Liquefaction of Oxygen

R-22

- Nomenclature

Chlorodifluoromethane

- Symbol: CHClF $_{2}$
- Boiling point
$\mathrm{T}=-40.7^{\circ} \mathrm{C}$ (232.5 K) @ 1 bar
$\mathrm{T}=4.9^{\circ} \mathrm{C}(278.05 \mathrm{~K})$ @ 4.8 bar
$\mathrm{T}=45.6^{\circ} \mathrm{C}$ (318.75 K) @ 16.3 bar

Simple refrigeration cycle

Basic components of refrigeration are Compressor, Condenser, expansion valve(throttle) and evaporator

How Thermostatic Expansion Valves Work

Based on the Ideal gas Law: PV=nRT Law: $\mathrm{PV}=\mathrm{nRT}$ In a constant volume V when P increases $\rightarrow T$ increases
The variation of pressure has influence on the degree of boiling point of a refrigerant
The TXV is used in many refrigeration systems, they can be found in the same location which is just before the evaporator.
The valve decreases the pressure to allow the refrigerant to boil at lower temperatures. The boiling is essential as the refrigerant will absorb the heat from the ambient air and carry this away to the compressor. Just remember that refrigerants have a much lower boiling point than water.

The high pressure liquid refrigerant is forced through a small orifice which causes a pressure reduction as it passes through. During this pressure reduction, some of the refrigerant will vaporise and the rest will remain as liquid.

Refrigeration with cascade to reaching a lower temperature

The cascade refrigeration system consists of a low-temperature loop (Low stage) and a high-temperature loop (high stage).

Each stage consists of a compressor condenser, expansion valve and

The high stage condenser is cooled by air cooled, while the low stage condenser is cooled by the high stage evaporator.
So the high stage evaporator acts as a coolant for the pressurized refrigerant in the low stage.
Advantages of a cascade cooling system
Repair is easy
The Cascade refrigeration allows to lowtemperature operation.
You can reduce the use of power up to 10% with the help of cascade refrigeration.

Point 1: Gas
P1= 25.85 bar $\mathrm{T} 1=90^{\circ} \mathrm{C}\left(>60^{\circ} \mathrm{C}\right)$

Point 2: Liq
$\mathrm{P} 2=25.85 \mathrm{bar}$ $\mathrm{T} 2=50^{\circ} \mathrm{C}\left(<60^{\circ} \mathrm{C}\right)$

Point 3: Liq or Gas
P3= 1 bar $\mathrm{T} 3=-50^{\circ} \mathrm{C}\left(<-45.5^{\circ} \mathrm{C}\right)$

Point A: Gas
$\mathrm{Pa}_{\mathrm{A}}=25.85$ bar
$\mathrm{T}_{\mathrm{A}}=10^{\circ} \mathrm{C}\left(>-20^{\circ} \mathrm{C}\right)$

Point D: Gas
$\mathrm{P}=1$ bar
$T D=-83^{\circ} \mathrm{C}\left(>-87.50^{\circ} \mathrm{C}\right)$

Cryogenic

Liquefaction of Oxygen Prototype cycle

Liquefaction of Oxygen in a big shape

In this prototype the oxygen will be liquefied by cascade cooling of nitrogen. The nitrogen gas will be compressed (from 2 bar to about 15 bar)[use for that the laboratory refrigerator], The nitrogen will then be cooled down to 195 K by means of a Kelvinator fridge operated with a cascade of R-502 and R-503 refrigerants.

Then the nitrogen will be cooled to lower temperatures (83.6 K) using the expansion valve and heat exchanger.
This nitrogen temperature ($<90 \mathrm{~K}$) would be sufficient to liquefy the oxygen at 1 atm
Oxygen gas can also be prepared and cooled to about 170 K in nitrogen before returning directly to the compressor (160 K).

