
AECENAR

Association for Economical and Technological Cooperation in the Euro-Asian and North-African Region

تنقية دخان مصانع التفكك الحراري

Flue Gas Purification

(Thermal treatment: incineration)

MEAE - Middle East Alternative Energy Institute

مركز الشرق الاوسط للطاقة البديلة

طاقة الشمال North Lebanon Alternative Power www.nlap-lb.com

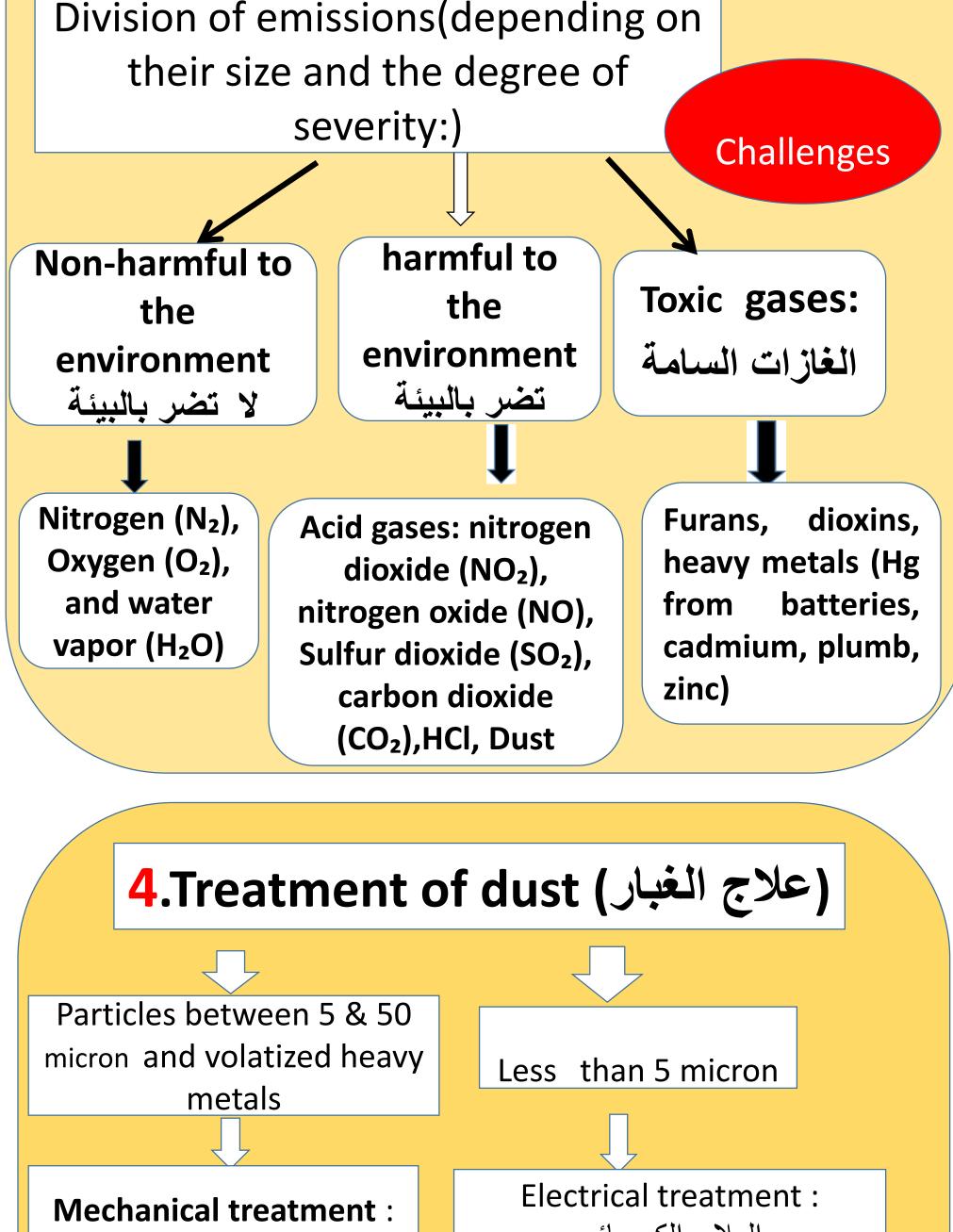
http://aecenar.com/institutes/meae

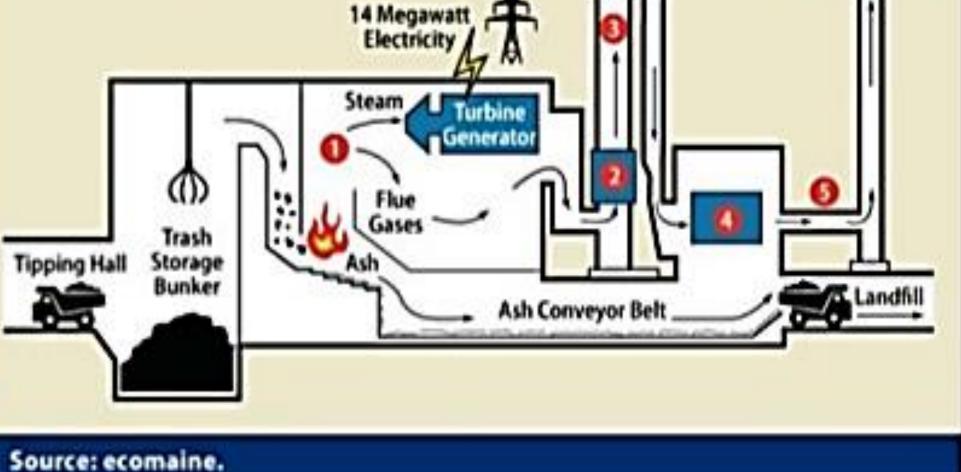
Residues of incineration of 1 ton of waste 700 kg of gas,

300 kg of solid residues including 30 kg of fly ash.

Waste to energy diagram

Pollution Control System Mercury Acid Gas Particulate Pollution Nitroge Oxide & Dioxin Removal Removal Control Removal System System Test Removal System System

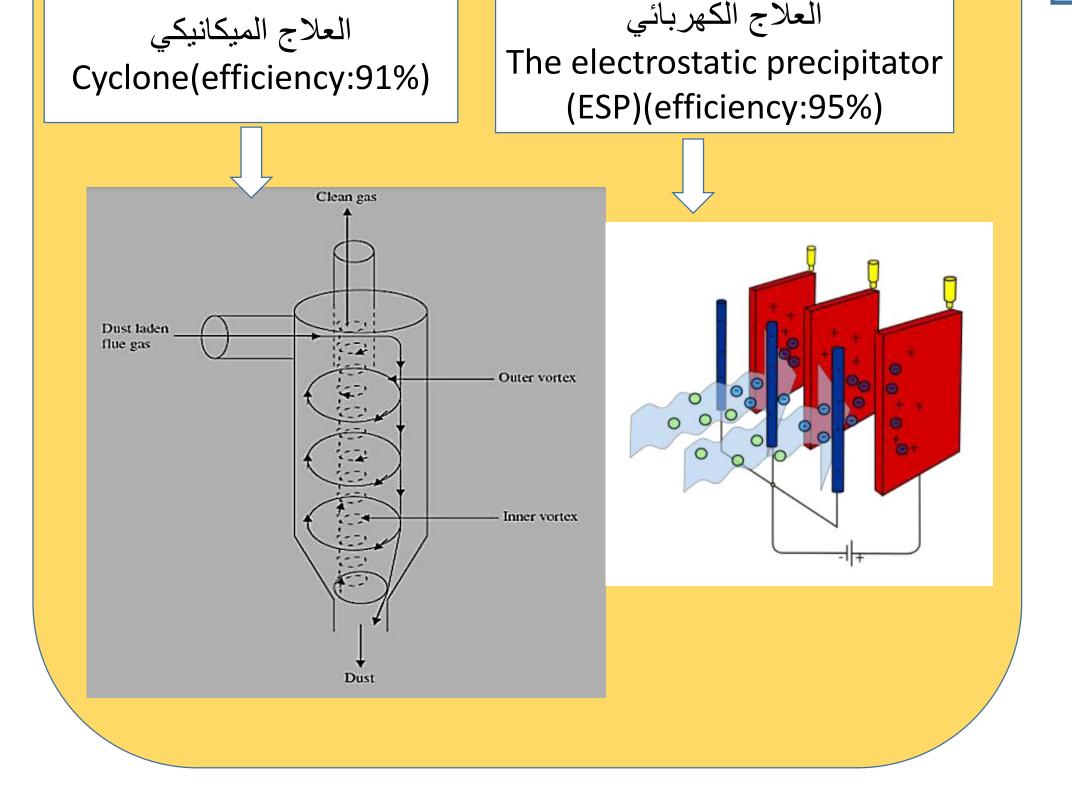

Emission limit values in mg / m^3 to 11% O₂ dry gas According to EC 20/09/2010 to an incinerator >6 ton/h



Water Vapor & Cleaned Flue Gases

European Directive half-hour mean value 2000/76 / EC of

refectural stopped operating permit



كما سبق وذكرنا إن بقايا الحرق كثيرة لذلك كان من الضروري معالجتها نبدأ بالنيتروجين الذي سيعالج عن طريق رش الأمونيا على دفعتين ثانيا الديوكسين و الزئبق الذي سيمار في خرطوشات الكربون المنشط ثالثا الغازات الحمضية ستم از التها برش ال بيكربونات الصوديوم واخيرا الغبار سيتم ازالته ميكانيكيا وكهربائيا (ESP) اعتمادا على ذلك فان الانبعثات ستكون مطابقة لما ورد في الجدول التالي.

والبقايا الصلبة سيتم معالجتها في نظام خاص منفرد ولمراقبة الانبعاثات بشكل متواصل سوف يركب أجهزة مراقبة على المحطة للتأكد من صحة الفلاتر المستعملة

	parameter		mean value	2000//6/EC of 04/12/2000 and Decrees of 20/09 and 03/08/2010	French Fla 9/2002 17	operating permit Flamoval of 17/06/2009	
	Total dust			1-20	10	3	
	Hydrochloric acid (HCI)			1-50	10	7	
		ric acid (HF)		10	1	0.7	
ndfill	Sulphur d	ioxide (SO ₂)		1-150	50	15	
	Carbon m	Carbon monoxide(CO)			50	30	
	total organic carbon (COT) Mercury (Hg)			1-20	10	8	
				0.001-0.03	0.05	0.04	
Cadmium + Thallium (Cd + Tl) Other heavy metals (Sb + As · Cu + Co + Mn + Ni + V)			⊦ TI)	-	0.05	0.04	
			As + Pb + Cr +	-	0.5	0.4	
	Oxides of Nitrogen (NOx)			40-300	200	50	
	Ammonia	(NH₃)		-	30	10	
	Dioxins and furans			0.01-0.1	0.1	-	
		<1 ton/h	1-3 ton/h		>3 ton/h		
Elements Maximum (polluants) value(mg/m ³		Maximum value(mg/m ³)	Maximum value(mg/m ³)		Maximum value(mg/m ³)		
Dust 200		200	100		30		
Pb+Cr+Cu+Mn		-	5		5		
Ni+As		-	1		1		
Cd+Hg		-	0.2		0.2		
Cl (HCl)		250	100		50		
F (HF)		-	4 300		2 300		
	SO2 - 300 300 Emission limit values in mg /m ³ to respected (Lebanese environmental ministry						
			F	<u></u>			

2.Treatment of dioxin and furans and mercury Hg(heavy metals) & (علاج الديوكسين والفيوران)CO₂

The Environmental Protection By activated Agency (EPA) showed that carbon(can be also dioxins broke down easily when called "lignite Coke for exposed to temperatures in excess of 1,200 °C. odorous compounds.) Activated carbon is in the famme of a fine black tak

Measurement :The Intelligent Gravimetric Analyzer (IGA) The system is an ultra-(UHV) high vacuum allows system and To obtain a minimum feeding rate Measurement of **3.**Acid gas treatment technologies(HF, تقنيات معالجة الغاز الحمضي (HCl and SO₂

Depending the concentrations, on temperature, size of the flow to be treated and of further parameters, can be used different technologies for the treatment of acid gas emissions. Being a quick summary we can mention:

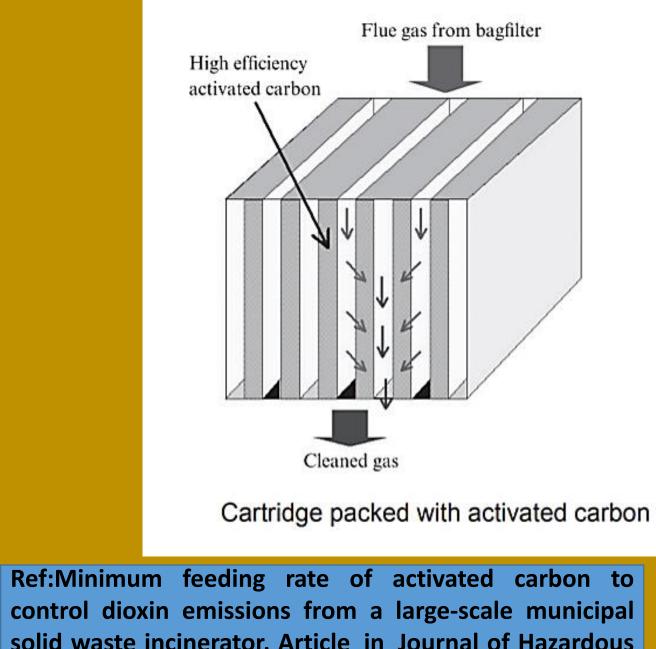
Bag filters with reagent injection(calcium hydroxide (Ca(OH)₂) or sodium bicarbonate))

The filters in flat bags are successfully used for the chemical absorption of acid gases such as HF, HCl and SO₂ in addition to the adsorption of other pollutant compounds. Generally it is used, among others, calcium hydroxide and sodium bicarbonate (Ca(OH)₂) of typical commercial quality, which is injected in the gas stream before entering the filter. To achieve proper compliance with the emission **1.**Techniques for the reduction of تقنيات للحد من أكسيد (nitrogen oxide (النيتروجين

-Thermal NOx: When burning a portion of the nitrogen in the air is oxidized to nitrogen oxides. This reaction occurs only significantly at temperatures above 1300 ° C. The reaction rate depends exponentially on the temperature and is directly proportional to the oxygen content -Fuel NOx: when burning a portion of the nitrogen contained in the fuel is oxidized to nitrogen oxides.

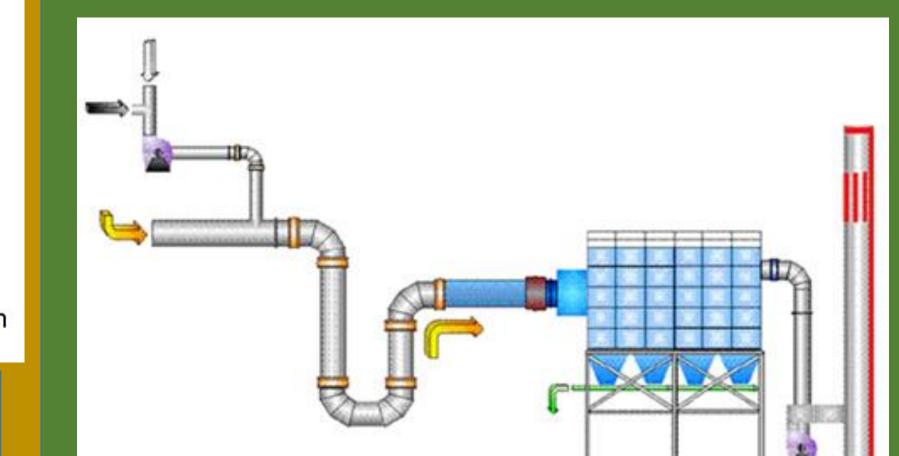
OF REDUCING NON-SELECTIVE PROCESS CATALYTIC (SNCR):

the reducing agent (typically ammonia or urea) is injected into the furnace and reacts with nitrogen oxides. The reactions occur at temperatures between 850 and 1000 ° C, with higher reaction rates and lower in this range.


Selective Catalytic Reduction (SCR) is a uring which ammonia e reduction agent) is aust gas and passes usually a sieve (e.g. TiO₂, zeolites). When ne catalyst, ammonia give nitrogen and water

are made porous by a suitable heat treatment so	efficiency(eta) increased with an increase in AC feeding concentration. This had an almost linear function to	determination of the adsorption and desorption kinetic	in an time	s required, the additive should be added nounts over-stoichiometric (from 1.5 to 3 s). ast 130-200 ° C	catalytic process dur mixed with air (the added to the exhau through a catalyst, u
as to create therein pores	F/Q when F/Q was less than 65 g/Nm(3), where F was the AC feeding rate	nrafilas far aaah			Platinum, rhodium, T
affinity with the molecules	(mg/min), and Q was the volumetric flow rate of flue gas (Nm(³)/min).	pressure step. The system consists of a		• Treatment by Ca(OH) ₂ :	passing through the reacts with NOx to give
to be filtered. So there are	However, it did not seem to be affected by F/Q, when F/Q was larger than 150			$Ca(OH)_2 + 2HCl \leftrightarrows CaCl_2 + 2H_2O$	vapor.
carbon adapted to	mg/Nm(³). On the basis of the experimental data obtained in this	controlled		$Ca(OH)_2 + 2HF \leftrightarrows CaF_2 + 2H_2O$	
	study, the removal efficiency of dioxins by the application of AC could be	microbalance, pressure admit system and		$Ca(OH)_2 + SO_2 \rightleftharpoons CaSO_3 + H_2O$	
one wishes to retain.	correlated as eta	temperature regulation		$CaSO_3 + 1/2 O_2 \rightarrow CaSO_4$	5. Continuous Emissi
	(%)=100/[1.0+(40.2/(F/Q)(3))].	system		 Treatment by NaHCO₃: 	A series of sensors will b

Dioxins concentrations at activated carbon adsorber						
	Dioxins cor (ng-TEC	Removal- efficiency (%)				
	Inlet Outlet		efficiency (%)			
Electric furnace for steel	5.5	0.009 3	99.83			
Ash melting furnace	1.8	0.000 80	99.96			
Waste furnace	1.1	0.000 16	99.99			


Hg concentrations at activated carbon adsorber

	Inlet (mg/m ³ -norm.)	Outlet (mg/m ³ -norm.)
Waste furnace	0.065	<0.005 (Under determination limit)
Ash melting furnace	0.57	<0.005 (Under determination limit)

 $NaHCO_3 + HCl \rightleftharpoons NaCl + CO_2 + H_2O$

 $NaHCO_3 + HF \rightleftharpoons NaF + CO_2 + H_2O$ $2NaHCO_3 + SO_2 + 1/2O_2 \rightarrow Na_2SO_4 + 2CO_2 + H_2O_3$

sion Monitoring (CEM)

A series of sensors will be implemented to assure a continuous emission monitoring of different gas formed in the flue gas without the Dioxins and furans that measured by GC(gas chromatographic); Sensors of:CO,CO₂,NO,NO₂, SO₂,SO,HCl,heavy metals.

@NLAP/AECENAR March 2019 Maysaa Kamareddine