
1 
 

ELECTROLYZER 

PROCESS CONTROL 
SYSTEM 

 

Produced by: Nour Karim 

                        Raja Murad 

 

Last update: Monday, September 20, 2021 

  

 بسم الله الرحمن الرحيم 



2 
 

Table of Contents 

1. Requirements and Overview ........................................................................................ 3 

2. Plant-End ...................................................................................................................... 6 

2.1. Automatic valves ................................................................................................... 7 

2.1.1. Water Automatic valve ..................................................................................... 7 

2.2. Gathering ............................................................................................................... 7 

2.2.1. Automatic valves .............................................................................................. 8 

3. Power Control Box ........................................................................................................ 9 

3.1. Wiring Diagram ................................................................................................... 10 

3.2. Level Detector ..................................................................................................... 11 

3.2.1. Schematics and Principle of Operation .......................................................... 12 

3.3. Flow Chart and Source Code ............................................................................... 14 

4. User-End ..................................................................................................................... 17 

4.1. GUI ....................................................................................................................... 17 

4.2. Controller ............................................................................................................ 19 

 

  



3 
 

1. Requirements and Overview 

The electrolyzer process control system to be implemented should have the following 

technical requirements: 

• The user must be able to switch between manual and auto modes. 

• The user must be able to control the electrolyzer plant from a minimum distance of 

50 meters.  

• The user must be able to monitor different sensor data on a well-organized GUI. 

• The user must be able to select the valves’ opening angles from the GUI.  

• The system must have a 2-way communication channel.  

In other words, the system functionality can be summarized by the following graphical 

representation: 

 

 The system can be divided into 3 subcategories; The plant side where the electrolyzer 

setup is set, the power control unit that handles all the control procedure, and the user side 

where all the controls are set.  

 



4 
 

 

Figure 1. User-end 

 

Figure 2. power control box 



5 
 

 

Figure 3. plant-end 

 



6 
 

2. Plant-End 

 

 



7 
 

2.1. Automatic valves 

An Automatic valve is an electromechanical device that uses an electric current to 

generate a magnetic field and thus actuate a solenoid that controls the opening of the fluid 

flow in a valve. 

2.1.1. Water Automatic valve 

The following table presents the characteristics needed of water Automatic valve: 

Name Type Port Number Control type 

Electrolysis cell Water 
Discharge 

Direct-operated 
Automatic valve 

3 (3-way) Supply Voltage 

Gas condenser Water 
Discharge 

Servo motor 2 (2-way) 
Supply Voltage 

+ PWM  

  

                                               

Figure 4. 3-way Automatic valve   Figure 5. 2-way Automatic valve 

2.2. Gathering 

In this part, all missed equipment was put in its place in the whole system. 



8 
 

2.2.1. Automatic valves 

2.2.1.1. Gas Condenser Water Discharge 

The Automatic valve that has to discharge water from condenser (H) will take place in the 

red rectangle, as shown in figure 4. The same thing for condenser (O). 

 

 In order to connect Automatic valve to system, two M/M joint of hole size: 15 mm are 

needed, one for solenoid inlet, and one for its outlet. Figure 2 and 3, below, presents Automatic 

valve, and M/M joint.  

Figure 7, and 8 show how these two Automatic valves was gathered with the whole 

system. 

Figure 5. M/M Joint Figure 7. Valves with/without Joints 



9 
 

 

 

3. Power Control Box 

   

  

 

 

• Cell Power Breaker: Turns on/off the electrolyzer cell power source (12V @ 145A) and is 

rated at 10A. 

• Valves and Pumps Breaker: Turns on/off all the system’s electrical actuators. Rated at 

5A. 

Cell 
Power 

Breaker 

 Valves, 
Pumps 
Breaker   

Cell 
Power 
Switch   

Cell 
Valves 
Switch   

Water 
Pump 
Switch 

KoH 
Pump 
Switch 

Water Valve 
Switch (DC 

Valve) 

Controller 

Level 
Detector 

Relay 
Box 



10 
 

• Switch 1 (Cell Power): Manual at upper position in which the cell power source will turn 

ON directly if the breaker is ON and the switch is up. Otherwise, it will turn ON/OFF 

according to controller command if switched to lower position.  

• Switch 2 (Cell Valves): Manual at upper position in which both cell valves will turn ON 

directly if the “valves and pumps” breaker is ON and the switch is in its upper position. 

Otherwise, it will turn ON/OFF according to controller command if switched to lower 

position.  

• Switch 3 (Water Pump): Manual at upper position in which water pump will turn ON 

directly if the “valves and pumps” breaker is ON and the switch is in its upper position. 

Otherwise, it will turn ON/OFF according to controller command if switched to lower 

position. 

• Switch 4 (KoH Pump): Manual at upper position in which KoH pump will turn ON directly 

if the “valves and pumps” breaker is ON and the switch is in its upper position. 

Otherwise, it will turn ON/OFF according to controller command if switched to lower 

position. 

• Switch 5 (Water Valve): Manual at upper position in which water pump will turn ON 

directly if the 12 V power adapter is ON and the switch is in its upper position. 

Otherwise, it will turn ON/OFF according to controller command if switched to lower 

position. 

• Controller: The controller used is Arduino Mega. A nrf24l01 radio frequency antenna is 

used to establish wireless communication between the plant and the remote station. It 

is used to control the relay box according to operator’s command (from the user-end 

GUI) and send back the KoH and water levels (Low – Medium – High).  

• Level Detector: A circuit that detects the current liquid level (Low – Medium – High). 

• Relay Box: Controlled contacts (8 channels). 

3.1. Wiring Diagram 

The wiring diagram should follow the safety standards and appropriate cable sizing to 

ensure maximum operating efficiency. The size of wires was selected upon the load required 

power. The below table shows the selected cable sizes with respect to every load consumption. 



11 
 

Load Current Consumption (A) Wire Size (mm2) 

Cell Power Source ~10 2.5 

Cell Valves 0.145 1.5 

Water Pump Type equation here. 1.5 

KoH Pump Type equation here. 1.5 

Water Return Valve (DC) Type equation here. 1 

Automatic Valves (DC) 0.35 1 

The below figure illustrates the power system connections. The relay box is controlled 

through Arduino’s digital pins according to a command received (by nrf24l01 module) from the 

user GUI. The Switches (SW1 to SW5) select the mod of operation. The Controller is responsible 

for sending back the O2 and H2 liquid levels to the user GUI through its transceiver module 

(nrf24l01). NOTE: SW1 is MALFUNCTIONED and is not used at the moment! 

 

3.2.  Level Detector 

The level detector is an electronic circuit designed to monitor the current available 

amount of O2 and H2 levels in the containers. The circuit outputs 6 digital data signals 



12 
 

representing the current liquid level (3 for each container: Low – Med – High) compatible with 

the Arduino Controller (@ 5V).  

3.2.1. Schematics and Principle of Operation 

 



13 
 

 

 The above 2 figures illustrate the soldered board and the circuit schematic respectively. 

As can be seen from the schematic, each container includes 4 wires with different lengths and 3 

transistor switches (each represents a certain state; Low – Med – High) whereas the 4th wire 

carries the positive 5V from the Arduino. The collectors of the transistors are connected to the 

Arduino’s digital pins as input which are naturally pulled HIGH (5V). When liquid is present in 

the container, a short circuit is established between the 5V wire and the level wires (Low – Med 

– High) which in turn will bias the transistor and switch it ON. When a certain transistor is ON, 

the specific Arduino pin is pulled LOW (0 V). The below code is used to test the liquid level 

detector circuit.  



14 
 

liquidLevel.ino

 

3.3. Flow Chart and Source Code 

 

 The controller of the electrolyzer plant will send the O2 and H2 levels to the user GUI 

every 200 ms. The RF module (nrf24l01) will switch its role every 200 ms from receiving to 

sending. NOTE: The below 2 codes should be in the same folder in order for them to work. 

Radio.ino Station_Send_Recei

ve.ino  

 The source code (text) is shown below: 

/*FOR ARDUINO MEGA: MASTER ADDRESS*/ 

 

#include <SPI.h> 

#include <Wire.h> 

#include <nRF24L01.h> 



15 
 

#include <RF24.h> 

#include<Servo.h> 

 

#define cePin 3 

#define csnPin 4 

 

RF24 radio(cePin, csnPin); // Create a Radio 

//Servo av_oxygen, av_hydrogen; 

 

// RADIO VARIABLES // 

const byte slaveAddress[5] = {'R', 'x', 'A', 'A', 'A'}; 

const byte masterAddress[5] = {'T', 'X', 'a', 'a', 'a'}; 

char dataToSend[10] = "Message 0"; 

char txNum = '0'; 

int dataReceived[2]; // to hold the data from the slave - must match 

replyData[] in the slave 

bool newData = false; 

 

unsigned long currentMillis; 

unsigned long prevMillis; 

unsigned long txIntervalMillis = 200; // send once per 200 ms 

 

// RELAY PINS // 

byte relay_pins[5] = {13, 12, 11, 10, 9}; 

int tx_failed_count = 0; 

boolean relay_status[5] = {0, 0, 0, 0, 0}; 

 

// LIQUID LEVEL // 

byte oxygenLevel_pins[3] = {22, 24, 26}; // LOW - MED - HIGH 

byte hydrogenLevel_pins[3] = {28, 30, 32}; // LOW - MED - HIGH 

byte water_hyd_level[6]; 

void setup() { 

  Serial.begin(9600); 

 

  radio_init(); 

 

  for (int i = relay_pins[0] ; i > 8; i--) pinMode(i, OUTPUT); 

  for (int i = oxygenLevel_pins[0]; i < hydrogenLevel_pins[2] + 1; i 

+= 2) pinMode(i, INPUT); 

  for (int i = 0; i < 4; i++) digitalWrite(relay_pins[i], 1); 

} 

 

void loop() { 

  for (int i = 0; i < 3; i++) { 

    water_hyd_level[i] = 1; //!digitalRead(oxygenLevel_pins[i]) 

    water_hyd_level[i + 3] = 0;//!digitalRead(hydrogenLevel_pins[i]); 

  } 

 

  currentMillis = millis(); 

  if (currentMillis - prevMillis >= txIntervalMillis) { 

    send(); 

    prevMillis = millis(); 



16 
 

  } 

  getData(); 

  showData(); 

 

  for (int i = 0; i < 5; i++) 

    digitalWrite(relay_pins[i], !relay_status[i]); 

} 

void radio_init() { 

  radio.begin(); 

  radio.setDataRate( RF24_250KBPS ); 

 

  radio.openWritingPipe(slaveAddress); 

  radio.openReadingPipe(1, masterAddress); 

 

  radio.setRetries(3, 5); // delay, count 

  send(); // to get things started 

  prevMillis = millis(); // set clock 

} 

 

// Will send Liquid level (H2O - Hyd) levels to the station @ 500 ms 

void send() { 

 

  radio.stopListening(); 

  bool rslt; 

  rslt = radio.write( &water_hyd_level, sizeof(water_hyd_level) ); 

  radio.startListening(); 

 

  Serial.print("Data Sent (Levels) "); 

  for (int i = 0; i < 6; i++) 

    Serial.print(String(water_hyd_level[i]) + " "); 

  Serial.println(); 

 

  if (rslt) { 

    Serial.println("  Acknowledge received"); 

    updateMessage(); 

  } 

  else { 

    Serial.println("  Tx failed"); 

    tx_failed_count++; 

 

    // If the transmission failed for 10 times 

    if (tx_failed_count == 10) { 

      // Turn OFF ALL Relays 

      for (int i = 0; i < 5; i++) 

        relay_status[i] = 0; 

 

      tx_failed_count = 0; 

    } 

  } 

  Serial.println(); 

} 

 



17 
 

// Will receive relay status from the station @ 500 ms 

void getData() { 

 

  if ( radio.available() ) { 

    radio.read( &relay_status, sizeof(relay_status) ); 

    newData = true; 

  } 

} 

 

void showData() { 

  if (newData == true) { 

    Serial.print("Data received Relay Status "); 

    for (int i = 0; i < 4; i++) 

      Serial.print(String(relay_status[i]) + " "); 

    Serial.println(); 

    newData = false; 

  } 

} 

 

// JUST FOR TESTS! IS NOT PART OF THE CODE 

void updateMessage() { 

  // so you can see that new data is being sent 

  txNum += 1; 

  if (txNum > '9') { 

    txNum = '0'; 

  } 

  dataToSend[8] = txNum; 

} 

4. User-End 

This section discusses the interaction between the user GUI and the Arduino Uno 

controller which is used to receive relay status data from the GUI and send them to the 

electrolyzer controller. 

4.1. GUI 

The GUI interface is shown in the image below. It is divided into 3 sections; The Power 

and connect, monitoring, and control.  



18 
 

 

• Connect Button: This button is used to connect to the Arduino controller. It uses the 

COM port shown in the COM port combo box below it. All buttons will not work until 

the computer is connected to the station Arduino. 

• Cell Power Button: if the electrolyzer is set to Auto mode and this button is pressed, the 

cell power (welding machine) is activated and its indicator (red box next to it) should 

turn green. 

• The H2 and O2 Bars: Will indicate the current amount of liquid found in the condenser.  

• Automatic valves (1 and 2): These sliders will control the servo valves at the indicated 

angle label (number to the left and right).  

• Water Pump, KoH Pump, Water Return Valves, and Cell Valves: These buttons will 

control the respective appliances.  

 

Elec GUI.zip
 

Available 

COM Ports 



19 
 

4.2. Controller 

 

 When Data come from the GUI, the “Serial Event” event handler function is stimulated. 

This function will read the incoming string sent from the GUI and will take the decision 

accordingly. The codes of the user station are attached below.  NOTE: The below 2 codes should 

be in the same folder in order for them to work. 

Radio.ino Station_Send_Recei

ve.ino  

 The Arduino code (in Text) is shown below: 

/*FOR ARDUINO UNO: SLAVE ADDRESS*/ 

 

#include <SPI.h> 

#include <Wire.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

 

#define cePin 7 

#define csnPin 8 

 

RF24 radio(cePin, csnPin); // Create a Radio 



20 
 

 

// FOR GUI CONFIG // 

String inputString = "";         // a string to hold incoming data 

boolean stringComplete = false, ledState = false;  // whether the 

string is complete 

String commandString = ""; 

boolean isStarted = false; 

boolean dataToSend[11]; 

 

int autoValve; 

 

// RADIO VARIABLES // 

const byte slaveAddress[5] = {'R', 'x', 'A', 'A', 'A'}; 

const byte masterAddress[5] = {'T', 'X', 'a', 'a', 'a'}; 

 

bool newData = false, txDone; 

 

unsigned long currentMillis; 

unsigned long prevMillis; 

unsigned long txIntervalMillis = 200; // send once per 200 ms 

 

// CONTROL ACTIONS // 

boolean oxy_hyd_levels[6] = {1, 0, 0, 1, 0, 0}; 

boolean relay_status[5] = {0, 0, 0, 0, 0}; 

 

int oxy_hyd_levels_size = sizeof(oxy_hyd_levels) / 

sizeof(oxy_hyd_levels[0]); 

int relayStatus_size = sizeof(relay_status) / sizeof(relay_status[0]); 

const int dataToSend_size = oxy_hyd_levels_size + relayStatus_size; 

 

void setup() { 

 

  Serial.begin(9600); 

 

  radio_init(); 

 

} 

 

void loop() { 

  // Data Received From GUI 

  if (stringComplete)  { 

    stringComplete = false; 

 

    int commandLength = commandString.length(); 

    commandString.remove(0, 1); 

    commandString.remove(commandLength - 1); 

 

    if (commandString.equals("STAR")) isStarted = true; 

    else if (commandString.equals("STOP")) isStarted = false; 

    else if (commandString.equals("1")) relay_status[0] = 

!relay_status[0]; 



21 
 

    else if (commandString.equals("2")) relay_status[1] = 

!relay_status[1]; 

    else if (commandString.equals("3")) relay_status[2] = 

!relay_status[2]; 

    else if (commandString.equals("4")) relay_status[3] = 

!relay_status[3]; 

    else if (commandString.equals("5")) relay_status[4] = 

!relay_status[4]; 

    else autoValve = commandString.toInt(); 

  } 

 

  // Data to send back to GUI 

  if (isStarted) { 

    String inString = ""; 

     

    for (int i = 0; i < dataToSend_size; i++)  { 

      String sep = ","; 

      if (i == dataToSend_size - 1) sep = ""; 

 

      if (i < relayStatus_size) dataToSend[i] = relay_status[i]; 

      else dataToSend[i] = oxy_hyd_levels[i - relayStatus_size]; 

 

      inString += String(dataToSend[i]); 

      //dataToSend = {R1, R2, R3, R4, R5, O2-L, O2-M, O2-H, H2-L, H2-

M, H2-H} 

      //Serial.println(String(dataToSend[i]) + sep); 

    } 

    Serial.print(inString+ "\n"); 

  } 

 

  // Control of Auto Valves 1 and 2 

  if (autoValve > 349 && autoValve < 1351) { 

    // Code for auto valve 1 

    int autoValve1_angle = autoValve / 10; 

 

  } 

  else if (autoValve > 3000) { 

    // Code for auto valve 2 

    int autoValve2_angle = autoValve / 100; 

  } 

 

  // RF FUNCTIONS // 

  // Get the liquid levels from the plant 

  getData(); 

  // Send the relay status to the plant 

  send(); 

 

  delay(10); 

} 

 

void serialEvent() { 

  while (Serial.available()) { 



22 
 

    commandString = Serial.readStringUntil('\n'); 

  } 

  stringComplete = true; 

} 

void radio_init() { 

  radio.begin(); 

  radio.setDataRate( RF24_250KBPS ); 

 

  radio.openWritingPipe(masterAddress); // NB these are swapped 

compared to the master 

  radio.openReadingPipe(1, slaveAddress); 

 

  radio.setRetries(3, 5); // delay, count 

  radio.startListening(); 

} 

 

// Will send relay status to plant 

void send() { 

  if (newData == true) { 

    radio.stopListening(); 

    bool rslt; 

    rslt = radio.write(&relay_status, sizeof(relay_status) ); 

    radio.startListening(); 

 

    if (rslt) txDone = true; 

    else txDone = false; 

 

    newData = false; 

  } 

} 

 

// Will work every txIntervalMillis @ Plant Side 

void getData() { 

  if ( radio.available() ) { 

    radio.read( &oxy_hyd_levels, sizeof(oxy_hyd_levels) ); 

    newData = true; 

  } 

} 


