eta}\right)_{\xi, \tau}\left(\frac{\partial \eta}{\partial t}\right)_{\mathrm{x}, \mathrm{y}} \tag{6.41}
\end{equation*}
$$

Note that we are carrying the subscripts on the partial derivatives to avoid any confusion over what variables are held constant. Now consider

$$
y=y(\xi, \eta, \tau)
$$

Hence:

$$
\mathrm{d} y=\left(\frac{\partial y}{\partial \xi}\right)_{\eta, \tau} \mathrm{d} \xi+\left(\frac{\partial y}{\partial \eta}\right)_{\xi, \tau} \mathrm{d} \eta+\left(\frac{\partial y}{\partial \tau}\right)_{\xi, \eta} \mathrm{d} \tau
$$

Thus, from this result we write

$$
\left(\frac{\partial y}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}^{0}=\left(\frac{\partial y}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}+\left(\frac{\partial y}{\partial \eta}\right)_{\xi, \tau}\left(\frac{\partial \eta}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}+\left(\frac{\partial y}{\partial \tau}\right)_{\xi, \eta}\left(\frac{\partial \tau}{\partial t}\right)_{\mathrm{x}, \mathrm{y}} 1
$$

or

$$
\begin{equation*}
-\left(\frac{\partial y}{\partial \tau}\right)_{\xi, \eta}=\left(\frac{\partial y}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}+\left(\frac{\partial y}{\partial \eta}\right)_{\xi, \tau}\left(\frac{\partial \eta}{\partial t}\right)_{\mathrm{x}, \mathrm{y}} \tag{6.42}
\end{equation*}
$$

Solve Eqs. (6.41) and (6.42) for $\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}$

$$
\left(\frac{\partial \xi}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}=\frac{\left|\begin{array}{l}
-\left(\frac{\partial x}{\partial \tau}\right)_{\xi, \eta}\left(\frac{\partial x}{\partial \eta}\right)_{\xi, \tau} \\
-\left(\frac{\partial y}{\partial \tau}\right)_{\xi, \eta}\left(\frac{\partial y}{\partial \eta}\right)_{\xi, \tau}
\end{array}\right|}{\left|\begin{array}{l}
\left(\frac{\partial x}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial x}{\partial \eta}\right)_{\xi, \tau} \\
\left(\frac{\partial y}{\partial \xi}\right)_{\eta, \tau}\left(\frac{\partial y}{\partial \eta}\right)_{\xi, \tau}
\end{array}\right|}
$$

Recognizing that $\tau=t$, and that the denominator is the Jacobian J, the above equation becomes
(dropping subscripts)

$$
\begin{equation*}
\frac{\partial \xi}{\partial t}=\frac{1}{J}\left[-\left(\frac{\partial x}{\partial t}\right)\left(\frac{\partial y}{\partial \eta}\right)+\left(\frac{\partial y}{\partial t}\right)\left(\frac{\partial x}{\partial \eta}\right)\right] \tag{6.43}
\end{equation*}
$$

Solving Eqs. (6.41) and (6.42) for $\left(\frac{\partial \eta}{\partial t}\right)_{\mathrm{x}, \mathrm{y}}$, , we find a likewise fashion that	
$\frac{\partial \eta}{\partial t}=\frac{1}{J}\left[\left(\frac{\partial x}{\partial t}\right)\left(\frac{\partial y}{\partial \xi}\right)-\left(\frac{\partial y}{\partial t}\right)\left(\frac{\partial x}{\partial \xi}\right)\right]$	
Let us recapitulate. For an adaptive grid, the governing flow equations, when transformed for solution in the computational (ξ, η) plane, must	

contain all the terms in the time transformation given by Eq. (6.5). The time metrics, $\partial \xi / \partial t$ and $\partial \eta / \partial t$, in Eq. (6.5) can in turn be expressed in terms of $\partial x / \partial t$ and $\partial y / \partial t$ through Eqs. (6.43) and (6.44). These new time metrics can in turn be readily calculated from Eqs. (6.39) and (6.40), where Δx and Δy are given by the basic transformation in Eqs. (6.37) and (6.38). An example of an adapted grid for the supersonic viscous flow over a rearward facing step is given in Fig. 6.10, taken from the work of Corda [8]. Flow is from left to right. Note that the grid points cluster around the expansion wave from the top corner of the step, and around the reattachment shock wave downstream of the step.It is interesting to note that the adapted grid itself is a type of 'flow field visualization method' that helps to identify the location of waves and other gradients in the flow. As a final note, there are many different approaches for the generation of adaptive grids. The above discussion is just one; it is based on ideas presented by Dwyer et al. in Ref. [9]. For a more complete discussion on adaptive grids, as well as grid generation in general, see Ref. [1].

Fig. 6.10 Adapted grid for the rearward-facing step problem (from Corda, Ref. [8])
References

1. Anderson, D.A., Tannehill, John C. and Pletcher, Richard H., Computational Fluid Mechanics and
Heat Transfer, McGraw-Hill, New York, 1984.
2. Sullins, G.A., Anderson, J.D., Jr. and Drummond, J.P., 'Numerical Investigation of Supersonic
Base Flow with Parallel Injection,' AIAA Paper No. 82-1001.
3. Sullins, G.A., Numerical Investigation of Supersonic Base Flow with Tangential Injection,
M.S. Thesis, Department of Aerospace Engineering, University of Maryland, 1981.
4. Holst, T.L., 'Numerical Solution of Axisymmetric Boattail Fields with Plume Simulators,'
AIAA Paper No. 77-224, 1977.
5. Roberts, B.O., 'Computational Meshes for Boundary Layer Problems,' Lecture Notes in
Physics, Springer-Verlag, New York, 1971, pp. 171-177.
6. Thompson, J.F., Thames, F.C. and Mastin, C.W.,'Automatic Numerical Generation of Body-
Fitted Curvilinear Coordinate Systems for Fields Containing Any Number of Arbitrary Two-
Dimensional Bodies,' Journal of Computational Physics, Vol. 15, pp. 299-319, 1974.
7. Wright, Andrew F., A Numerical Investigation of Low Reynolds Number Flow Over an Airfoil,
M.S. Thesis, Department of Aerospace Engineering, University of Maryland, 1982.
8. Corda, Stephen, Numerical Investigation of the Laminar, Supersonic Flow over a RearwardFacing Step Using an Adaptive Grid Scheme, M.S. Thesis, Department of Aerospace Engineering, University of Maryland, 1982. 9. Dwyer, H.A., Kee, R.J. and Sanders, B.R., 'An Adaptive Grid Method for Problems in Fluid Mechanics and Heat Transfer,' AIAA Paper No. 79-1464, 1979.

Chapter 7 (Explicit Finite Difference Methods: Some Selected 7 Applications to Inviscid and Viscous Flows)

7.1 Introduction

> In this chapter we round-out our introductory
treatment of computational fluid dynamics by discussing some applications of explicit finite difference methods to selected examples for inviscid and viscous flows. These examples have one thing in common-they are results obtained by either the present author and/or some of his graduate students over the past few years. This is not meant to be chauvinistic; rather this choice is intentionally made to illustrate what can be done by uninitiated students who are new to the ideas of CFD.

These examples demonstrate the power and beauty of CFD in the hands of students much like yourselves who may have little or no experience in the field. Moreover, in all cases the applications are carried out with computer programs designed and written completely by each student. This is following the author's educational philosophy that each student should have the experience of starting with paper and pencil, writing down the governing equations, developing the appropriate numerical solution of these equations, writing the FORTRAN program, punching the program into the computer, and then going through all the trials and tribulations of making the
program work properly. This is an important aspect of CFD education. No established
computer programs ('canned' programs) are used; everything is 'home-grown', with the exception of standard graphics packages which are used to plot the results. Therefore, by examining these examples, you should obtain a reasonable feeling for what you can expect to accomplish when youfirst jump into the world of CFD applications.Before we discuss some
examples, it is important to describe the mechanism of explicit finite-difference calculations. The distinction between explicit and implicit approaches was made in Sect. 5.3, which should be reviewed before progressing further in this chapter. In the next few sections, we will describe two rather straightforward and popular explicit methods. The treatment and application of implicit methods is given by other lectures in this course, and hence will not be discussed here. Finally, the examples discussed in this chapter all incorporate the time-dependent method, i.e. forward marching in steps of time. The historic break-through made by this method in the 1960s is discussed in Chap. 1. The vast majority of time dependent solutions have as their objective the solution of a steady-state flow field which is approached by the solution at large times; here, the time-dependent mechanism is simply a means towards achieving that end. In other applications, the timedependent method is used to calculate the actual transients in an unsteady flow of interest. Examples of both are given here. We note, however, that although the following sections deal with marching forward in time, the same techniques are easily applied to a steady flow calculation where spatial marching is done along some coordinate axis. We have seen in Chap. 4 that such forward marching (in time or space) is appropriate when the governing equations are hyperbolic or parabolic.

7.2 The Lax-Wendroff Method

Let us describe this method by considering a simple gas-dynamic problem, namely the subsonic-supersonic isentropic flow through a convergent-divergent nozzle, as sketched in Fig. 7.1. Here, a nozzle of specified area distribution, $A=A(x)$, is given, and the reservoir conditions are known. Let us consider a quasi-one-dimensional solution where the flow field variables are functions of x (in the steady state). For
a calorically perfect gas, the solution of this flow is classical, and can be found in any compressible flow text book (see for example Refs. [1,2]).We use this example here only because it is an excellent vehicle for introducing and describing the time dependent finitedifference philosophy.The nozzle is divided into a number of grid points in the x -direction as shown in Fig. 7.1; the spacing between adjacent grid points is Δx. Now assume values of the flow field variables at all grid points, and consider this rather arbitrarily assumed flow as an initial condition at time $t=0$. In general, these assumed values will not be the exact stead state results; indeed, the exact steady-state results are what we are trying to calculate. Consider a grid point, say point i. Let gi denote a flow field variable at this point (gi might be pressure, density, velocity, etc.). This variable gi will be a function of time; however, we know gi at time $\mathrm{t}=0$, i.e. we know gi(0) because we have assumed values for all the flow field variables at all the grid points at the initial time $t=0$
Fig. 7.1 Flow through a convergent-divergent nozzle

We now calculate a new value of gi at time t $+\Delta \mathrm{t}$; starting from the initial conditions, the first new time is $t+\Delta t=0+\Delta t$. Here, Δt is a small increment in time to be discussed later. The new value of gi, i.e. gi $(t+\Delta t)$, is obtained from a
Taylor's series expansion in time as

$$
g_{\mathrm{i}}(t+\Delta t)=g_{\mathrm{i}}(t)+\left(\frac{\partial g}{\partial t}\right)_{\mathrm{i}} \Delta t+\left(\frac{\partial^{2} g}{\partial t^{2}}\right)_{\mathrm{i}} \frac{(\Delta t)^{2}}{2}+\cdots
$$

or, using the standard notation of time as a superscript,

$$
\begin{equation*}
g_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}=g_{\mathrm{i}}^{\mathrm{t}}+\left(\frac{\partial g^{\mathrm{t}}}{\partial t}\right) \Delta t+\left(\frac{\partial^{2} g}{\partial t^{2}}\right)_{\mathrm{i}}^{\mathrm{t}} \frac{(\Delta t)}{2}+\cdots \tag{7.1}
\end{equation*}
$$

Here $\mathrm{git}^{i+\Delta t}$ is the value of g at grid point i and at time $t+\Delta t ;(\partial g / \partial t) i^{t}$ is the first partial of g evaluated at grid point i at time t, etc. In Eq. (7.1), g^{t} is known and $\Delta \mathrm{t}$ is specified. Therefore, we can use Eq. (7.1) to calculate $\mathrm{g}^{\mathrm{i}+\Delta \mathrm{t}}$ if we have numbers for the derivatives $(\partial g / \partial t) i^{++\Delta t}$ and $(\partial 2 \mathrm{~g} / \partial \mathrm{t} 2) \mathrm{i}^{\mathrm{i}+\Delta t}$. The numbers for the derivatives are obtained from the physics of the flow as embodied in the governing flow equations. (Note that Eq. (7.1) is simply mathematics, and by itself is certainly not sufficient to solve the problem.) The governing flow equations for the quasi-one-dimensional flow through a nozzle are (14):

$$
\begin{array}{ll}
\text { Continuity : } & \frac{\partial \rho}{\partial t}=-\frac{1}{A} \frac{\partial(\rho u A)}{\partial x} \\
\text { Momentum : } & \frac{\partial u}{\partial t}=-\frac{1}{\rho}\left(\frac{\partial p}{\partial x}+\rho u \frac{\partial u}{\partial x}\right) \\
\text { Energy : } & \frac{\partial e}{\partial t}=-\frac{1}{\rho}\left[p \frac{\partial u}{\partial x}+p u \frac{\partial(\ln A)}{\partial x}+\rho u \frac{\partial e}{\partial x}\right] \tag{7.4}
\end{array}
$$

Note that Eqs. (7.2), (7.3) and (7.4) are written with the time derivatives on the left-hand side, and spatial derivatives on the right-hand side. For the moment, let us calculate density, i.e. $\mathrm{g} \equiv \mathrm{o}$, and let us consider just the continuity equation, Eq. (7.2).Expanding the right-hand side of Eq. (7.2), we obtain

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\frac{1}{A} \rho u \frac{\partial A}{\partial x}-u \frac{\partial \rho}{\partial x}-\rho \frac{\partial u}{\partial x} \tag{7.5}
\end{equation*}
$$

At time $\mathrm{t}=0$, the flow field variables are assumed; hence we can replace the spatial derivatives with central differences:

$$
\begin{equation*}
\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{i}}^{\mathrm{t}}=-\frac{1}{A} \rho_{\mathrm{i}}^{\mathrm{t}} u_{\mathrm{i}}^{\mathrm{t}}\left(\frac{A_{\mathrm{i}+1}-A_{\mathrm{i}-1}}{2 \Delta x}\right)-u_{\mathrm{i}}^{\mathrm{t}}\left(\frac{\rho_{\mathrm{i}+1}^{\mathrm{t}}-\rho_{\mathrm{i}-1}^{\mathrm{t}}}{2 \Delta x}\right)-\rho_{\mathrm{i}}^{\mathrm{t}}\left(\frac{u_{\mathrm{i}+1}^{\mathrm{t}}-u_{\mathrm{i}-1}^{\mathrm{t}}}{2 \Delta x}\right) \tag{7.6}
\end{equation*}
$$

Equation (7.6) gives us a number for ($\mathrm{\partial} \mathrm{\rho} / \mathrm{\partial t})^{\mathrm{t}_{\mathrm{i}}}$, which is inserted into Eq. (7.1).However, to
complete Eq. (7.1), we need a number for the second partial also, namely $\left(\partial^{2} \mathrm{Q} / \partial \mathrm{t}^{2}\right)^{\mathrm{t}}$. To obtain this, differentiate the continuity equation, Eq. (7.5), with respect to time:

$$
\begin{equation*}
\frac{\partial^{2} \rho}{\partial t^{2}}=-\frac{1}{A}\left[\frac{\partial A}{\partial x}\left(\rho \frac{\partial u}{\partial t}+u \frac{\partial \rho}{\partial t}\right)\right]-u \frac{\partial^{2} \rho}{\partial x \partial t}-\left(\frac{\partial \rho}{\partial x}\right)\left(\frac{\partial u}{\partial t}\right)-\rho \frac{\partial^{2} u}{\partial x \partial t}-\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial \rho}{\partial t}\right) \tag{7.7}
\end{equation*}
$$

Also, differentiate the continuity equation, Eq. (7.5), with respect to x :

$$
\begin{equation*}
\frac{\partial^{2} \rho}{\partial t \partial x}=-\frac{1}{A}\left[\rho u \frac{\partial^{2} A}{\partial x^{2}}+\left(\frac{\partial A}{\partial x}\right)\left(\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x}\right)\right]-u \frac{\partial^{2} \rho}{\partial x^{2}}-\left(\frac{\partial \rho}{\partial x}\right)\left(\frac{\partial u}{\partial x}\right)-\rho \frac{\partial^{2} u}{\partial x^{2}}-\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial \rho}{\partial x}\right) \tag{7.8}
\end{equation*}
$$

The procedure now works as follows:
(1) In Eq. (7.8), replace all derivatives on the right-hand side with central differences, such as

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{u_{\mathrm{i}+1}^{\mathrm{t}}-u_{\mathrm{i}-1}^{\mathrm{t}}}{2 \Delta x} \\
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{u_{\mathrm{i}+1}^{\mathrm{t}}-2 u_{\mathrm{i}}^{\mathrm{t}}+u_{\mathrm{i}-1}^{\mathrm{t}}}{(\Delta x)^{2}} \\
& \text { etc. }
\end{aligned}
$$

This now provides a number for $\left(\partial^{2} \mathrm{Q} / \partial t \partial x\right)^{t_{i}}$ from Eq. (7.8).
(2) Insert this number for ($\partial^{2} \mathrm{e} / \partial \mathrm{t} \partial \mathrm{x}$) t_{i} into Eq.(7.7). Also in Eq. (7.7), numbers for $\partial u / \partial t$ and $\partial^{2} u / \partial x \partial t$ are obtained from a treatment of the momentum equation,Eq. (7.3), in a manner exactly the same as the continuity equation was treated above. The details will not be given here. In Eq. (7.7), a number for ($\partial \mathrm{o} / \partial \mathrm{t}$) is already available, namely from Eq. (7.6). The net result is that we now have a number for $\left(\partial^{2} \mathrm{Q} / \partial \mathrm{t}^{2}\right) \mathrm{t}_{\mathrm{i}}$, obtained from Eq. (7.7). (3) Insert this number for ($\left.\partial^{2} \mathrm{Q} / \mathrm{Dt}^{2}\right)^{\text {tinnto Eq. (7.1) }}$ remembering that $\mathrm{g} \equiv \mathrm{\varrho}$ for this case. (4) Insert the number for ($\partial \rho / \partial \mathrm{t}$) ${ }_{\mathrm{t}, \mathrm{Ob} \text {, }}$, Eq. (7.6), into Eq. (7.1).
(5) Every quantity on the right-hand side of Eq. (7.1) is now known. This allows the density $\mathrm{Q}^{\mathrm{i}+\Delta t}$ to be calculated from Eq. (7.1). This is indeed what we wanted.We now have the density at grid point i at the next step in time, $t+\Delta t$. (6) Perform the above procedure at every grid point to obtain $\varrho(t+\Delta t)$ everywhere throughout the nozzle.

> (7) Perform the above procedure on the momentum and energy equations to obtain $\mathrm{u}(\mathrm{t}+\Delta \mathrm{t})$ and $\mathrm{e}(\mathrm{t}+\Delta \mathrm{t})$ everywhere throughout the nozzle. We now have the complete flowfield at time $(\mathrm{t}+\Delta \mathrm{t})$, obtained from theknown flowfield at time t . (Recall that the process is started at $\mathrm{t}=0$ with the assumed initial conditions.) (8) Repeat the above process for a large number of time steps. At each time step, the flow properties at all grid points will change from one time to the next. However, at large times, these changes become very small, and a steadystate is approached. This steady-state is the desired result, and the time-dependent technique is simply a means to that end.

Fig. 7.2 Transient and final steady-state temperature distributions for a calorically perfect gas obtained from the present time dependent analysis, $\gamma=1.4$

The behaviour of this type of solution is illustrated in Figs. 7.2 and 7.3. In Fig. 7.2, the temperature distribution through a given nozzle is shown. The dashed line labelled $t=0$ is the initially assumed values for T throughout the nozzle. The curve above it labelled $8 \Delta t$ is the temperature distribution after eight time steps following the above procedure. The curves labeled $16 \Delta t$ and $32 \Delta t$ are similar results after 16 and 32 time steps respectively. Note that the temperature distribution has rapidly changed from the assumed initial distribution at $t=0$. At later times, the changes become smaller; note that the curve labelled $120 \Delta \mathrm{t}$ is not too different from that for $32 \Delta t$. Finally, after 744 time steps, the changes are so small that the temperature distribution is essentially at a
steady state. This steady state is the desired solution. Note that the numerically-obtained
steady state agrees virtually perfectly with the classical results, as can be obtained from Refs. [1, 3], and from Ref. [4].Fig. 7.3 illustrates the variation of mass flow, m^{*}, through the nozzle. The dashed line is the m^{\cdot} consistent with the assumed initial conditions at $t=0$. The curves labeled 16Δ t and 32Δ t graphically demonstrate the wild variations in m^{\cdot} at early times.
Fig. 7.3 Transient and final steady-state massflow distributions for a calorically perfect gas obtained from the present time-dependent analysis, $\gamma=1.4$

However, after 120 time steps m° has become more stable, and after 744 time steps has reached a steady state. This steady state distribution for m° is a straight, horizontal line, as it should be for steady flow, where $\mathrm{m}^{\circ}=$ constant through the nozzle.Moreover, it is the correct value of mass flow, as compared to results from Ref. [4]. The method described above, utilizing Eq. (7.1), which is the first three terms of a Taylor's series expansion and where
both the first and second partial derivatives in Eq. (7.1) are found by finite-differencing the spatial derivatives in the governing flow equations with central differences, is called the Lax-Wendroff method. Note that the method is of second-order accuracy, from Eq. (7.1). This method was employed with much success in the late 1960s until a more straight-forward version of the same idea was introduced by MacCormack in 1969. This is the subject of the next section. For more details about the LaxWendroff method as applied to the nozzle problem, see Refs. [5, 6].

7.3 MacCormack's Method

MacCormack's method, first introduced in 1969
(see Ref. [7]), has been the most popular explicit
finite-difference method for solving fluid flows. It is closely related to the Lax-Wendroff method, but is easier to apply. Let us use the same nozzle problem discussed in Sect. 7.2 to illustrate MacCormack's method in the present section. MacCormack's method, like the LaxWendroff method, is based on a Taylor's series expansion in time. Once again, as in Sect. 7.2, let us consider the density at grid point i.

$$
\begin{equation*}
\rho_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}=\rho_{\mathrm{i}}^{\mathrm{t}}+\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{ave}} \Delta t \tag{7.9}
\end{equation*}
$$

Equation (7.9) is a truncated Taylor's series that looks first-order accurate; however, ($\mathrm{\partial} / \mathrm{\partial t})_{\text {ave }}$ is an average time derivative taken between time t and $t+\Delta t$. This derivative is evaluated in such a fashion that the calculation of $\varrho \mathrm{i}^{\mathrm{t}+\Delta \mathrm{t}}$ from Eq. (7.9) becomes second-order accurate. The average time derivative in Eq. (7.9) is evaluated from a predictor-corrector philosophy as follows.Predictor step.We repeat the continuity equation, Eq. (7.5), below:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\frac{1}{A} \rho u \frac{\partial A}{\partial x}-u \frac{\partial \rho}{\partial x}-\rho \frac{\partial u}{\partial x} \tag{7.5repeated}
\end{equation*}
$$

In Eq. (7.5), calculate the spatial derivatives from the known flow field values at time t using forward differences. That is, from Eq.
(7.5),

$$
\begin{equation*}
\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{i}}^{\mathrm{t}}=-\frac{1}{A}\left[\rho_{\mathrm{i}}^{\mathrm{t}} u_{\mathrm{i}}^{\mathrm{t}}\left(\frac{A_{\mathrm{i}+1}-A_{\mathrm{i}}}{\Delta x}\right)\right]-u_{\mathrm{i}}^{\mathrm{t}}\left(\frac{\rho_{\mathrm{i}+1}^{\mathrm{t}}-\rho_{\mathrm{i}}^{\mathrm{t}}}{\Delta x}\right)-\rho_{\mathrm{i}}^{\mathrm{t}}\left(\frac{u_{\mathrm{i}+1}^{\mathrm{t}}-u_{\mathrm{i}}^{\mathrm{t}}}{\Delta x}\right) \tag{7.10}
\end{equation*}
$$

Obtain a predicted value of density, ${ }^{-} \mathrm{Q}^{\mathrm{t}+\Delta \mathrm{t}}$, from the first two terms of a Taylor's series, as follows

$$
\begin{equation*}
\bar{\rho}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}=\rho_{\mathrm{i}}^{\mathrm{t}}+\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{i}}^{\mathrm{t}} \Delta t \tag{7.11}
\end{equation*}
$$

In Eq. (7.11), $\mathrm{Q}_{\mathrm{i}}{ }^{\mathrm{t}}$ is known, and $(\mathrm{\partial} \mathrm{Q} / \partial \mathrm{t})^{\mathrm{t}_{\mathrm{i}}}$ is a known number from Eq. (7.10); hence, $\varrho_{i} i^{t+\Delta t}$ is readily obtained. In a similar fashion, from the momentum and energy equations, predicted values of the other flow variables such as $\mathrm{u}^{i}{ }^{-\mathrm{t}+\Delta \mathrm{t}}, \mathrm{e}_{\mathrm{i}^{\mathrm{t}}}{ }^{+\Delta \mathrm{t}}$, etc. areobtained. Corrector step Here, we first obtain a predicted
value of the time derivative, ($\partial \rho / \partial t$) $\mathrm{i}^{\mathrm{t} \Delta \mathrm{t}}$, by substituting the predicted values of $u_{i}{ }^{-t+\Delta t}, \varrho_{i}{ }^{-t+\Delta t}$, etc. into Eq. 7.5, using rearward differences.

$$
\begin{equation*}
\overline{\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}}=-\frac{1}{A} \bar{\rho}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}} \bar{u}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}\left(\frac{A_{\mathrm{i}}-A_{\mathrm{i}-1}}{\Delta x}\right)-\bar{u}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}\left(\frac{\bar{\rho}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}-\bar{\rho}_{\mathrm{i}-1}^{\mathrm{t}+\Delta \mathrm{t}}}{\Delta x}\right)-\bar{\rho}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}\left(\frac{\bar{u}_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}-\bar{u}_{\mathrm{i}-1}^{\mathrm{t}+\Delta \mathrm{t}}}{\Delta x}\right) \tag{7.12}
\end{equation*}
$$

Now calculate the average time derivative as the arithmetic mean between Eqs. (7.10) and (7.12), i.e.

$$
\begin{equation*}
\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{ave}}=\frac{1}{2}\left[\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{i}}^{\mathrm{t}}+{\overline{\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{i}}}}^{\mathrm{t}+\Delta \mathrm{t}}\right] \tag{7.13}
\end{equation*}
$$

where numbers for the two terms on the righthand side of Eq. (7.13) come from Eqs (7.10)and (7.12) respectively. Finally, we obtain the corrected value of $\varrho \mathrm{i}^{\mathrm{t}+\Delta \mathrm{t}}$ from Eq. (7.9), repeated below:

$$
\begin{equation*}
\rho_{\mathrm{i}}^{\mathrm{t}+\Delta \mathrm{t}}=\rho_{\mathrm{i}}^{\mathrm{t}}+\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{ave}} \Delta t \tag{7.9repeated}
\end{equation*}
$$

The above predictor-corrector approach is carried out for all grid points throughout the nozzle, and is applied simultaneously to the momentum and energy equations
 fashion, the flow field through the entire nozzle at time $t+\Delta t$ is calculated. This is repeated for a large number of time steps until the steady state is achieved, just as in the case of the Lax

Wendroff method described in Sect. 7.2. MacCormack's technique as described above, because a two-step predictor-corrector sequence is used with forward differences on the predictor and rearward differences on the corrector, is a second-order accurate method. Therefore, it has the same accuracy as the Lax-Wendroff method described in Sect. 7.2. However, the MacCormack method is much easier to apply, because there is no need to evaluate the second time derivatives as was the
case for the Lax-Wendroff method. To see this more clearly, recall Eqs. (7.7) and (7.8), which are required for the Lax-Wendroff method. These equations represent a large number of additional calculations. Moreover, for a more

> complex fluid dynamic problem, the differentiation of the continuity, momentum and energy equations to obtain the second derivatives, first with respect to time, and then the mixed derivatives with respect to time and space, can be very tedious, and provides an extra source for human error. MacCormack's method does not require such second derivatives, and hence does not deal with equations such as Eqs. (7.7) and (7.8). A few comments are made with regard to the specific application to the quasione dimensional nozzle flow shown in Fig. 7.1. At the inflow boundary (the first grid point at the left), the values of p, T and ϱ are fixed, independent of time, and are assumed to be reservoir values. The inflow velocity, which is a very small subsonic value, is calculated from linear extrapolation using the adjacent internal points, or it can be evaluated from the momentum equation applied at the first grid point using one-sided differences. At the outflow boundary (the last grid point at the right in Fig. 7.1), all the dependent variables are obtained from linear extrapolation from the adjacent internal points, or by applying the governing equations at this point, using one-sided differences. Finally, we note that results obtained from the Lax-Wendroff method and from the MacCormack method are virtually identical. For example, these two methods are compared for a vibrationally relaxing, high temperature, non-equilibrium nozzle flow in Ref. [8]; there is no difference between the two sets of results.

7.4 Stability Criterion

Examine Eq. (7.1), which is vital to the LaxWendroff method. Note that it requires the specification of a time increment, $\Delta \mathrm{t}$. Examine Eqs. (7.9) and (7.11), which are vital to the MacCormack method. They too require the specification of a time increment,Δt. For explicit methods, the value of Δt cannot be arbitrary, rather it must be less than some maximum value allowable for stability. The time-dependent applications described in Sects. 7.2 and 7.3 are dealing with governing
flow equations which are hyperbolic with respect to time. Recall our discussion in Sect. 5.4 dealing with the stability criteria for such equations. There, it was stated that $\Delta \mathrm{t}$ must obey the Courant-Friedrichs-Lewy criterion-
the so-called CFL criterion. This is embodied in Eq. (5.47), which was derived from the simple model equation given by Eq. (5.42). This is the linear wave equation, where c is the wave propagation speed.If the wave were propagating through a gas which already has a velocity u, then the wave will travel at the velocity ($u+c$) relative to the stationary surroundings. For such a case, Eq. (5.47)
becomes

$$
\begin{equation*}
\Delta t=C\left(\frac{\Delta x}{u+c}\right) ; \quad C \leq 1 \tag{7.14}
\end{equation*}
$$

where C is the Courant number, and c is the speed of sound, $c=(\partial p / \partial \mathrm{Q}) \mathrm{s}$. Eq. (7.14) is the appropriate CFL criterion for the one dimensional, explicit solutions of nozzle flows discussed in Sects. 7.2 and 7.3. The CFL criterion given by Eq. (7.14) says physically that the explicit time step must be no greater than the time required for asound wave to propagate from one grid point to the next. This author's experience has been that C should be as close to unity as possible, but depending upon the actual application, themaximumallowable value ofC for stability in explicit timedependent finite difference calculations can vary from approximately $0.5-1.0$. Keep in mind that the stability criteria exemplified by Eqs. (5.47) and (7.14) are based on analysis of linear equations. On the other hand, the governing equations for a general fluid flow are highly non- linear . Therefore,wewould not expect theCFLcriteria to apply exactly to such cases; instead, it provides a reasonable estimate of Δt for a given non-linear problem, and as a result the value of the Courant number in Eq. (7.14) can be viewed as an adjustable parameter to compensate for such non-linearities. Return for a moment to the
nozzle flow application discussed in Sects. 7.2 and 7.3. Here, at any given time t, Eq. (7.14) is evaluated at each grid point throughout the
flow. Because u and c vary with x, then the local value of Δt associated with each grid point will be different from one point to the next. The value of Δt actually employed in Eqs. (7.1) and (7.9) to advance the flow field through the next step in time should be the minimum Δt calculated over all the grid points. [Some CFD applications have employed the 'local time step method', wherein the local values of $\Delta \mathrm{t}$ are used at each grid point in Eqs. (7.1) and (7.9). In this case, the transient variations calculated over many time steps do not hold physically; a type of 'time-warped' flow field is developed, where all the new flow variables calculated for a subsequent time step actually pertain to different total values of time. This 'local time step method' frequently results in a faster convergence to the steady state, that is, fewer total time steps are required to obtain the steady state. On the other hand, the calculated transients have no physical meaning, and some CFD experts wonder openly about the overall accuracy of such a method, even for the final steady state results.] Finally, we note that for a two or threedimensional flow, an extension of Eq. (7.14) is:

$$
\begin{equation*}
\Delta t=\operatorname{Min}\left(\Delta t_{\mathrm{x}}, \Delta t_{\mathrm{y}}\right) \tag{7.15a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta t_{\mathrm{x}}=C \frac{\Delta x}{u+c} \tag{7.15b}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta t_{\mathrm{y}}=C \frac{\Delta y}{v+c} \tag{7.15c}
\end{equation*}
$$

7.5 Selected Applications of the Explicit Time-Dependent Technique

The purpose of this section is to illustrate various applications of the explicit, timedependent technique described in the previous sections of this chapter. These applications contain many of the CFD features that have been discussed throughout these
notes.

References $[5,6,8]$ represent the first application of the time-dependent technique to vibrational and chemical non-equilibrium nozzle flows. A purely steady flow analysis of such flows, which involves forward marching from the reservoir to the exit of the nozzle, encounters a saddle-point singularity at the nozzle throat. This singularity greatly complicates steadystate numerical solutions of the flow. On the other hand, as first demonstrated in Refs. [5,6], the time-dependent numerical solution circumvents such problems in the throat region, and therefore constitutes a relatively straightforward numerical solution of such The analysis of vibrational non-.flows equilibrium nozzle flows requires the inclusion of a vibrational rate equation, such as

$$
\begin{equation*}
\frac{\partial e_{\mathrm{vib}}}{\partial t}=\frac{1}{\tau}\left[\left(e_{\mathrm{vib}}\right)_{\mathrm{eq}}-e_{\mathrm{vib}}\right]-u \frac{\partial e_{\mathrm{vib}}}{\partial x} \tag{7.16}
\end{equation*}
$$

where evib is the local non-equilibrium value of molecular vibrational energy per unit mass of gas, (evib)eq is the local equilibrium value, and τ is the vibrational relaxation time which is a function of local p and T. The analysis of chemical nonequilibrium nozzle flows requires the inclusion of species continuity equationsone for each chemical species present in the gas

- which are of the form

$$
\begin{equation*}
\frac{\partial \eta_{\mathrm{i}}}{\partial t}=\dot{w}_{\mathrm{i}}-u \frac{\partial \eta_{\mathrm{i}}}{\partial x} \tag{7.17}
\end{equation*}
$$

where η_{i} is the mole-mass ratio (moles of species i per unit mass of mixture), and w_{i} is the rate of formation (or extinction of species i) due to finite-rate chemical reactions. The form of w_{i} involves chemical rate constants and the local concentrations of the chemical species. For an introductory development of Eqs. (7.16) and (7.17), see Chaps. 13 and 14 of Ref. [3]. Note that, in the same vein as Eqs. (7.2), (7.3) and (7.4), Eqs. (7.16) and (7.17) are written in the form of a time derivative on the left-hand side, and spatial derivatives on the right-hand side.

In turn, the nonequilibrium variables evib and ηi are calculated in steps of time in the same fashion as ϱ, u and e from Eqs. (7.2), (7.3) and
(7.4). Indeed, for the time-dependent solution of non-equilibrium nozzle flows, Eqs (7.2), (7.3) (7.4), (7.16) and (7.17) are coupled, and are solved in the same coupled fashion at each time step as described in Sects. 7.2 and 7.3. However, there is one additional stability restriction brought about by the non-equilibrium phenomena. For explicit solutions of non equilibrium flows, in addition to the CFL criterion discussed in Sect. 7.4, the value of Δt must also be less than the characteristic time for the fastest finite rate taking place in the system. That is

$$
\Delta t<B \Gamma
$$

where $\Gamma=\tau$ for vibrational non-equilibrium, and $\Gamma=\left(\partial w_{i} / \partial \eta_{i}\right)^{-1}$ which is an effective chemical relaxation time. (See Refs. [5, 6] for more details.) For this problem, no grid transformation is necessary; the physical and computational planes are one-in-the-same.
Fig. 7.4 Transient and final steady-state evib distributions for the non-equilibrium expansion of N2 obtained from the present time-dependent analysis


```
Typical results obtained with the Lax-Wendroff time-dependent technique are shown in Figs. 7.4 and 7.5, from Ref. [5]. The case of the vibrational non-equilibrium expansion of pure N2 is illustrated in Fig. 7.4. Here, the timedependent nature of the non-equilibrium value of evib as a function of distance through the nozzle is shown. The dashed line represents the
assumed initial distribution at \(t=0\). Several intermediate distributions, after 100 and 250 time steps, are shown, along with the final steady state after 800 time steps. A different case, namely that of the nonequilibrium chemically reacting expansion of dissociated oxygen, is illustrated in Fig. 7.5. Here, the dashed line represents the initially assumed variation of the mass fraction of atomic oxygen through the nozzle at \(t=0\). Several intermediate curves after 100 and 400 time steps are shown, along with the final, converged steady state after 2800 time steps. This final steady state distribution agrees well with an earlier steady flow solution carried out by Hall and Russo [9], which is shown as the solid circles in Fig. 7.5.
Fig. 7.5 Transient and final steady-state atom mass fraction distributions for the nonequilibrium expansion of dissociating oxygen obtained from the present time-dependent method; the steadystate distribution is compared with the steady-flow analysis of Ref.
[9]
```


Flow Field Over a Supersonic Blunt Body 7.5.2

[^0]shown at the top of Fig. 7.6; the curve BC is the body and curve AD is the shock wave. The x coordinates of the shock and body are given by s and b respectively. The local shock detachment distance is given by $\delta=\mathrm{s}-\mathrm{b}$. During the time-dependent solution, the body is stationary, hence $b=b(y)$. However, the shock wave will change shape and location with time, hence $s=s(y, t)$. Therefore,
\[

$$
\begin{equation*}
\delta(y, t)=s(y, t)-b(y) \tag{7.18}
\end{equation*}
$$

\]

The computational plane (ξ, η) is shown in Fig.
7.6 b , and is obtained from the transformation

$$
\begin{equation*}
\xi=\frac{x-b}{\delta} ; \quad \eta=y ; \tau=t \tag{7.19}
\end{equation*}
$$

where δ is obtained from Eq. (7.18). Note that this transformation is an example of a boundary-fitted coordinate system as discussed in Sect. 5.5.Typical results, obtained from Ref. [10], are shown in Figs. 7.7, 7.8 and 7.9. These results were obtained using the LaxWendroff method. In Fig. 7.7, the timedependent wave motion is illustrated, starting from its initially assumed value of $t=0$, and progressing to its steady state shape and location after 500 time steps. The time variations of the centreline wave velocity and the stagnation point pressure are shown in Figs. 7.8 and 7.9 respectively. Note in all three Figs. $7.7,7.8$ and 7.9 , that the most rapid changes occur at early times, and the steady state is approached rather asymptotically at large times.

Fig. 7.6 Coordinate system for the blunt body problem

7 Explicit Finite Difference Methods
Fig. 7.7 Time-dependent shock wave motion, parabolic cylinder, $M_{\infty}=4$

Fig. 7.8 Time variation of wave velocity; parabolic cylinder, $M_{\infty}=4$

Fig. 7.9 Time variation of stagnation point pressure; parabolic cylinder, $M_{\infty}=4$

Consider the flow inside an internal combustion engine as modelled by the pistoncylinder geometry shown in Fig. 7.10. The piston moves up and down inside the cylinder, and the flow enters through the intake valve and exits through the exhaustvalve. The flow field in this problem is truly unsteady, and the objective is to calculate this unsteady flow by means of the time-dependent technique. Here,no asymptotic steady state is ever obtained; rather, a repeatable cyclic flow field is calculated over the complete four-stroke cycle of intake, compression, power and exhaust.We will consider inviscid flow, and
hence the governing equations are Eq. (2.65) and the U, F, G, and H column vectors from Sect. 2.9 for an inviscid flow.A boundary-fitted coordinate system is used, where the transformation is $\xi=x / H(t) ; \eta-y, \tau=t$ Fig. 7.10 Geometry of two-dimensional cylinder-piston I.C. engine model showing grid arrangement.(a) Piston positioned at TDC, 10×17 uniformly spaced grid points; (b) Piston positioned at TDC, 10×17 variably spaced grid points (only in y-direction); (c) Piston positioned at BDC, 10×17 uniformly spaced grid points

and where $\mathrm{H}(\mathrm{t})$ is the time-varying distance between the top of the cylinder and the top of the piston. Note in Fig. 7.10 that the x coordinate is along the vertical axis of the cylinder, and the y-coordinate is in the radial direction across the cylinder.Results for this flow are shown in Figs. 7.11, 7.12, 7.13 and 7.14, taken from Ref. [11]. The solution is carried out using MacCormack's technique as described in Sect. 7.3. Figures 7.11, 7.12, 7.13 and 7.14 show the flow field associated with bottom dead centre of the intake stroke, three locations of the piston during the compression stroke, near bottom dead centre of the power
stroke, and an intermediate location of the exhaust stroke, respectively. Note that a circulatory flow is created during the intake stroke, and that this circulatory flow persists throughout the fourstroke cycle.

| Supersonic Viscous Flow Over a | Rearward-Facing | 7.5.4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

StepWith Hydrogen Injection

> Consider the two-dimensional supersonic viscous flow over a rearward facing step, where H2 is injected into the flow downstream of the step as sketched in Fig. 7.15 . Unlike the examples mentioned above, this case deals with the solution of the complete Navier-Stokes Equations, given by Eq. (2.65) with the U, F and G column vectors given in essence in Sect. 2.9 for viscous flow. This system is slightly modified for the presence of mass diffusion, which adds a diffusion term in the energy equation, and adds another equation, namely,
> the species continuity equation with diffusion terms. (See Refs. [12, 13] for more details.) The numerical technique used here is MacCormack's method discussed in Sect. 7.3. The present calculations were made on a uniform grid throughout the physical space. In combination with the rectangular geometry already existing in the physical plane (as can be seen by examining Fig. 7.15), this means that no grid transformation is needed. Typical results obtained from Refs. [12, 13] are given in Figs. $7.16,7.17,7.18$ and 7.19 . In Fig. 7.16, a velocity vector diagram is shown for the case with no H2 injection. The external Mach number is $2.19, ~ a n d ~ t h e ~ R e y n o l d s ~ n u m b e r ~$

Fig. 7.16 Velocity vectors with no H_{2} injection

Fig. 7.17 Velocity vectors with H_{2} injection

Fig. 7.18 Lines of constant Mach number with H_{2} injection

Fig. 7.19 Lines of constant H_{2} mass fraction

Fig. 7.21 Velocity vectors with no base injection

Fig. 7.22 Lines of constant pressure with no base injection

Fig. 7.23 Velocity vectors with injection from the center of the base

Consider the subsonic compressible, viscous two-dimensional flow over an airfoil. The governing equations are the Navier-Stokes equations discussed in Chap. 2. For this application, the choice is made to use the nonconservation form of the equations, namely, Eqs. 2.36(a, b and c), because no shock waves will be present in theflow. MacCormack's method is used. Consider the airfoil and the elliptically generated boundary-fitted grid shown in Figs. 6.8 and 6.9, as discussed in Sect. 6.5, and as taken from Refs. [17, 18]. Calculated results for a free stream Mach number of 0.5 and a Reynolds number based on chord length of 100000 (this is a low Reynolds number flow, which was the objective of the study in Ref. [18]) are shown in Figs. 7.25, 7.26 and 7.27. The angle-of-attack in these figures is zero. These figures illustrate the instantaneous flow over a Wortmann airfoil at different times. In Figs. 7.25 and 7.26, the flow is laminar, and it separates over the top surface of the airfoil at about the maximum thickness point. The flow is clearly unsteady, as can beseen by comparing Fig. 7.25(a, b and c); there is a rather periodic flow fluctuation over the rearward portion of the airfoil, as well as downstream of the trailing edge.The calculation of such unsteady flows,
especially in situations where they may be unexpected, is one of the major advantages of the time-dependent method in comparison to steady-state analyses. In Fig. 7.27, the flow is treated as turbulent; note that in this case the flow is attached.

Fig. 7.24 Lines of constant pressure with injection from the center of the base

This author has many more examples of CFD applications from the work of his graduate students; those listed in Sect. 7.5 are but a small fraction. They are picked for discussion in these notes on a rather arbitrary basis. Time and space do not allow further listing and Also, this brings to an end our .discussion introduction to CFD. It is the author's hope that these notes have been a reasonable beginning for the unitiated reader, and that he or she can now greatly expand his or her
horizons by reading the more advanced literature on CFD. If such advanced reading is
indeed more easy after studying the present notes, then this author has accomplished his goal In recent years, some
modern texts on CFD have been published (Refs. [19-23]); these texts are recommended for advanced studies of the subject. In particular, Fletcher's two volumes (Refs. [19, 20]) contain a nice theoretical discussion of the subject. Of special note are the two these ; ([volumes by Hirsch (Refs. [21, 22 volumes represent an authoritative presentation of the mathematical and numerical fundamentals of CFD, the modern techniques used in CFD, and how these techniques are used in various practical
, applications. Reference [23], by Hoffmann is a crisp presentation of CFD for use by engineers. All of these books are recommended for more advanced study of computational fluid dynamics. Also, for an

Fig. 7.26 Instantaneous streamlines over Wortmann airfoil (FX63-137)—laminar flow (unsteady results) $(\operatorname{Re}=100000, \mathrm{M}=0.5$, Alpha $=0.0 \mathrm{deg}$. $)$ Non-dimensional time $T_{\mathrm{n}}=7.04$

Fig. 7.27 Streamlines over Wortmann airfoil (FX63-137)—turbulent flow ($\mathrm{Re}=100000$, $\mathrm{M}=0.5$, Alpha $=0.0 \mathrm{deg}$.)

References 7.5.7

1. Anderson, John D., Jr., Fundamentals of Aerodynamics, 2nd Edition McGraw-Hill, New York, 1991.
2. Anderson, John D., Jr., 'Computational Fluid Dynamics - An Engineering Tool?' in A.A. Pouring (ed.), Numerical Laboratory Computer Methods in Fluid Dynamics, ASME, New York, 1976, pp. 1-12.
3. Anderson, J.D., Jr., Modern Compressible Flow: With Historical Perspective, 2nd Edition McGraw-Hill, New York, 1990.
4. Ames Research Staff, 'Equations, Tables, and Charts for Compressible Flow,' NACA Report 1135, 1953.
5. Anderson, J.D. Jr., 'A Time-Dependent Analysis for Quasi-One-Dimensional Nozzle Flows with Vibrational and Chemical Nonequilibrium,' NOLTR 69-52, Naval Ordnance Laboratory, White Oak, MD, 1969.
6. Anderson, J.D., Jr., 'A Time-Dependent Analysis for Vibrational and Chemical Nonequilibrium
Nozzle Flows,' AIAA Journal, Vol. 8, No. 3, March 1970, pp. 545-550.
7. MacCormack, R.W., 'The Effect of Viscosity in Hypervelocity Impact Cratering,' AIAA Paper
No. 69-354, 1969.
8. Anderson, J.D., Jr., ‘Time-Dependent Solutions of Nonequilibrium Nozzle Flow - A Sequel,' AIAA Journal, Vol. 5, No. 12, Dec. 1970. pp. 2280-2282.
9. Hall, J.G. and Russo, A.L., 'Studies of Chemical Nonequilibrium in Hypersonic Nozzle Flows,' AFOSR TN 59-1090, Cornell Aeronautical Laboratory Report AD-1118-A-6,

November 1969.
10. Anderson, J.D., Jr., 'On Hypersonic Blunt Body Flow Fields Obtained with a Time-

Dependent
Technique,' NOLTR 68-129, Naval Ordnance Laboratory, White Oak, MD, August 1968.
11. Dallospedale, C.L., 'A Numerical Solution for the Two-Dimensional Flowfield in an Internal Combustion Engine with Realistic Valve-Geometry,' M.S. Thesis, Department of Aerospace Engineering, University of Maryland, College Park, MD, 1978.

Chapter 8: Boundary Layer Equations and Methods of Solution 8

9 مدخل الي طريقة العناصر المنتهية (FEM) في ديناميكيات الموائع الحسابية (CFD)

9.1

The finite element method (FEM) is a numerical technique for solving partial differential equations (PDE's).	طريقة العناصر المنتهية (Finite element method) أو يطلق عليها أيضاً تحليل العناصر المنتهية هي طريقة تحليل عددي لإيجاد الخلول التقريبية للمعادلات التفاضلية الجزئية بالإضافة إلى الحلول التكاملية. يعتمد الحل إما على إلغاء المعادلات التناضلية الجزئية هائياً (ين الحالات الساكنة) أو تقريب المعادلات التفاضلية المزئية إلى معادلات تغاضلية نظامية والتي يكون من الممكن

حلها باستخدام عدة طرق كطريقة أويلر (Euler) أو رونني-كوتا (Runge-Kutta).

Its first essential characteristic is that the continuum field, or domain, is subdivided into cells, called elements, which form a grid. The elements (in 2D) have a triangular of a quadrilateral form and can be rectilinear or curved. The grid itself need not be structured. With unstructured grids and curved cells, complex geometries can be handled with ease.

The second essential characteristic of the FEM is that the solution of the discrete problem is assumed a priori to have a prescribed form. The solution has to belong to a function space, which is built by varying function values in a given way, for instance linearly or quadratically between values in nodal points. The nodal points, or nodes, are typical points of the elements such as vertices, mid-side points, mid-element points, etc. Due to this choice, the representation of the solution is strongly linked to the geometric representation of the domain.

The third essential characteristic is that a FEM does not look for the solution of the PDE itself, but looks for a solution of an integral form of the PDE. The most general integral form is obtained from a weighted residual formulation. By this formulation the method acquires the ability to naturally incorporate differential type boundary conditions and allows easily the construction of higher order accurate methods.
The ease in obtaining higher order accuracy and the ease of implementation of boundary conditions form a second important advantage of the FEM.

A final essential characteristic of the FEM is the modular way in which the discretization is obtained. The discrete equations are constructed from contributions on the element level which afterwards are assembled.

9.2

سوف نستخدم مثالين بسيطين لشرح طريقة العناصر المنتهية، والي من خلالها من الممكن استخلاص الطريقة العامة. في النقاش التالي، يجب على القارئ أن يكون متفهما لمبادئ علم الحسبان والجبر الخطى. P1 مي مسألة أحادية البعد، معطاة على الشكل التالي: P1 : $\left\{\begin{array}{l}u^{\prime \prime}=f \text { in }(0,1), \\ u(0)=u(1)=0,\end{array}\right.$ حيث f معلوم و u هو تابع بهول للمتحول x ، و "u هو المشتق الثاني للتابع u بالنسبة للمتحول x. u " المسألة ثنائية البعد البسيطة هي مسألة دبركلت (Dirichlet) وتعطى على الشكل التالي: $\mathrm{P} 2: \begin{cases}u_{x x}+u_{y y}=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}$
حيث Ω هي منطقة مغتو حة متصلة في المستوي الثنائي البعد (x, y الذي تكون حدوده $\partial \Omega$ هي عبارة
 من الممكن حل المسألة أحادية البعد بحساب المشنتق العكسي .لكن هذه الطريقة في حل مسألة القيمة الحدية (boundary value problem) تصلح لحل المسائل أحادية البعد ولا يمكن تعميمها إلى مسائل ذات أبعاد أعلى أو مثال لما الشكل u u ولهذا السبب كان من الضروري تطوير طريقة العناصر المنتهية، بدءاً من البعد الأحادي وتعميمها على الأبعاد الأعلى. الشرح هنا سوف يتم على مر حلتين والتي تعكس المرحلتين الأساسيتين الواجب تطبيقهما للمل مسألة القيمة الحدية باستخدام طريقة العناصر المنتهية: الخطوة الأولى: تبسيط مسألة القيمة الحدية (boundary value problem) إلى شكل بسيط تنتفي معه الحاجة إلى استخدام الحاسب للحل، بل يكون من المككن حلها يدوياً باستخدام الورقة والقلم.
الخطوة الثانية: هي التقطيع، حيث يتم بخزئة الشكل إلى عناصر منتهية وحل كل عنصر على حدة. بعد هذه الخطوة سيكون لدينا صيغة متكاملة لحل مسائل ذات درجات عالية لكن يجب أن تكون الم الم حلوها ستكون حلاً تقر يبياً لمسألة القيمة الحدية. ومن ثم يتم بربحة هذه الطريقة على الحاسوب.

9.3 الصيغة المتحولية (variational formulation)

Variational formulation = The minimization of an energy integral over the domain. - الصيغة المتحولية هي صيغة طبيعية تكاملية لطريقة العناصر المنتهية (FEM) و لكن في ميدان الميكانيك الموائع لما لما لما بشكل عام - هو غير مككن ان توضع الصيغة المتحولية (variational formulation).

الخطوة الأولى هو تحويل P1 و P2 إلى مكافئاها المتحولية .إذا كان u هو حل لــ P1 ، عندها من أجل أي دالة

وبشكل معاكس، من أجل قيمة معطاة لــ u فإن (1) تكون معققة من أجل أي دالة متصلة (1) $v(x)$ وعندها من
 وباستخدام التكامل بالأجزاء على يكين المعادلة (1) سنحصل على مايلي:

$$
\begin{align*}
& v(0)=v(1)=0 \text { حيث تح افتراض أن } \tag{2}\\
& \text { 9.3.1 برهان يظهر وجود حل وحيد }
\end{align*}
$$

 على الفضاء

9.3.2 الصيغة المتحولية لـP2

إذا تم التكامل بالأجزاء باستخدام مبر هنة غربن حيث بند أنه إذا كان u هو حل لــP2 ، فإنه من أجل

$$
\begin{aligned}
& \text { أي } v \text { يكون } \\
& \int_{\Omega} f v d s=-\int_{\Omega} \nabla u \cdot \nabla v d s=-\phi(u, v), \\
& \text { حيث } \nabla \text { تحقق النتر ج وترمز إلى الجداء الداخلي في المستوي ثنائي البعد. }
\end{aligned}
$$

9.4

التابع H ${ }^{1}$ مع القيم الصفرية عند نقاط النهاية (زرقاء)، والتقريب الخطي الجزئي للمنحين (حمراء).
 بيث أن $\forall v \in H_{0}^{1},-\phi(u, v)=\int f v$

بصيغة بعدية منتهية:
such that $u \in V$ (3) أوجد
$\forall v \in V,-\phi(u, v)=\int f v$
 العناصر المنتهية نعتبر V على أفها فضاء للأجزاء الخطية للتابع.
 الشكل:

$$
V=\left\{v:[0,1] \rightarrow \mathbb{R}: v \text { is continuous, }\left.v\right|_{\left[x_{k}, x_{k+1}\right]}\right. \text { is linear for }
$$

$$
k=0, \ldots, n, \text { and } v(0)=v(1)=0\}
$$

حيث نعرف
 مشتق عند كل قيمة للمتحول x ومن الممكن استخدام هذا المشتق لغرض النتكامل بالأجزاء. تابع خطي مقطع في المستوي ثنائي الأبعاد. من أجل المسألة P2 غتاج أن تكون V عبارة عن بحموعة من التوابع من . Ω في الشكل الموضح على اليسار، يظهر تُليث مضلعى لمنطقة مضلعية من 15 ضلع Ω في المستوي (ين الأسفل)، والتابع الخطى البززأ (ملوناً، في الأعلى) لمذا المضلع الذي يكون خطياً على كل مثلث من التثليث. حيث أن الفضاء V سيحتوي على توابع تكون خطية على كل مثلث من التثليث المختار.

تظهر V مكتوبة على الشكل Vh في بعض المراجع، وذلك بسبب أنه يوجد هدف في الحصول على حلول أدق وأدق للمسألة المتقطعة (3) الذي سيكون إلى حد ما سيؤدي إلى حد المسألة الأصلية في إيماد القيم الحدية للمسألة يتم عنونة التثليث باستخدام معامل ذو قيمة حقيقية h>0 والذي يكون ذو قيمة صغيرة. سوف يتم ربط هذا
المعامل بحجم أكبر مثلث وسطي الحجم في التثليث. وعندما نزيد بتزئة التثليث فإن فضاء التقطيع الخطي V يجب أن يتغير مع h كما يوضح التر ميز
9.5 الصيغة القوية والصيغة الضعيفة احد المسائل القيمة الحدية (boundary value problem)

Writing down the governing equations onto the paper developing the appropriate numerical solution of these equations writing the C++ / FORTRAN program and putting it into the computer going through all the trials and tribulations of making the program work properly

مدخل الى الحرق الحسابي (Introduction to Numerical Combustion)

Based on
Theroretical and Numerical Combustion (Thierry Poinsot, Denis Veynante) and Introduction to Combustion - Concepts and Applications, $2^{\text {nd }}$ edition (Stephen R. Turns)
و مر اجع اخرى

Introduction to mass transfer ${ }^{10} 11$

12 معادلات الاستمرارية لسرايين تفاعلية (Conservation equations for reacting
 (flows

12.1 اشكال عامة) (General forms)
(primitive variables) اختيار المتولة البداهية 12.1.1

Some Important Chemical Mechanisms 13 (The H2-O2 System) ${ }^{11} 13.1$

Laminar premixed flames and Laminar Diffusion flames 14

Droplet Evaporation and Burning 15

Introduction to Turbulent Flows 16

Turbulent Premixed and Nonpremixed flames 17

Burning of solids 18

I 19.1
[Anderson 1991] Anderson, John D., Jr., Fundamentals of Aerodynamics, 2 ${ }^{\text {nd }}$ Edition .1 McGraw-Hill, New York, 1991
, Springer 8[Ferziger, Peric] J. Ferziger und M. Peric, Numerische Strömungsmechanik, 200 . 2 Verlag.
[Wessling] Pieter Wesseling, Principles of Computational Fluid Dynamics, 2000, Springer . 3 Verlag.
[Wendt 2009] John F. Wendt, Computational Fluid Dynamics - an Introduction (a von Karman . 4 Institute Book), Third Edition, 2009, Springer Verlag
5. [صديق] عمد هاشم الصديق (الإستاذ المشارك بشعبة هندسة الموائع قسم الهندسة الالميكانيكية / كلية الهندسة والعمارة، جامعة الخرطوم،msiddiq@yahoo.com)، ميكانيك الموائع، الاصدارة الثانية، 2006 . 6

مجمع اللغة العربية

II 19.2
[Poinsot, Veynante] Thierry Poinsot, Denis Veynante; Theroretical and Numerical Combustion . 1
[Turns] Stephen R. Turns; Introduction to Combustion - Concepts and Applications, $2^{\text {nd }}$ edition . 2

20 ملحقات (Apprendices)
20.1 ملحق أ: مضمون كتاب "ميكانيك الموائع" غمد هاشم الصديق

مضمون [صديق] محم هاشم الصديق (الإستاذ المشارك بشعبة هندسة الموائع قسم الهندسة الالميكانيكية / كلية الهندسة والعمارة، جامعة الخرطوم،msiddiq@yahoo.com)، ميكانيك الموائع، الاصدارة الثانية، 2006 هو التالي:

الصفحة	العـــــنـوان	القسم	الباب
1	تعربفات أساسبة		1
9	مسائل		
11	المعادلات الاساسـية في مبكانيكا الموائع		2
11	متجه السريان	2.1	
13	حفظ الكتلة	2.2	
16	حفظ الطاقة	2.3	
20	حفظ كمية التحرك	2.4	
24	مسائل		
27	التحليل البعدي والنمذه		3
27	أسس التحلبِ البعدي	3.1	
31	بعض المقادير اللابعدية ذات الأهمية في ميكانيكا الموائع	3.2	
32	النمذجة	3.3	
34	مسائل		
35	السريان اللا إنضغاطي في الأنابيب		4
35	أُثر الاحتكاك على السربان في الأناسب	4.1	
41	ألفّوا قد الموضعية في الأنابيب	4.2	
44	الأنابِب المتفرعة	4.3	
47	مسائل		
49	ميكانيكا الموائع عند الاتزان النسبي		5
49	المعادلة الأساسـية	5.1	
50	توزيع الضغط في مجال ثنائي الأبعاد لسـائل في حاوبة تتحرك بتسارع ثابت	5.2	
54	توزبع الضغط في سائل ساكن	5.4	
56	الطفو	5.5	
59	الهابيدرومتر	5.6	
61	إستقرار الأُحسام الطافية	5.8	
64	مسائل		
66	طرق القياس		6
66	مقدمة	6.1	
67	أجحهزة قباس الضغط	6.2	
71	أحرزة قياس معدل السربان	6.3	
75	الدفع		7
75	الدفع النفاث	7.1	
78	الدفع الصاروخي	7.2	
79	الدفاع	7.3	
86	طرق الدفع النفاث	7.4	
87	مسائل		

88	حفظ كمية التحرك في الصورة التفاضلبة		8
88	الصورة العامة للمعادلات	8.1	
90	حالات خاصة	8.2	
91		8.3	
101	تحسـبي حركة الموائع	8.4	
103	مسـائل		
105	الاعاقة		9
105	مقدمة	9.1	
105	معادلات الطبق	9.2	
109	حل فون-كارمن عند ممال الضغط صفر	9.3	
120	الطبقة الجدارية بممال ضغط لا صفري	9.4	
122	الفصل و الإعاقة الضغطية في السريان الخارحي	9.5	
128	التحكم في الطبقة الجداربة	9.6	
132	مسـائل		
134	الرفع		10
134	مقدمة	10.1	
142	إختزال معادلات نافير ستوكس لحالة السـريان اللالزجي	10.2	
146	السـريان اللادوراني عبر اسطوانة	10.3	
155	الرفع على الجنيح	10.4	
160	مسائل		
162	السـرمان الانضغاطي للغاز		11
163	مقدمة	11.1	
166	حركة الموحات الصوتية	11.2	
172	السـريان اللاتبديدي	11.3	
192	مسـائل		
194	الصدمة المتعامدة	11.4	
208	مسـائل		
209	السـريان الاحتكاكي	11.5	
224	مسـائل		
225	السـريان اللاكظمي	11.6	
234	مسائل		
235	قياس السرعة في السـريان الانضغاطى	11.7	

239	قوائم خواص الماء و الجو القياسي	الملحق ا
240	بعضا العلاقات الرإنِ	الملحق
241	معامل الاحتكاك	الملحق
245	قوائم السربان الانضغاطي للهوباء	الملحق د
252		الرموز
254		مراحع
256		معجم

20.2 ومضمون كتاب [Ferziger, Peric]

مدخل الى التحليل العددي (بالإنجليزية: Numerics) (بالإنجليز ية: Components of a numerical method) (بالإنجليز ية: Mathematical model)
(بالإنجليزية: Discretization method)
(بالإبنليز ية: Coordinate and base vector systems)
(بالإنجليز ية: Numerical mesh)
(بالإبنليز ية: Finite Approximations) (بالإنجليز ية: Solution method)
(بالإبكليز ية: Convergence criteria)

اساسيات ديناميك الحرارية (بالإنجليزية: Thermodynamics) (بالإبنليز ية: Finite Difference Methods)
(بالإنجليز ية: Finite Volume Methods) طريقة العناصر المنتهية (FEM)
(بالإنجليز ية: Solving linear equation systems) (بالإبنليز ية: Solving the Navier-Stokes Equations) (بالإنجليز ية: Computation Methods for complex flow areas) (بالإبنليز ية: Simulation of turbulence)
(بالإنجليز ية: Compressible Fluids) (بالإنجليزية: Efficiency and accuracy)
(بالإبنليز ية: Special Topics)
(بالإنجليز ية: Combustion)
20.3 مو اضيع اضافية
(بالإنجليز ية: CFD Applications in Energy Engineering)
(بالإنجليز ية: CFD Applications in Aeronautics)
CFD Applications in Space Technology:بالإنجليز ية)

20.4 ملحق أ: مضمون كتاب Theroretical and Numerical Combustion (Thierry
 Poinsot, Denis Veynante)

مضمون الكتاب هو التالي:
20.5 Applications, $2^{\text {nd }}$ edition (Stephen R. Turns)

مضمون الكتاب هو التالي:

Dictionnary

Content
166 A
167 B
168 C
169 D
170 E
171 F
172 G
173 H
174 I
175 J
176 K
177 L
178 M
179 N
180 O
181 P
182 Q
183 R
184 S
185 T
186 U
187 v
188 w
189 x
$190 \quad$ Y
191 Z

A

English	Deutsch	

English	Deutsch	

English	Deutsch	
calculation	Berechnung	
Continuity equation	Kontinuitätsgleichung	
Conservation form		
conservation form		
control volume		

English	Deutsch	
derivate	Ableitung, Differentialquotient	
differential		
distinct	verschiedenr	

English	Deutsch	
explicit		

finite difference method		
fluid element		عضو مائع
fluid dynamics		حر كية الموائع
Flow	Fluss, Stömung	سريان
flow field		
finite-difference methods	Finite-Differenzen Methoden	طرق الفرق المدود
flux	Strom	سريان
friction	Reibung	احتكاك

G

govering equation		معادلة اساسية
grid		

hyperbolic		

integral		تكاملي
incorporate		
incompressible	inkompressibel	لا انضغاطي
infinitesimal		موحل في الصغر
inviscid	nicht zähflüssig	لا لا لز
irrotational	nicht rotierend	لا دوراني
integral form		

K

linear algebra	Linerare Algebra	

momentum		كمية التحرك

numerical analysis		عمودية
normal		العدديل

One-dimensional	eindimensional	

parabolic		
panel	Gruppe, Runde	مؤطَّرة
property	Eigenschaft	خصو
partial differential equations		

Q

(chemical) reaction		
rectangular		

shear	Scherung	قص
Shear stress	Scherspannung	الإجهاد القصي
slope	Anstieg (einer Funktion) (math.)	
steady-state		
source	Quelle	نبع
system	System	منظومة
stress	Spannung (Druckvektor)	اجههاد
Substantial Derivate		الاشتقاق الكبير

time-dependend method		
Transient		
tangential		

Uniform		

Viscous		نز
source	Quelle	ن.
variable x		x ت~حول

calculation	Berechnung	
incorporate		
time-dependend method		
steady-state		
flow field		
Transient		
hyperbolic		
parabolic		
incompressible	inkompressibel	لا لا انضاطي
source	Quelle	نبع
vortex	Wirbel	دوامة مائية
panel	Gruppe, Runde	مؤطّرة
numerical analysis		التحليل العددي
inviscid	nicht zähflüssig	لا لا
finite-difference methods	Finite-Differenzen Methoden	طرق الفرق الغدود
irrotational	nicht rotierend	لا
property	Eigenschaft	خصوصية
govering equations		المعادلاب الاساسية

integral form		
system		منظومة
control volume		حجم التحكم
normal		عمودية
tangential		مكاسة
flux	Strom	سريان
Uniform		
rectangular		
grid		
stress	Spannung (Druckvektor)	اجهاد
shear	Scherung	قص
	Scherspannung	الإجهاد القصي
S		
stress	Spannung σ (hat Einheit $\mathrm{N} / \mathrm{m}^{2}$, d.h. die gleiche Einheit wie ein Druck)	الاجهاد
Substantial Derivate		الاشتقاق الكبير

V		
Viscous		
	Bluss, Stömung	
	Berechnung	
Flow		
calculation		
incorporate		
time-dependend method		
steady-state		
flow field		
Transient		
hyperbolic		
parabolic		

[^0]: Here we return to the supersonic blunt body problem discussed in Sect. 1.1. We assume inviscid flow, hence the governing flow equations are represented by Eq. (2.65) with U, F, G, and H given by the inviscid expressions in Sect. 2.9. For the present case, body forces are negligible and hence $\mathrm{J}=0$. The physical plane is

