
i

Autonomous Quadcopter Swarm for Early FIre detection

system using UAV and AI

- Project Report 1 (Oct 2020 – June 2021) -

Based on Master Thesises Raja M. Murad, Nour O. Karim, Ali A. Assaad, Mohammad M.

Mourad, submitted to the School of Engineering of the Lebanese International University

(LIU), Tripoli, Lebanon, in partial fulfillment of the requirements for the degree of master of

Science in Electrical Engineering

Spring 2020-2021, Supervisor Dr. Abdelrazzak Merheb

ii

DEDICATION

This thesis is dedicated to everybody who helped in succeeding this project, our

family, and friends. The thanks go also to the Lebanese International University and its entire

staff especially Dr. Abdelrazzak Merheb and Dr. Samir Mourad for their support, guidance,

and efforts.

iii

ACKNOWLEDGEMENTS

We take this opportunity to express our profound gratitude and deep regards to our

supervisor Dr. Abdelrazzak Merheb for his useful help and continuous support, monitoring,

and encouragement throughout our thesis. Dr. Abdelrazzak Merheb gave us the idea for this

project and helped us step by step in order to get this project done perfectly and gave us the

moral and practical support. We cannot disregard the effort of Dr. Samir Mourad who have

always been very responsive in providing necessary information and giving us access to his

lab in order to help us proceed in our project.

Furthermore, we would like to thank our friends for their encouragement without which this

project could not be possible to be accomplished.

iv

ABSTRACT

In the last decade, autonomous quadcopters have gained a huge attention in both

academic and industrial fields. They have been developed and improved to solve complex

problems that have a direct risk on humans. In this thesis, an autonomous, triangular shaped,

swarm of quadcopters based on leader-follower scheme based on GPS position will be

designed and implemented for the purpose of forest fire and smoke detection that will be

implemented based on machine learning. The system will receive live video stream from a

flying quadcopter over a forest region and detects the fire and smoke in the received frame.

The system uses Artificial Neural Networks (ANNs) based on Darknet-53 and YOLO V3

pretrained network with 1200 train images and 200 test images for model validation. The

swarm is to be controlled via a ground station controller which gives the high-level

commands and will be flying over 120 meters from ground. Also, a Kalman filter will be

added to estimate the quadcopters’ position in case of GPS shortage. For the fire detection

system, the base station is composed of a laptop PC which will receive a live video-stream

from a quadcopter flying over a certain region of forests and then run the detection algorithm

on CPU. For testing purposes, the swarm system will be designed and tested in 2 stages:

standalone control system for each drone and a swarm controller and to test the fire detection

system accuracy, virtual fires and smokes are simulated in a recorded drone live footage. The

system effectively detected fire and smoke in a video-stream with accuracies of 98% and 96%

respectively. Whereas, for the swarm system, unsatisfactory results were found in terms of

cooperative control but with successful individual control.

v

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 17

1.1. Background .. 17

1.2. Problem Statement .. 22

1.3. Thesis Overview .. 24

1.4. literature survey ... 26

1.5. Thesis Outline .. 28

CHAPTER 2. SYSTEM DESIGN ... 29

2.1. Introduction .. 29

2.2. Preliminaries and Assumptions .. 31

2.3. Kinematic Model .. 32

2.4. Dynamical Model ... 34

2.5. Linear Model .. 37

2.6. Controllers ... 38

2.6.1. PID Controller .. 39

2.6.2. Position Controller.. 41

2.6.3. Obstacle Avoidance ... 43

2.6.4. Attitude Controller .. 45

2.6.5. Formation Controller .. 48

2.7. Conclusion ... 53

CHAPTER 3. PROJECT SPECIFICATIONS ... 54

3.1. Introduction .. 54

3.2. System and Equipment .. 55

vi

3.3. MULTIWII Flight Controller .. 56

3.4. NAZA Flight Controller ... 58

3.5. Parrot AR DRONE ... 59

3.6. Quadcopter Frames ... 61

3.7. Brushless DC Motors ... 62

3.8. Propellers ... 63

3.9. Electronic Speed Controller (ESC)... 63

3.10. Battery .. 64

3.11. GPS Sensor ... 66

3.12. Power Distribution Board ... 67

3.13. Arduino Mega 2560 .. 68

3.14. Gimbal .. 68

3.15. Vision ... 69

3.16. Communication .. 70

3.17. Central PC ... 71

3.17.1. Hardware Requirements .. 71

3.17.2. Software Requirements .. 72

3.17.2.1. Python .. 73

3.17.2.2. LabelImg .. 73

3.18. Conclusion ... 74

CHAPTER 4. PROJECT DESIGN ... 75

4.1. Introduction .. 75

4.2. Methodology .. 75

4.3. Naza Controller-based Quadcopter (Leader) 76

4.3.1. RC Transmitter Signal Decoding.. 79

vii

4.3.2. Naza GPS/Compass Decoding .. 80

4.4. Multiwii Controller-based Quadcopter (Follower) 81

4.4.1. Altitude Control .. 84

4.4.1.1. Moving Average and Complimentary Filter 85

4.4.1.2. Adaptive PID Controller ... 87

4.4.1.3. Battery Compensation ... 88

4.5. Kalman Filter .. 90

4.6. Position Controller .. 92

4.7. convolutional Neural networks ... 95

4.8. Yolo V3 .. 96

4.9. Training and Testing .. 98

4.10. Gimbal Control ... 99

4.11. Conclusion ... 102

CHAPTER 5. NON-TECHNICAL ASPECTS ... 103

5.1. Introduction .. 103

5.2. Economical/Financial ... 103

5.3. Project Management .. 105

5.4. Ethical and Social .. 106

5.4.1. Quadcopter .. 106

5.4.2. Camera .. 107

5.4.3. Neural Networks .. 107

5.5. Environmental and Sustainability ... 108

5.6. Standards .. 109

5.6.1. Quadcopter Standards ... 109

5.6.2. Neural Networks Standards ... 110

viii

5.7. Conclusion ... 111

CHAPTER 6. RESULTS .. 112

6.1. Introduction .. 112

6.2. Kalman Filter .. 112

6.3. Naza-based Quadcopter .. 113

6.4. AR-Drone ... 114

6.5. Swarming ... 115

6.6. neural networks.. 116

6.7. Gimbal ... 118

6.8. conclusion .. 120

CHAPTER 7. CONCLUSION .. 121

7.1. General Conclusion ... 121

7.2. Future Work ... 123

ix

LIST OF FIGURES

Figure 1.1. Breguet Richet Gyroplane No.1 ... 17

Figure 1.2. Quadcopter maneuvers ... 18

Figure 1.3. AUB Statistics: Hourly Temperature Compared with Maximum and

Minimum Historical Temperatures in 2019 .. 23

Figure 2.1. Leader-Follower high-level controller block diagram 30

Figure 2.2: Quadcopter high-and low-level controllers 30

Figure 2.3. Quadcopter rotation angles ... 31

Figure 2.4. Quadcopter rotation angles and coordinate frames 32

Figure 2.5. Translational dynamics Simulink model 36

Figure 2.6. Rotational dynamics Simulink model ... 36

Figure 2.7. Single quadcopter control system block diagram 39

Figure 2.8. PID controller block diagram.. 40

Figure 2.9. Position controller Simulink model ... 42

Figure 2.10. Position controller with obstacle avoidance algorithm 43

Figure 2.11. Repulsive field ... 44

Figure 2.12. Root locus plot for roll, pitch, and yaw systems 46

Figure 2.13. Attitude controller implemented in Simulink 47

Figure 2.14. Roll and pitch response to step angle of 25 degrees 48

Figure 2.15. Yaw response to step angle of 90 degrees 48

Figure 2.16. Formation in 2D ... 49

Figure 2.17. L-F formation control Simulink model .. 49

Figure 2.18. 3D and 2D path-tracking without obstacles 51

Figure 2.19. X and Y leader's position with respect to time 51

Figure 2.20. 2D Position tracking with obstacle avoidance 52

x

Figure 3.1. Project main parts .. 54

Figure 3.2. MULTIWII SE V2.0 .. 56

Figure 3.3. Data exchange between MULTIWII and Arduino mega 58

Figure 3.4. NAZA_M V2 flight controller .. 58

Figure 3.5. Data exchange between NAZA-M V2 and Arduino mega 59

Figure 3.6. Parrot AR Drone .. 60

Figure 3.7. Quadcopter frames chosen for the project 61

Figure 3.8. PROPDRIVEV2 and A2212/13T motors 62

Figure 3.9. 1045 Propellers ... 63

Figure 3.10. ECSs chosen for the project .. 64

Figure 3.11. Batteries chosen for the project ... 65

Figure 3.12. Ublox Neo 6m GPS ... 66

Figure 3.13. Power distribution board .. 67

Figure 3.14. Gidy camera gimbal ... 68

Figure 3.15. AKK video transmission system .. 70

Figure 3.16. HP laptop 15-da1xx ... 71

Figure 3.17. Python logo .. 73

Figure 3.18. LabelImg logo .. 73

Figure 4.1. Autonomous State Diagram... 76

Figure 4.2. Arduino-Naza Physical Connections ... 78

Figure 4.3. Arduino-Naza Circuit Diagram ... 78

Figure 4.4. RC Transmitter Signal ... 79

Figure 4.5. PCINT Subroutine ... 80

Figure 4.6. Naza GPS Pinout .. 81

Figure 4.7. Arduino-Multiwii Circuit Diagram .. 82

xi

Figure 4.8. Multiwii GUI ... 83

Figure 4.9. Multiwii-Arduino Physical Connections .. 83

Figure 4.10. Altitude Control Block Diagram .. 85

Figure 4.11. Altitude Measurement of the Multiwii-based Follower. Complimentary

Filtering in Green, Moving Average in Blue and the Raw Measuremnt From The

Ultrasonic Sensor in Red ... 87

Figure 4.12. Voltage Divider Circuit ... 89

Figure 4.13. Battery Compensation PWM and The Required Hovering PWM vs.

Battery Voltage .. 90

Figure 4.14. ECEF and Inertial Frames ... 93

Figure 4.15. Latitude and Longitude of Earth ... 93

Figure 4.16. Convolutional Neural Network architecture 95

Figure 4.17. Yolo v3 Architecture .. 97

Figure 4.18. Sigmoid Activation Function .. 98

Figure 4.19. LabelImg Annotation Tool .. 99

Figure 4.20. Gimbal Control Strategy .. 100

Figure 4.21. Gimbal Designed 3D and Physical Models 101

Figure 4.22. Servo Motor Control Circuit Connections 102

Figure 5.1. Thesis Gantt chart ... 105

Figure 5.2. Thesis Gantt Chart .. 106

Figure 5.3. GWP and particulates of 1 Kilometer delivery by electric motorcycle,

gasolian motorcylce, and drone. (a) GWP of 1 Km delivery; (b) PM2.5 of 1 Km

delivery .. 108

Figure 6.1. Kalman Filter Algorithm. Stationary Quadcopter (Left), a Small

Quadcopter Tour (Right) .. 113

file:///C:/AECENAR/ICS/Forest%20Fire%20Detection/170721Forest%20Fire%20Detection%20System%20Final%20Report%20(2021).docx%23_Toc77421542

xii

Figure 6.2. Estimated Quadcopter Speed.. 113

Figure 6.3. Calculated Heading (Left), Actual Path (Right) 114

Figure 6.4. Quadcopter Swarm Following a Desired Setpoint 115

Figure 6.5. Training Losses (a), Detection Accuracy (b), Training Precision

Percentage (c), Average Intersection Over Union (d), F1 Score (e), and Mean

Training Precision (f) ... 117

Figure 6.6. Detected Fires and Smokes in a Video Frame 118

Figure 6.7. Gimbal Input Controlled from PC ... 120

xiii

LIST OF TABLES

Table 2.1. Physical parameters ... 37

Table 2.2. PID position constants .. 50

Table 3.1. Hardware equipment used in the system 55

Table 3.2. MULTIWII SE V2.0 features and specifications 57

Table 3.3. NAZA-M V2 Specifications ... 58

Table 3.4. AR Drone specifications ... 60

Table 3.5. Turnigy Heavy Aerial Lift and DJI F450 Specifications 61

Table 3.6. BLDC motors specifications .. 62

Table 3.7. ESCs Specifications ... 64

Table 3.8. HRB and AR Drone battery specifications 66

Table 3.9. Ublox Neo 6m GPS specifications .. 67

Table 3.10. Power distribution board (type A) Specifications 67

Table 3.11. Gidy camera gimbal specs.. 69

Table 3.12. Camera specs ... 69

Table 3.13. Communication system specs .. 70

Table 3.14. HP laptop specs .. 72

Table 3.15. Google Collabs hardware specs ... 72

Table 4.1. Naza Features .. 77

Table 4.2. Multiwii Attitude PID Tuned Gains .. 84

Table 5.1. Material Cost... 104

Table 5.2. Engineering Staff Cost .. 105

Table 5.3. Environmental Impact of Selected Categories 108

Table 5.4. FAA’s Model Aircraft Rules ... 109

Table 5.5. IEEE Standards Related to Neural Networks 110

xiv

Table 6.1. Gimbal Roll and Yaw Data Associated to the frame coordinates 119

xv

LIST OF SYMBOLS AND ABBREVIATIONS

APF: Artificial Potential Field

BBR: Behavior-Based Robotics

EGA: Enhanced Genetic Algorithm

GPS: Global Positioning System

IMU: Inertial Measurement Unit

KF: Kalman Filter

L-F: Leader-Follower

NIFC: National Interagency Fire Center

OA: Obstacle Avoidance

PID: Proportional, Derivative and Integral

SAR: Search and Rescue

SMC: Sliding Mode Control

UAVs: Unmanned Aerial Vehicles

VTOL: Vertical Takeoff and Landing

ANN: Artificial Neural Networks

CPU: Central Processing Unit

EFFIS: European Forest Fire Information System

ESC: Electronic Speed Controller

FFDI: Forest Fire Detection Index

FPS: frames per second

GPU: Graphical Processing Unit

Li-ion: Lithium ion

LiPo: Lithium Polymer

xvi

ML: Machine Learning

NN: Neural Networks

RCNN: Region-based Convolutional Neural Network

17

CHAPTER 1. INTRODUCTION

1.1. BACKGROUND

Unmanned Aerial Vehicles (UAVs) have grabbed a great attention in both academic

and practical fields through the past decades. They are used in various fields such as military

reconnaissance, like gathering sensitive data during and after military missions to aid in

security and decision-making. In addition, UAVs are used in Search and Rescue (SR)

missions, where 3-D mapping of catastrophic regions can help rescue teams for better

estimation and preparation before entering hazardous situations. In addition, UAVs can be

used in agriculture field, taking advantage of them in a variety of farming needs such as

spraying fertilizers and insecticides, identifying weed infestations, and monitoring crop

health. Other applications such as live entertainment, inspection, weather forecasting and

maritime operations can be found in [1] [2]. Because of their simple structure, small size,

strong mobility and low cost, UAVs were chosen to complete hazardous tasks. In 1907, the

Breguet Brothers built the first flyable quadcopter called “gyroplane No.1 shown in Figure

1.1 [3] [4].

Figure 1.1. Breguet Richet Gyroplane No.1

18

 So far, engineers have developed quadcopter UAVs to solve the problem of vertical

flights which pilots had with conventional winged UAVs [5]. Compared with the latter,

quadcopters do not require a tail rotor to stabilize their heading, they can cancel out net

torques naturally because of their rotors’ mount. quadcopters can fit in more sophisticated

flight environments with their ability to travel in narrow spaces, apply roll and ultra-soft

flight and hovering, take-off and land vertically, (VTOL), and move in a flexible manner [6].

Quadcopter maneuvering can be achieved by varying rotors’ speeds as shown in Figure 1.2.

With the evolution of quadcopter UAVs, they became fully autonomous. They can track

specific trajectory, hold their altitude, and maneuver in narrow areas on their own. Scientists

and control system engineers developed various controllers to achieve quadcopter’s full

autonomy such as conventional PID controllers, backstepping, robust controllers (such as

Sliding Mode Controllers (SMC)), and fuzzy logic controllers. Each of these is characterized

by its flexibility and boundaries. For example, conventional PID controllers do not take into

consideration the unknown disturbances acting on the system, while robust controllers do.

Figure 1.2. Quadcopter maneuvers

19

Nowadays, world becomes more complex and more connected than ever before

which led to more complicated objectives, and the need to deal with complex tasks requires

new methodologies, such as imitating swarm of robots to survey unknown environments.

Compared with a single quadcopter, using a swarm of quadrotors in missions can increase the

efficiency as well as it increases the probability of mission success. In addition, using

quadcopter swarm can increase the surveillance area, scan a whole damaged building quickly,

and reduce the expense of military missions. Quadcopter team is a popular research topic as it

can solve real-world tasks efficiently [7] [8] [9].

For instance, in 2019, heat and drought wave different areas all around the world.

Consequently, many countries suffered from wildfires. Around 50,447 wildfires occurred,

which burned around 4.7 million acres of green lands according to National Interagency

Fire Center (NIFC) [10]. In 2019, series of 100 fires have broken out within 24 hours in

Lebanon as officials said. This catastrophe started in Lebanon’s western mountains, and

spread to other areas, because of a heatwave and strong winds which the country faced

October. Furthermore, Lebanon’s ability to face this catastrophe was almost non-existent.

Lebanon’s firefighting helicopters could not be used because of the lack of maintenance [11]

[12].

 In order to respond to this disastrous event, emergency responders around the world

started using next-generation technologies to help avoid wildfires, prevent spread wildfires,

and extinguish them when they occur [13]. For instance, the fire department in State of

Michigan in USA in coordination with the University of Michigan College of Engineering

used a swarm of quadcopters to combat wildfire effectively with the goal of finding, mapping

wildfires and reporting the estimated fire boundary. The swarm flies above the fire boundary

and then reports accurate and real-time fire estimates. Thus, responders can know where they

20

can go to be safe, where they cannot go, and how they can help certain people who are in

need [14].

There are plenty of high-level controllers in which engineers trying to improve by

time to establish a fully-autonomous formation control such as virtual structure [15],

Behavior-Based Robotics (BBR) [16], and leader-follower technique [17]. Where the leader

moves along with a predefined trajectory while the followers are controlled to maintain a

desired position (orientation and distance) with respect to the leader [18]. This approach is

highly effective and can be reconfigured easily [19]. These algorithms should be optimally

combined with path-planners in order to achieve a safe and efficient mission.

Path-planning algorithms, in such missions, should generate an obstacle-free path to

the quadcopter team taking into consideration the anti-collision of agents. There are many

path-planning and obstacle avoiding algorithms used by scientists such as backstepping

obstacle-avoiding techniques, genetic, and Neural Network UAV path-planning. Artificial

Potential Fields (APF) is also another path-planning algorithm and is widely used in robotics

field. It first started by Oussama Khatib in 1980’s for path-planning of mobile robots and

manipulators [20]. APF can briefly be described as a goal attracting and obstacles repelling

the robot through artificial forces. The sum of forces applied determines the speed and

direction the robot should take in order to reach its goal and repel from obstacles.

Moreover, the advancement of industry in the last century increased the

environmental pollution and climate change in many regions of the world. This led to rising

global temperatures which is one of the reasons for the outbreak of fires in large areas of

forests [1] [2]. In 2013, the US had lost 104,131 Hectares of forest due to fires [3]. According

to the European Forest Fire Information System (EFFIS) report, the Middle East and North

Africa have lost at least 176,116 Hectares of Forest in 2014 [4].

21

In 2019, a series of fires broke out in the forests of Lebanon and nearby countries with

nearly 100 fires on the Lebanese territories, according to the Lebanese Civil Defense [5]. In

2020, and based on the data and estimates of the municipalities in the villages, the area

burned in this incident has reached 12 million square meters [6]. Unfortunately, this happens

every year in Lebanon. Meteorological experts stated that the fires were caused by high

temperatures, which reached 38 degrees Celsius (nearly 10 degrees above the average), and

dry winds that contributed to forest fires [7].

Problems caused by the lack of technological aspects in the field of fire detection are

obviously disastrous. There is still no way to know when the early flames are that caused the

fire ignited. Because there are no methods used in Lebanon that keep on checking and

identifying the forests’ status, it is always too late to prevent forest fires that happen every

year. These fires contribute to a great physical, climate, and economic losses. Thus, it is a

must to develop monitoring systems that detect fires, especially early flames, and show their

status (level, direction, speed). This will help firefighters in accessing the stage safely and

treating fire quickly and efficiently which will definitely save more lives and green spaces.

Unfortunately, traditional fire detecting sensors, such as ionization smoke sensors and flame

detectors frequently lack efficiency when stationed in nature, and often have false alarms.

This raises an urgent need for a better and more accurate technology.

The fire detection system using drones has gained a huge turnout especially in the past

two decades. This system has been gradually developed throughout the years, starting from

remote-controlled drones with smoke sensors, to installing cameras on autonomous drones

that take pictures of the fire and transmit live video stream of the fire and how it is moving.

This technology helped NASA to detect effectively the California wildfire in 2008 and

helped preventing it from spreading in an uncontrolled manner [8]. On one hand, using

drones to detect fires has positive aspects. They help firefighters to specify the state of the

22

fire like its direction and extension. Besides, their convenient size helps them penetrate

through areas unreachable by pilots. Drones also cost less than helicopters and decrease

human losses by being their substitute. On the other hand, there are drawbacks. Being always

available and hovering above forests are constrained by their low flying time and some

technical risks.

Firstly, continuous use of quadcopters results in less efficient motors, this is called

motor aging. Motors will lose their power as they “grow up” which may cause undesirable

behavior of the drone and maybe crashing. Moreover, quadcopters’ communication channels

maybe interfered with other signals. This risk causes loss of information between sender and

receiver and may end up with a disastrous situation. In addition, and one of the most common

risks, sudden power death due to battery deficiency may occur and crashing will defiantly

occur. These risks should be taken into consideration and never be ignored in the design stage

of a quadcopter.

1.2. PROBLEM STATEMENT

Lebanon has faced many events which tested its readiness and capabilities to face

fires throughout the last decade. According to the American University of Beirut [21], fires in

Lebanon were classified as a recurring disaster with no efficient intervention. In 2010, 320

fires ignited with 4661 hectares burned. In 2014, 156 fires ignited which resulted in 1852

hectares burned. In 2016, 260 fires ignited with 1871 burned hectares. And, in October 2019,

more than 120 fires ignited simultaneously within 48 hours only. Fire density was

approximated to be 0.16 fires/km which is 10 times larger than the Amazon’s famous fire in

2019. As a result, significant losses in private and public properties appeared, more than 2000

hectares of green land were burned and 1 person died because of asphyxiation. These

catastrophic events have several factors. Weather conditions are one of the factors. During

23

October 2019, Lebanon faced a heatwave with maximum and minimum temperatures

exceeding historical averages, low humidity, and wind speed of 10 m/s (normally 3 m/s in

Beirut). Figure 1.3 shows the hourly temperature in October 2019 compared with historical

average temperatures. Moreover, weak response is also a main factor. It includes slow early

response, lack in firefighters, and absence of necessary equipment to face fires. In addition,

one of the most important factors is the lack of prevention measures. Lebanon fire prevention

system lacks early fire detection. For this reason, deploying a monitoring system is a must

and autonomous swarm of quadcopters could be one of these systems as it provides an “eye

in the sky” for stakeholders and since multiple quadcopters can increase coverage area and

survey larger areas with at same time.

Figure 1.3. AUB Statistics: Hourly Temperature Compared with Maximum and Minimum

Historical Temperatures in 2019

However, deploying swarm of quadcopters is a challenging task. Quadcopters

should behave as a coherent team to complete their surveillance mission in the most efficient

way and with no crashing. In a perfect world, a quadcopter team can follow its predefined

trajectory infinitely without colliding because of its perfect sensors and communication time

almost negligible. Unfortunately, in real world applications, perfect sensors and ultimate

coordination do not exist and have a lot of constraints.

24

 A Quadcopter swarm is susceptible to sensor noises which weakens the localization

and quality of the formation and may result in formation loss or crashing. Moreover,

formation control may encounter sudden unknown type of disturbances including strong wind

gust, flying birds, or sudden communication loss with positioning system satellites. These

disturbances have high occurrence probability and cannot be predicted. Furthermore,

formation path-planner, which is responsible to plan an obstacle-free path, is vulnerable to

the dynamics of moving obstacles in the surrounding environment where fast-moving or

nonpredictable objects result in unstable decisions. In addition, black smoke released from

fires can temporarily negatively affect the behavior of onboard sensors and cameras for each

agent in the formation. These mentioned constraints limit the deployment process of

formation controllers and are extremely challenging to deal with.

Early fire detection is very necessary. Take the wildfire that broke in 2019 in the

Lebanese forests for instance. This fire caused dangerous injuries for more than 88 civilians

[9] and 5 firefighters and burnt at least 4 houses in the surrounding area [10]. 3700 acres of

green land became ashes in 48 hours, which means the loss of thousands of olive trees and

other fruity trees that their owners depended on for their income [9]. Usually, the detection of

wildfires is late due to either false alarms or the complete absence of alarms in some forests.

This partially eliminates the possibility to access the terrain which allows the fire to nurture

by the various fuel sources in the forest. Thus, the need for an efficient way to detect early

fires is extremely necessary to avoid further losses.

1.3. THESIS OVERVIEW

In this thesis, a decentralized, autonomous quadcopter team consisting of 3

quadcopters will be designed and implemented which is characterized by:

• Fly in a triangular-shaped formation with 5 meters safe distance between agents.

25

• Track a predefined obstacle-free path, with a longitudinal speed of ≤ 5
𝑚

𝑠
 over

regions with high probability of fires.

• Send attitude, altitude, position and live-stream data to a Ground Control Station

(GCS) in real-time.

• Land after 20 minutes of continuous flight.

The swarm is to be formed using Leader-Follower (L-F) structure, where one

quadcopter sends its position information to all followers which by turn, maintain a specific

distance from it without losing the formation. For attitude, altitude and position tracking, a

PID controller will be implemented. Artificial Potential Field (APF) is chosen as a path-

planning algorithm for its simplicity and high efficiency because it takes into consideration

static and dynamic obstacles located around. In addition, and to deal with uncertainties in

sensors and unknown disturbances, a Kalman Filter (KF) is to be implemented onboard of

every single quadcopter as an optimal state estimator. The behavior of proposed controllers,

path-planner and estimation algorithm is to be tested on MATLAB simulation environment.

As for the fire detection system, this thesis is dedicated to design and implement an

early fire detection system, with the aid of quadcopter, based on Machine Learning

(ML)/Neural Networks (NN).

 The system is responsible to detect fires in video frames received from quadcopters

flying over a region of forest. For this reason, a “Yolov3” neural network model will be used

to detect fire in a frame. This model has been chosen for its high training accuracy and the

ability to work with low-cost computers. The model will be trained using 1000 of positive

images (images with fires). The labeling of images will be done using “labelImg” software.

Model training will be handled over “Google Collabs” that offers a free GPU. In addition, a

simple proportional controller will be used to calculate the necessary actions for a 2-D gimbal

in order to keep the camera focused on fire region.

26

1.4. LITERATURE SURVEY

There are a lot of work relating path-planning and formation control of quadcopters

have been published. For example, Nguyen and Sung [22] proposed a robust adaptive

formation controller to keep a team of quadcopters, based upon leader-follower scheme, in a

specific formation with the presence of unknown uncertainties. Promising results obtained by

simulations. However, they did not test it over real quadcopters. Another method presented

by Falin Wu et al. [23] where they used a linear PID controller to control each individual

quadcopter along with a Sliding Mode Controller (SMC) to solve the formation problem.

They acquired effective performance upon simulations, ignoring practical noises and

communication delays. Moreover, similar work presented by Mu et al. [24], Khaled and

Youmin [25] and Mercado et al. [26] where they also used SMC to solve the leader-follower

tracking formation control problem. The SMC was very responsive to keep the formation in

shape but its main disadvantage is the chattering of control input which results in oscillating

followers and decreases the lifetime of the system.

The proposed formation control methods are designed to operate in an obstacle-free

environment. In most cases, the environment is full of obstacles. For this reason, Reagan et

al. [27] implemented a real-time obstacle avoiding algorithm using APF to control multiple

quadcopters in order to reach a specific goal location with following the most feasible

obstacle-free path. They tested this algorithm using simulations and on real quadcopters

indoor with achieving very effective results in keeping the formation as well as reaching the

goal. However, the main disadvantage of using APF is the necessity preliminary knowledge

of robots’ position, obstacles’ position and target position where it also needs a lot of fine-

tuning to achieve the best performance. Milad Nazarahari et al. [28] updated the use of APF.

They used APF to find all feasible paths between the starting position to goal position, then

they developed an Enhanced Genetic Algorithm (EGA) to improve these initial paths and

27

find the optimal path between the robot and goal. They combined path length, smoothness,

and safety in order to achieve a multi-objective path-planning. Furthermore, Derek J. Bennet

and Colin R. McInnes [29] used bifurcating potential fields to establish formation

reconfigurability while maintaining robustness and to failures. They proved how various

formation patterns can be autonomously established by simple free parameter change. They

tested the proposed algorithm using simulations only.

There are a lot of fire detection algorithms and techniques used by scientists and

engineers to help in early fire detection and monitoring processes using UAVs. For example,

Chi Yuan et al. [11] did effectively extract and track fire pixels in an infrared video sequence

received from a UAV. They used brightness and motion clues along with image processing

histogram segmentation to extract hot object regions. They also used optical flow sensors to

calculate motion vectors of these hot candidate regions. Another work done by Casbeer et al.

[12], where they explored the feasibility of a short term, low altitude UAV team to

cooperatively track and monitor forest fires’ propagation. They simulated a full 6-DOF

dynamic model of the UAVs and some numerical models for forest fire propagation. They

did not test it in real fire situations. In addition, Zhou et al. [13] gathered video streams from

a UAV and applied orthorectification method of these received images to monitor forest fires.

They pointed out some specific problems which should be treated in case of forest fire

detection and presented some primary solutions to these problems. However, there were no

results presented. Moreover, Mubarak Mahmoud et al. [14] collected 6 videos available

online and used image processing algorithms to detect fires. They first applied background

subtraction to capture movements within the region detected. Then they converted the

moving regions from RGB color space into YCbCr which helped them to apply 5 different

fire detection rules in order to separate fire pixels.

28

And finally, they used temporal variation method to distinguish between fire and fire color

objects. They achieved 96.63% accuracy detection rate. Another method proposed by Henry

Cruz et al. [15] developed a method, which can be used on UAVs, called Forest Fire

Detection Index (FFDI) based on using a new color index. This index is based on vegetation

methods to detect flames and smoke. They tested this method upon a database imagery with

acquiring very good results of about 96.82% precision accuracy over 960 x 540 pixels

samples along with 0.0447 seconds processing speed.

1.5. THESIS OUTLINE

The rest of the report is divided as follows; Chapter 2 will include simulation and

control of 3 quadcopters tracking a goal position with avoiding obstacles using APF repulsive

forces. In addition to the mathematical modeling and control of a quadcopter drone. Chapter

3 will illustrate the components to be used. Chapter 4 will combine all parts together and will

show the practical design procedure (technical aspect) of 3 quadcopters flying as a team with

implementing Kalman Filter (KF) for better position estimation and will show the procedure

followed to train a Neural Network (NN) in order to detect fire in camera frames and the

design of th simple control system to drive a camera gimbal to keep tracking fire region.

Chapter 5 will show the economical, ethical, and environmental impact of this project.

Chapter 6 will show the results and chapter 7 will conclude the project.

29

CHAPTER 2. SYSTEM DESIGN

2.1. INTRODUCTION

In this chapter, a mathematical model, including the kinematics and dynamics, of a

quadcopter UAV and the design of its PID-based attitude, altitude, and position controllers

will be presented. Then, the simulation will be integrated to control 3 UAVs following

leader-follower scheme. The simulation is done using MATLAB/Simulink environment in

order to ensure the viability of the proposed controllers in real world application. Figure 2.1

illustrates the high-level control diagram of L-F scheme. The trajectory planner generates the

desired leader’s trajectory 𝒓𝒅 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑]𝑇 and the desired course angle for every

quadcopter in the team (𝜓𝑑). Each quadcopter in the team is equipped with a local planner

(position, altitude, attitude and obstacle avoidance controllers) that can achieve partial

undependability from leader’s decisions. However, the desired trajectory of each follower is

directly dependent upon leader’s position. The desired trajectory will be tracked by the leader

quadcopter and the formation controller is responsible for maintaining the followers’ relative

desired distance from the leader (∆𝑥, ∆𝑦). A main advantage of this method is the ease of

implementation and expendability (i.e., “n” followers can be added easily) however it lacks

full independence.

30

Figure 2.1. Leader-Follower high-level controller block diagram

Figure 2.2: Quadcopter high-and low-level controllers

 Figure 2.2 shows the overall control system structure. The quadcopter is equipped

with a high-level (position) controller responsible for tracking a desired trajectory in

(𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑), generated by the trajectory generator, and a low-level (attitude controller)

controller responsible for tracking the rotational setpoints (𝜑𝑑, 𝜃𝑑 , 𝜓𝑑). The quadcopter then

receives 4 control inputs (𝑢1, 𝑢2, 𝑢3, 𝑢4) which control the throttle force, rolling, pitching,

and yawing torques respectively.

 The quadcopter produces rotational torques in order for it to navigate in space. These

rotation angles can be described as Euler angles in 3D. The rotations about x-axis, y-axis and

31

z-axis are represented as rolling (𝜑), pitching (𝜃), and yawing (𝜓) respectively as shown in

Figure 2.3.

Figure 2.3. Quadcopter rotation angles

2.2. PRELIMINARIES AND ASSUMPTIONS

To achieve the desired coordination between several quadcopters, some basic

information and constraints should be known.

• The rotation angles about [𝑥, 𝑦, 𝑧] axes are represented by Euler angles, roll, pitch and

yaw [𝜑, 𝜃, 𝜓] respectively with constraining −25 < 𝜑 < 25𝑜 , −25𝑜 < 𝜃 < 25𝑜

(for linear region) and −180𝑜 < 𝜓 < 180𝑜 as shown in Figure 2.4.

• The quadcopter is assumed to be a rigid body of mass “m” and an inertia matrix “J”.

Also, the propellers are also assumed to be rigid with neglecting flapping effect.

• The quadcopter is symmetrical and its center of mass is exactly located at the center

of the rigid body.

• Motor inertia is assumed to be neglected.

• Flat earth is assumed.

32

Figure 2.4. Quadcopter rotation angles and coordinate frames

2.3. KINEMATIC MODEL

Translations and rotations of a quadcopter are represented in 2 different frames as in

Figure 2.4; Body fixed frame B and inertial frame I. Generally, a quadcopter is equipped with

an Inertial Measurement Unit (IMU) which senses quantity relative to its body frame but on

the other hand a Global Positioning System (GPS) returns the quadcopter’s position in

inertial frame. Also, the system actuator inputs are relative to body frame. However, and

because most of quadcopter missions are handled in the fixed inertial frame, it is necessary to

establish a conversion concept that translates rotations and translations from body to inertial

frames and vice versa.

As mentioned before, the attitude of the quadcopter is represented by Euler angles,

with phi, theta and psi, defined by 𝝓 = [𝜑, 𝜃, 𝜓]𝑇 , being the rotations about the inertial x-

axis, y-axis and z-axis respectively. The position of the quadcopter in the inertial frame is

represented by 𝒓 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑇
, the angular velocities with respect to body frame 𝝂 =

[𝑝, 𝑞, 𝑟]𝑇 and 𝑽𝑩 = [𝑣𝑥
𝑏 , 𝑣𝑦

𝑏 , 𝑣𝑧
𝑏]

𝑇
 represents the linear velocity components in the body

frame.

33

There are several ways to calculate the direction cosine matrix which establishes the

conversion between these two frames. The rotation matrix from inertial frame to body frame

using Euler angles can be seen in equation (2.1). Derivation process can be found here [30].

𝑅𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

= [

cos(𝜃) cos(𝜓) cos(𝜃) sin(𝜓) − sin(𝜓)

sin(𝜑) sin(𝜃) cos(𝜓) − cos(𝜑) sin(𝜓) sin(𝜑) sin(𝜃) sin(𝜓) + cos(𝜑) cos(𝜓) sin(𝜑) cos(𝜃)

cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓) cos(𝜑) sin(𝜃) sin(𝜓) − sin(𝜑) cos(𝜓) cos(𝜑) cos(𝜃)
] (2.1)

The transformation from body frame to inertial frame can be obtained by inverting

the matrix in equation (2.1), and because it is orthonormal matrix, its inverse is simply the

transpose of it.

𝑅𝑏𝑜𝑑𝑦
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = [

cos(𝜃) cos(𝜓) sin(𝜑) sin(𝜃) cos(𝜓) − cos(𝜑) sin(𝜓) cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓)

cos(𝜃) sin(𝜓) sin(𝜑) sin(𝜃) sin(𝜓) + cos(𝜑) cos(𝜓) cos(𝜑) sin(𝜃) sin(𝜓) − sin(𝜑) cos(𝜓)

−sin(𝜓) sin(𝜑) cos(𝜃) cos(𝜑) cos(𝜃)
] (2.2)

Therefore,

 [
𝑥𝑖

𝑦𝑖

𝑧𝑖

] = 𝑅𝑏𝑜𝑑𝑦
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 [

𝑥𝑏

𝑦𝑏

𝑧𝑏

]

(2.3)

Similarly, Euler rates are used to determine the attitude of the quadcopter in the

inertial frame. Thus, the relation between Euler rates and body angular rates is calculated as

follows [31]:

 𝑻𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

= [

1 0 − sin(𝜃)

0 cos(𝜑) sin(𝜑) cos(𝜃)

0 − sin(𝜑) cos(𝜑) cos(𝜃)
] (2.4)

 As a result, the Euler rates in the inertial frame can be obtained as:

34

 �̇� = [

�̇�

�̇�
�̇�

] = 𝑇−1
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

[
𝑝
𝑞
𝑟
] (2.5)

With,

 𝑻−1
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

= 𝑻𝑏𝑜𝑑𝑦
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = [

1 tan(𝜃) sin(𝜑) tan(𝜃) cos(𝜑)

0 cos(𝜑) − sin(𝜑)

0 sin(𝜑) sec(𝜃) cos(𝜑) sec(𝜃)
] (2.6)

2.4. DYNAMICAL MODEL

The dynamical study studies the effect of the external forces applied on the

quadcopter and how these forces affect its behavior (translational and rotational). It is worth

of mentioning that the quadcopter is an under-actuated system which has 4 input parameters

with 6 DOF, in other words, it has 6 outputs with only 4 inputs. The dynamical model of the

quadcopter can be calculated from Newton’s second law where the summation of all external

forces acting on the quadcopter equals to its mass multiplied by its linear acceleration. Also,

the summation of all torques equals moment of inertia multiplied by angular acceleration.

The translational and rotational models, given in the inertial frame, are represented as [32]

[33] [34] [35] [36]:

�̈� =
1

𝑚
[(cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓))𝑢1 − 𝑘𝑓𝑥�̇�]

�̈� =
1

𝑚
[(cos(𝜑) sin(𝜃) sin(𝜓) − sin(𝜑) cos(𝜓))𝑢1 − 𝑘𝑓𝑦�̇�]

�̈� =
1

𝑚
[(cos(𝜑) cos(𝜃))𝑢1 − 𝑘𝑓𝑧�̇�] − 𝑔

(2.7)

�̈� =
1

𝐼𝑥𝑥
[�̇��̇�(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝐽𝑡𝑝�̅��̇� + 𝑢2]

(2.8)

35

�̈� =
1

𝐼𝑦𝑦
[�̇��̇�(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝐽𝑡𝑝�̅��̇� + 𝑢3]

�̈� =
1

𝐼𝑧𝑧
[�̇��̇�(𝐼𝑥𝑥 − 𝐼𝑦𝑦) + 𝑢4]

 With, m is the total mass of the quadcopter and g is the gravity force in the negative

z-direction.[𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧] are the moment of inertia about each axis. [𝑘𝑓𝑥, 𝑘𝑓𝑦, 𝑘𝑓𝑧] are drag

constants resulted from aerodynamical effects. 𝐽𝑡𝑝 is the total rotational moment of inertia

around the propeller axis and �̅� = −𝛺1 + 𝛺2 − 𝛺3 + 𝛺4 is the total gyroscopic torque

affecting the quadcopter.

The inputs of the quadcopter (𝑢1, 𝑢2, 𝑢3, 𝑢4) can be written as:

 [

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
𝑅𝑜𝑙𝑙𝑖𝑛𝑔
𝑃𝑖𝑡𝑐ℎ𝑖𝑛𝑔
𝑌𝑎𝑤𝑖𝑛𝑔

] = [

𝑢1

𝑢2

𝑢3
𝑢4

] = [

𝑏 𝑏 𝑏 𝑏
0 −𝑙𝑏 0 𝑙𝑏

−𝑙𝑏 0 𝑙𝑏 0
−𝑑 𝑑 −𝑑 𝑑

]

[

𝛺1

2

𝛺2
2

𝛺3
2

𝛺4
2]

 (2.9)

Where, b is a thrust coefficient characterized by the physical properties of the

propellers, l is the arm length, d is a drag constant and 𝛺𝑖 (for i = 1,2,3,4) is the rotor speed.

Equation (2.9) is used to map the desired motors’ speeds with the desired control actions.

Figure 2.5 shows the translational dynamics, shown in equation (2.7), and Figure 2.6 shows

the rotational dynamics, shown in equation (2.8), implemented in Simulink.

36

Figure 2.5. Translational dynamics Simulink model

Figure 2.6. Rotational dynamics Simulink model

The parameters for the dynamical model are summarized in Table 2.1. Equations for

these physical quantities are clearly presented in Appendix A (A.1).

37

Table 2.1. Physical parameters

Parameter Description Value Unit

𝒎 Mass of the quadcopter 2 𝑘𝑔

𝑰𝒙𝒙 Moment of inertia about x-axis 0.0641 𝑘𝑔.𝑚2

𝑰𝒚𝒚 Moment of inertia about y-axis 0.0641 𝑘𝑔.𝑚2

𝑰𝒛𝒛 Moment of inertia about z-axis 0.1148 𝑘𝑔.𝑚2

𝒈 Gravity force 9.81 𝑚. 𝑠2−1

𝒃 Thrust constant 1.02 × 10−6 𝑁.𝑚. 𝑠2

𝒅 Drag constant 1.3 × 10−7 𝑁.𝑚−1

𝒍 Quadcopter arm length 0.275 𝑚

𝑱𝒕𝒑 Total rotational moment of inertia

around the propeller axis
104 × 10−6 𝑘𝑔.𝑚2

𝒌𝒇𝒙 x-axis drag constant 0.00215 𝑁.𝑚−1

𝒌𝒇𝒚 y-axis drag constant 0.00215 𝑁.𝑚−1

𝒌𝒇𝒛 z-axis drag constant 0.00215 𝑁.𝑚−1

2.5. LINEAR MODEL

Linearizing the quadcopter equations of motion is crucial in order to design linear

controllers like PID. Linearizing a system can help designers better predict a system’s state

and control it using easy linear controller tools. The general form of a non-linear system can

be written as:

 �̇� = 𝑓(𝑥, 𝑢) (2.10)

Since the quadcopter is a highly non-linear system with strong coupling between

states, it is very hard to find a predictable state solution at time “t”. Thus, linearization is

made about an equilibrium point such that:

 𝑓(�̅�, �̅�) = 0 (2.11)

Where �̅� is the state at equilibrium point and �̅� is the equilibrium input in which

when applied, the system stays at equilibrium with all of its state derivatives equal to 0. The

38

equilibrium point chosen is the hover point (small oscillations model) which has the

following characteristics:

• 𝜑 ≈ 𝜃 ≈ 0

• cos(𝜑) = cos(𝜃) = 1

• sin(𝜑) = 𝜑 𝑎𝑛𝑑 sin(𝜃) = 𝜃

• �̇� = 𝒗

• [𝑢1, 𝑢2, 𝑢3, 𝑢4] = [𝑚𝑔, 0,0,0]

Therefore, equations (2.7) and (2.8), which represent the non-linear dynamics of the

quadcopter, are realized to become:

�̈� = 𝑔 [(𝜃cos (𝜓) + 𝜑sin (𝜓))]

�̈� = 𝑔 [(𝜃𝑠𝑖 𝑛(𝜓) − 𝜑cos (𝜓))]

�̈� =
1

𝑚
𝑢1

(2.12)

�̈� =
𝑢2

𝐼𝑥𝑥

�̈� =
𝑢3

𝐼𝑦𝑦

�̈� =
𝑢4

𝐼𝑧𝑧

(2.13)

2.6. CONTROLLERS

The objective of this thesis is to form a cooperative flight between 3 quadcopters

tracking a predefined trajectory without colliding. So first, and to achieve full autonomy, the

control strategy is to design robust and independent altitude, attitude, and position PID-based

controllers for each quadcopter and then implement a formation control algorithm to achieve

swarming (see Figure 2.1). The detailed closed loop control diagram for a single quadcopter

is shown in Figure 2.7.

39

Figure 2.7. Single quadcopter control system block diagram

2.6.1. PID Controller

The Proportional, Derivative and Integral (PID) controller is a linear-type controller

used to stabilize a system with respect to a given state setpoint. This controller is used for its

efficiency, simplicity, and ease of implementation in real-world applications. However, PID

is limited in linear regions only and can withstand only very narrow range of unknown

disturbances acting on the system. Consider a controlled variable (distance, velocity, angle or

temperature etc.), state error (difference between desired state and actual state) defined in

time domain 𝑒(𝑡) = 𝑥𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙, the PID controller output is calculated as:

 𝑢(𝑡) = 𝐾𝑝𝑥
𝑒(𝑡) + 𝐾𝑖𝑥 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑𝑥

𝑑𝑒(𝑡)

𝑑𝑡
 (2.14)

and in frequency domain (Laplace):

 𝑈(𝑠) = 𝐾𝑝𝑥
𝐸(𝑠) +

𝐾𝑖𝑥

𝑠
𝐸(𝑠) + 𝑠𝐾𝑑𝑥

𝐸(𝑠) (2.15)

40

Figure 2.8. PID controller block diagram

Where, [𝐾𝑝𝑥
, 𝐾𝑖𝑥 , 𝐾𝑑𝑥

] are positive the proportional, integral and derivative gains

respectively. 𝑥 is the controlled variable. Changing these gains will result in completely

different system behavior. Thus, these gains should be tuned according to the desired system

behavior chosen by the designer. Tuning these gains in real systems is difficult and has no

direct rule. However, the following guidelines for tuning these values can be beneficial most

of the times:

• Proportional action reacts proportionally with the error. Increasing 𝐾𝑝 speeds up the

system response but decreases stability.

• Integral action accumulates the error signal over time in order to remove the steady

state error. Increasing 𝐾𝑖 removes steady state error but it does also increase the

oscillations and decreases stability accordingly.

• Derivative action damps the system when approaching the setpoint. Increasing 𝐾𝑑

will surely increase the stability but it slows down the response.

• Set 𝐾𝑖 = 𝐾𝑑 = 0 and keep increasing 𝐾𝑝 until the system starts oscillating. At that

point, multiply 𝐾𝑝 by 0.6 and stick to that value.

• Similarly, with fixed 𝐾𝑝, start increasing 𝐾𝑑 until the system starts oscillating, then

divide 𝐾𝑑 by 2 and stick to that value.

41

• For 𝐾𝑖, and because it is very sensitive, increase it by a step of “0.001” each time and

observe the behavior of the system. When it starts oscillating, divide 𝐾𝑖 by 2 and

stick to that value.

2.6.2. Position Controller

The goal of the position controller is to track a predefined trajectory or reach a fixed

coordinate in the inertial frame (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖). To do this, this PID-based controller is required to

transform the error signals into roll and pitch commands since translational movements are

directly coupled with rotational movements (equation (2.12)). For example, to reach a 2D

goal point located at [10,0] with fixed altitude and 0 degree heading angle (ψ = 0), the

quadcopter should produce pitching torque only but if the goal point is at [0,10] the

quadcopter should roll. This conversion function is held by “Euler Conversion” block which

transforms the desired 2D accelerations with respect to inertial frame into desired attitude.

From the linear model presented in equation ((2.12), the desired roll and pitch angles can be

calculated as:

𝜑𝑑 =
1

𝑔
[�̈�𝑑 sin(𝜓𝑑𝑒𝑠) − �̈�𝑑 cos(𝜓𝑑𝑒𝑠)]

𝜃𝑑 =
1

𝑔
[�̈�𝑑 cos(𝜓𝑑𝑒𝑠) + �̈�𝑑 sin(𝜓𝑑𝑒𝑠)]

(2.16)

With �̈�𝑑 and �̈�𝑑 are the (X-Y) PID position controller output and are given by:

𝑒𝑥 = 𝑥𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙

𝑒𝑦 = 𝑦𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙

(2.17)

 �̈�𝑑 = 𝑘𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑒𝑥 + 𝑘𝑖𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

∫𝑒𝑥 𝑑𝑡 + 𝑘𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
�̇�𝑥 (2.18)

42

�̈�𝑑 = 𝑘𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑒𝑦 + 𝑘𝑖𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

∫𝑒𝑦 𝑑𝑡 + 𝑘𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
�̇�𝑦

Similarly, the altitude controller needs to transform its desired vertical acceleration

from inertial frame to body frame (using rotation matrix in equation ((2.1) in order to

calculate the desired throttling input (𝑢1) in body frame. This is done using “Force

Conversion (I – B)” block. From equation (2.7), the desired throttle input can be calculated

as:

 𝑢1
𝑑 =

𝑚

cos(𝜑) cos (𝜃)
�̈�𝑑 (2.19)

With �̈�𝑑 being the output of altitude PID controller and is given by equation (2.20).

It is worth of mentioning that when the altitude error is 0, the controller should keep a bias of

1g force in order to maintain hovering. The position controller implemented in Simulink is

shown in Figure 2.9.

 �̈�𝑑 = 𝑘𝑝𝑒𝑧 + 𝐾𝑖 ∫𝑒𝑧 𝑑𝑡 + 𝐾𝑑�̇�𝑧 + 𝑔 (2.20)

Where, 𝑒𝑧 = 𝑧𝑑 − 𝑧𝑎𝑐𝑡𝑢𝑎𝑙 is the altitude error.

Figure 2.9. Position controller Simulink model

43

2.6.3. Obstacle Avoidance

For the safety of each quadcopter, an obstacle avoidance algorithm should be

implemented. This algorithm will directly affect the high-level commands of the position

controller (�̈�𝑑 , �̈�𝑑). Figure 2.10 shows the position controller equipped with Obstacle

Avoidance (OA) algorithm which is based on APF repulsive forces.

Figure 2.10. Position controller with obstacle avoidance algorithm

These repulsive forces are generated in a way to keep each quadcopter away from

obstacles. Also, these forces are characterized by intense strength when the quadcopter is

near any obstacle and have decreasing influence when it is far from obstacles. There are

many forms of repulsive force equations, one possible repulsive force generated from an

obstacle “i” is as [37]:

 𝑈𝑟𝑒𝑝𝑖
(𝑞0) = {

1

2
𝑘𝑟𝑒𝑝 (

1

𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)

−
1

𝑑0
)

2

 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0) ≤ 𝑑0

0 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0) > 𝑑0

 (2.21)

With 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0) is the Euclidean distance between the UAV and obstacle “i”. 𝑘𝑟𝑒𝑝 is

a scaling factor used to scale the repulsive force intensity according to designer’s choice and

𝑑0 is a safe distance chosen by the designer, the repulsive force has no effect if the distance to

44

the obstacle is greater than this value. Figure 2.11 illustrates the effect of repulsion when a

quadcopter’s 2D position varies from (𝑥, 𝑦) = (−20: 100,−20: 100) and obstacle positions

of (20,20), (15,50) and (60,80). Repulsive forces can be simply by considering the

quadcopter as a ball rolling in space. When this quadcopter reaches an obstacle, the slope of

the environment will prevent the ball from approaching the obstacle. It can be seen clearly

that when a quadcopter approaches an obstacle, the repulsive force goes very intense, while it

has completely no effect when the quadcopter is far away.

Figure 2.11. Repulsive field

Hence, the gradient of this repulsive field will attract the quadcopter towards the

obstacle. So, to repel the quadcopter from obstacle, it is crucial to apply the negative gradient

upon the robot. The negative gradient of this repulsive field, 𝐹𝑟𝑒𝑝𝑖
(𝑞0) = −∇𝑈𝑟𝑒𝑝𝑖

(𝑞0), is

given by:

 𝐹𝑟𝑒𝑝𝑖
(𝑞0) = {

𝑘𝑟𝑒𝑝 (
1

𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)

−
1

𝑑0
)

1

𝑑𝑜𝑏𝑠𝑡𝑖
2 (𝑞0)

�̂�𝑖 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0) ≤ 𝑑0

0 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0) > 𝑑0

 (2.22)

45

Where, �̂�𝑖 =
𝜕𝑑𝑜𝑏𝑠𝑡𝑖

(𝑞0)

𝜕(𝑞0)
 is said to be a unit vector to indicate the direction of the

repulsive force. This repulsive force vector can be considered as an external force acting on

the quadcopter, thus it can be considered proportional to the acceleration of the quadcopter in

its body frame, the desired acceleration in the inertial frame can then be calculated as:

�̈�𝑑
𝑅𝑒𝑝 = 𝐹𝑟𝑒𝑝𝑥

sin(𝜓𝑑) − 𝐹𝑟𝑒𝑝𝑦
cos (𝜓𝑑)

�̈�𝑑
𝑅𝑒𝑝 = 𝐹𝑟𝑒𝑝𝑥

cos(𝜓𝑑) + 𝐹𝑟𝑒𝑝𝑦
sin (𝜓𝑑)

(2.23)

And therefore, the total acceleration acting on the quadcopter is (see Figure 2.10):

�̈�𝑑 = �̈�𝑑
𝑃𝐼𝐷 + �̈�𝑑

𝑅𝑒𝑝

�̈�𝑑 = �̈�𝑑
𝑃𝐼𝐷 + �̈�𝑑

𝑅𝑒𝑝

(2.24)

 From equation (2.24), it can be seen that the position PID controller is acting as an

attractive force guiding the quadcopter towards the goal position, and the APF repulsive

forces guide the quadcopter away from obstacles. The total desired acceleration determines

the required roll and pitch angles.

2.6.4. Attitude Controller

Attitude controller is responsible to track the desired (𝜑𝑑, 𝜃𝑑 , 𝜓𝑑) generated from

the position controller in order to achieve the desired translation in space (inertial frame).

Since the attitude or rotational system is responsible for all translational and rotational

movements, its stability is crucial to ensure the whole system’s stability. From equation

((2.13), and from their Laplace transform, it can be seen that all 3 angular acceleration linear

dynamics are marginally stable with 2 poles at the (0,0) of the s-plane.

𝜑(𝑠)

𝑈2(𝑠)
=

1

𝑠2𝐼𝑥𝑥
 (2.25)

46

𝜃(𝑠)

𝑈2(𝑠)
=

1

𝑠2𝐼𝑦𝑦

𝜓(𝑠)

𝑈2(𝑠)
=

1

𝑠2𝐼𝑧𝑧

From equation (2.25), the root locus plot can be illustrated as Figure 2.12. Root

locus plot varies a proportional gain (K) from 0 to infinity and shows all probabilities of

closed-loop poles. However, using only a proportional gain will not stabilize these systems

because this type of controllers does not shift the location of poles. Instead, it is required to

use a derivative controller (D-controller) to increase the stability of the system by adding a

“zero” at the numerator of each system and a very small (I-controller) action to remove

steady state errors. For this project, tuning PID gains was done experimentally until achieving

non-oscillatory response with acceptable rise time.

Figure 2.12. Root locus plot for roll, pitch, and yaw systems

Similar to translational system, from equations (2.13) and (2.4), the desired rolling,

pitching and yawing torques in the body frame can be calculated as:

47

 [

𝑢2
𝑢3

𝑢4

] = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]𝑻𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

[

�̈�𝑑

�̈�𝑑

�̈�𝑑

] (2.26)

With the desired angular accelerations being the output of the attitude PID

controllers and are calculated using equations (2.27) and (2.28).

Figure 2.13 shows the attitude PID controller with “torque conversion” block

implemented in Simulink.

Figure 2.13. Attitude controller implemented in Simulink

𝑒𝜑 = 𝜑𝑑 − 𝜑𝑎𝑐𝑡𝑢𝑎𝑙

𝑒𝜃 = 𝜃𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙

𝑒𝜓 = 𝜓𝑑 − 𝜓𝑎𝑐𝑡𝑢𝑎𝑙

(2.27)

 [

�̈�𝑑

�̈�𝑑

�̈�𝑑

] = 𝑘𝑝𝑎𝑛𝑔𝑙𝑒
[

𝑒𝜑

𝑒𝜃

𝑒𝜓

] + 𝑘𝑖𝑎𝑛𝑔𝑙𝑒

[

 ∫ 𝑒𝜑𝑑𝑡

∫𝑒𝜃 𝑑𝑡

∫𝑒𝜓 𝑑𝑡
]

+ 𝑘𝑑𝑎𝑛𝑔𝑙𝑒
[

𝑒𝜑

𝑒�̇�

𝑒�̇�

̇

] (2.28)

48

The responses for roll, pitch and yaw systems subject to step input are shown in

Figure 2.14 and Figure 2.15. The tuned PID parameters were [𝑘𝑝𝑎𝑛𝑔𝑙𝑒
, 𝑘𝑖𝑎𝑛𝑔𝑙𝑒

, 𝑘𝑑𝑎𝑛𝑔𝑙𝑒
] =

[5.3, 0.8, 28]. It is clear that these systems are stable with rise time of approximately 0.05

seconds and 0% overshoot with very small and acceptable steady state error.

Figure 2.14. Roll and pitch response to step angle of 25 degrees

Figure 2.15. Yaw response to step angle of 90 degrees

2.6.5. Formation Controller

After designing independent controllers for each quadcopter, a formation algorithm,

which keeps the formation of the swarm in shape, is presented. From Figure 2.16, (𝜆𝑥 𝑜𝑟 Δ𝑥)

49

and (𝜆𝑦 𝑜𝑟 Δ𝑦) represent the x and y components of the desired separation distance 𝜆 in the

leader’s body frame and can be calculated as:

Δ𝑥 = −(𝑥𝐿 − 𝑥𝐹) cos(𝜓𝐿) − (𝑦𝐿 − 𝑦𝐹) sin(𝜓𝐿)

Δ𝑦 = (𝑥𝐿 − 𝑥𝐹) sin(𝜓𝐿) − (𝑦𝐿 − 𝑦𝐹) cos(𝜓𝐿)
(2.29)

Figure 2.16. Formation in 2D

Where (𝑥𝐿 , 𝑦𝐿) and (𝑥𝐹, 𝑦𝐹) represent the leader’s and followers’ position in inertial

frame respectively. From equation (2.29), the desired followers’ position in inertial frame can

be calculated as:

𝑥𝐹 = 𝑥𝐿 + Δ𝑥 cos(𝜓𝐿) − Δ𝑦 sin(𝜓𝐿)

𝑦𝐹 = 𝑦𝐿 + Δ𝑥 sin(𝜓𝐿) + Δ𝑦 cos(𝜓𝐿)
(2.30)

Figure 2.17. L-F formation control Simulink model

50

The simulation was set to 200 seconds. Position initial conditions are set to [0,0,0]

for leader quadcopter and [−5,0,0], [5,0,0] for followers 1 and 2 respectively. The trajectory

generator was set to produce the following setpoints:

 𝒓𝒅 = {

𝑥𝑑 = 0, 𝑦𝑑 = 0, 𝑧𝑑 = 10, 𝑖𝑓 𝑡 < 30
𝑥𝑑 = 40, 𝑦𝑑 = 0, 𝑧𝑑 = 10, 𝑖𝑓 30 < 𝑡 < 120
𝑥𝑑 = 80, 𝑦𝑑 = 80, 𝑧𝑑 = 10, 𝑖𝑓 𝑡 > 120

 (2.31)

 Since these quadcopters are responsible for flying over forest regions, the required

tracking speed is chosen to be low (≤ 5
𝑚

𝑠
). So, the best tuned PID position constants,

repulsive force constant, and distance of influence 𝑑0 for obstacle avoidance are found to be:

Table 2.2. PID position constants

Leader Followers

𝒌𝒑 𝒌𝒊 𝒌𝒅 𝒌𝒑 𝒌𝒊 𝒌𝒅

5 0 20 15 0 20

𝒌𝒓𝒆𝒑
20

𝒅𝟎
2 𝑚

This difference between leader’s and followers’ 𝑘𝑝 gains has been established by

trial and error. It is required that the followers follow the leader instantaneously when

leader’s position changes quickly from one point to another. For this reason, tracking speed

for followers should be at least 2 times the tracking speed of leader.

51

Figure 2.18. 3D and 2D path-tracking without obstacles

Figure 2.19. X and Y leader's position with respect to time

From Figure 2.19, it can be seen that the position tracking speed is approximately

4
𝑚

𝑠
 which is in the limit of the desired speed for this thesis. Other scenarios with an obstacle

located at (10,0,10), (10,5,10), and (10,−5,10), and a goal location at (30,0,10) are

presented in Figure 2.20.

52

Figure 2.20. 2D Position tracking with obstacle avoidance

As a result, it can be seen that every quadcopter in the team can avoid obstacles

interrupting its way. However, after multiple experiments, the repulsive forces generated

from APF did not act directly and resulting in an instantaneous crash. Thus, solving this

required to give the repulsive forces more weight than attractive ones using complementary

filter, and therefore equation (2.24) can be updated to:

�̈�𝑑 = 𝑐 �̈�𝑑
𝑃𝐼𝐷 + (1 − 𝑐) �̈�𝑑

𝑅𝑒𝑝

�̈�𝑑 = 𝑐 �̈�𝑑
𝑃𝐼𝐷 + (1 − 𝑐) �̈�𝑑

𝑅𝑒𝑝

(2.32)

Where c is scaling factor weighing one quantity over other. If 𝑐 < 0.5, repulsive

accelerations have more weight than attractive and it was tuned to 𝑐 = 0.3 in this thesis.

53

2.7. CONCLUSION

This chapter presented the modeling, simulation, and control of a quadcopter. A

PID-based attitude, altitude, and position controllers with APF repulsive forces as obstacle

avoidance controller were proposed. Then, a formation controller is used to coordinate

between a leader quadcopter and 2 followers. The simulation gave satisfactory results when

using L-F scheme, however, this method lacks independence (i.e., in case of leader’s failure,

followers will have no position setpoints). On the other hand, the obstacle avoidance

algorithm, APF repulsive forces, was able to guide the quadcopters away from obstacles

efficiently. However, a main drawback of APF repulsive fields is the necessity of obstacles

location pre-knowledge.

54

CHAPTER 3. PROJECT SPECIFICATIONS

3.1. INTRODUCTION

In This chapter, all quadcopters’ components used in this thesis and their

specifications will be presented. In addition, the functionality, role, and the reason of

choosing of each component will be presented. Additionally, for the part of fire detection,

hardware and software requirements will be demonstrated. Figure 3.1 illustrates the main

parts used in this project. The system components can be divided into 4 main parts:

quadcopter, vision, communication and central PC.

Figure 3.1. Project main parts

55

3.2. SYSTEM AND EQUIPMENT

The proposed swarm system is composed of three quadcopters: one leader and two

followers. The hardware equipment that used to achieve this swarm system is presented in

Table 3.1.

Table 3.1. Hardware equipment used in the system

Component Quantity

Quadcopter frame
3

Brushless DC motor
12

Propeller
12

Electronic Speed Controller
12

Flight controller with Inertial Measurement

Unit

3

Power Distribution Board
3

Battery
3

GPS sensor
2

Onboard computer
1

Onboard camera sensor
1

Gimbal
1

In this work, three different quadcopters will be selected to maintain a predefined

swarm shape during flight. The first quadcopter (the leader) is composed of MULTIWII

56

flight controller, Arduino Mega microcontroller, and sensors fixed on the frame. The first

follower quadcopter uses NAZA-M V2 as flight controller, in addition to a different type of

quadcopter frame. The second follower quadcopter is a Parrot AR Drone with 1280×720 HD

camera that supports live stream and image capturing. This quadcopter will be controlled by

MATLAB software on personal computer (PC).

3.3. MULTIWII FLIGHT CONTROLLER

The MULTIWII SE V2.0 flight controller, shown in Figure 3.2, is an open-source

circuit board developed by Oscar Liang in 2013. The flight controller aims to control the

RPM of motors of any multi-rotor aircraft, in response to inputs such as desired altitude, and

desired position. Moreover, these inputs will be transformed to 6 degrees of freedom needed

to control any quadrotor. MULTIWII is based on Arduino board and uses gyro /

accelerometer sensors to sense quantities relative to quadcopter body frame. Moreover, this

controller is totally open source and very flexible system. Table 3.2 presents the

specifications of MULTIWII SE V2.0. Moreover, this flight controller supports scalable

options with full programmability. The selection of MULTIWII was according to its ability to

tackle tasks assigned to it, and in accordance to market availability and low-cost benefits.

Figure 3.2. MULTIWII SE V2.0

57

Table 3.2. MULTIWII SE V2.0 features and specifications

Features/Specifications Description

Motor output Up to 8-axis

Servos output 2 for PITCH and ROLL gimbal system

Dimension 40x12x40mm

Weight 9.6g

Serial cables FTDI/UART TTL

Voltage regulator 3.3V and 5V LDO

Microcontroller ATMega 328P

MPU6050

Gyro Full Scale Range:

± 250 ± 500 ± 1000 ± 2000

Gyro Sensitivity:

131 / 65.5 / 32.8 / 16.4

Gyro Rate Noise:

0.005 / 0.005 / 0.005 / 0.005

Accel Full Scale Range:

±2 ±4 ±8 ±16

Accel Sensitivity:

16384 / 8192 / 4096 / 2048

HMC5883L

3-axis digital magnetometer

Full scale range: ± 8 gauss

Sensitivity: 230~ 1370 LSb/gauss

Cross-Axis Sensitivity: ± 0.2 %FS/gauss

BMP085 (barometric pressure sensor)
Pressure range: 300~1100 hPa

Absolute accuracy pressure: ± 2.5 hPa

Display
I2C LCD/OLED or CRIUS I2c-GPS

NAV board

The block diagram presented by Figure 3.3 shows how MULTIWII and Arduino

Mega communicate with each other. The autonomous tasks are handled by a high-level

controller (Arduino Mega) that is responsible for position and altitude control and

communicates with the low-level controller (MULTIWII) that is responsible for attitude

control. These two communicate with each other serially through Tx and Rx pins. Arduino

Mega takes data form MULTIWII like IMU and GPS data, etc. then, provides control

commands based on a given navigation algorithm in the form of PWM signals for

MULTIWII.

58

Figure 3.3. Data exchange between MULTIWII and Arduino mega

3.4. NAZA FLIGHT CONTROLLER

NAZA-M V2 shown in Figure 3.4 is a closed source powerful flight controller. This

flight controller is selected as a second flight controller according its market availability and

its specifications, shown in Table 3.3, that meets the tasks assigned to it. NAZA-M V2

receives the flight commands from a higher-level position controller presented by Arduino

Mega.

Figure 3.4. NAZA_M V2 flight controller

Table 3.3. NAZA-M V2 Specifications

Specifications Value

Weight 95g

59

Dimensions 45.5 × 32.5 × 18.5𝑚𝑚

Power Consumption
Max: 1.5W (0.3A@5V)

Normal: 0.6W (0.12A@5V)

Working Voltage Range

MC:4.8V~5.5V

VU input: 7.4V~16.0V

Output: 3A@5V

Max Yaw Angular Velocity 200 ◦/s

Max Tilt Angle 35◦

The block diagram presented in Figure 3.5 shows NAZA-M V2 receiving the

position commands from a higher-level position controller. The autonomous tasks are

handled by the high-level controller (Arduino Mega) that is responsible for position and

altitude control, and communicates via PWM signals with the low-level controller (NAZA-M

V2) that is responsible for the attitude control.

Figure 3.5. Data exchange between NAZA-M V2 and Arduino mega

3.5. PARROT AR DRONE

The AR Drone shown in Figure 3.6 is a quadcopter which combines numerous of

the new and advanced technologies in radio-controlled flight that receives position

information via WIFI. AR Drone can be controlled through MATLAB Simulink via

computer. MATLAB expresses the whole control system for AR Drone (high- and low-level

60

control systems), and through flight commands of MATLAB, AR Drone moves. AR Drone is

selected based on its specifications presented by Table 3.4 and its market availability.

Figure 3.6. Parrot AR Drone

 Table 3.4. AR Drone specifications

Specifications Value

Dimensions 23x23x5 inches

weight 4.62 pounds

Battery Lithium Metal Batteries

RAM 1024 MB

Wireless communication technologies WIFI

Camera 720 HD camera records video at 30 fps

Processor 32-bit ARM Cortex A8 1GHz

61

3.6. QUADCOPTER FRAMES

All components of the first quadcopter (using MULTIWII) will be fixed together on

a “Turnigy Heavy Aerial Lift” frame shown in Figure 3.7 (type A). On the other hand, all

components of the NAZA-M V2 controlled quadcopter will be fixed together on “DJI F450”

frame presented in Figure 3.7 (type B). These two frames are selected based on their

specifications, shown in Table 3.5, which are low prices, and market availability.

Figure 3.7. Quadcopter frames chosen for the project

Table 3.5. Turnigy Heavy Aerial Lift and DJI F450 Specifications

 Turnigy Heavy Aerial Lift DJI F450

Specifications Value

Weight 614 g 282 g

Width 585mm 450 mm

Stator Size 28 x 35 mm 23 x 12 mm

62

3.7. BRUSHLESS DC MOTORS

A Brushless DC motor (BLDC) transforms electrical energy into mechanical

rotational energy. The BLDC is a good choice for quadcopter applications because of its

efficiency that rises up to 90% and its long operational life. In addition, its large speed range

that vary according to the Pulse Width Modulation (PWM) signals that is also an appealing

feature.

The brushless motors selected, are the PROPDRIVE V2 2826 1200KV (type A) for

the leader and A2212/13T (type B) for the follower, shown in Figure 3.8. The motors

selection was based on their specifications presented by Table 3.6, market availability, and

low-cost benefits.

Figure 3.8. PROPDRIVEV2 and A2212/13T motors

Table 3.6. BLDC motors specifications

 PROPDRIVE V2 2826 A2212/13T

Specification Value

Model
PROPDRIVE v2 2826

1200kv
A2212 1400KV

KV (
𝑅𝑃𝑀

𝑉
) ratio 1200 KV 1000KV

Max current 15 A 20 A

ESC 20~30 A 20~30A

63

Cell Count 3s~4s Lipoly 2s~4s

Pole Count 12 14

Max Power
215W @12v (3S)

/286W@15v(4s)
220/3 W

Shaft 3.175mm 3.17 mm

Weight 59 g 62 g

3.8. PROPELLERS

The Propellers are used to convert the rotational speed generated by the BLDC into

a lift force. Propellers are chosen by their pitch angle that can describe the travel distance of

one propellers rotation, and their length that are the diameter of a circle the propellers makes

when it is spinning. The Propellers selected (shown in Figure 3.9Figure 3.9) have 10 inches

as length and 4.5 degrees as pitch angle, two CW rotation, and two CCW rotating propellers.

This selection is according to market availability and project needs.

Figure 3.9. 1045 Propellers

3.9. ELECTRONIC SPEED CONTROLLER (ESC)

The ESC is an electronic device used to control the speed of a BLDC motor by

activating and disactivating the appropriate MOSFETS. The ESCs used in this thesis, shown

64

in Figure 3.10, are characterized by their maximum current rating (A) and their duty cycle

and frequency range. ECSs (type A) are used into the leader, and the others (type B) are used

into the first follower. ECSs should be selected upon the maximum current needed by motor

and other specifications mentioned in Table 3.7.

Figure 3.10. ECSs chosen for the project

Table 3.7. ESCs Specifications

 AFRO ESC 30A Ready To Fly 30A

Specifications Value

Current 30 A (continuous) ~25A (continuous)

Voltage Range 2s~4s (1s = 4.2V) 3s~4s

Frequency Up to 1 KHZ Up to 600 Hz

weight 26.5g 28g (with bullets)

3.10. BATTERY

Leader (used MULTIWII) and follower 1 (used NAZA-M) quadcopters are

connected to a DC power source presented by a Lithium Polymer (LiPo) “HRB 5000mAh

65

11.1v 50C” battery shown in Figure 3.11 (Type A). It can be calculated using the following

formula:

𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 (𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠) =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ) × 0.8

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 (𝐴)
× 60 (3.1)

Where the battery capacity is expressed in Ampere hours (Ah), 0.8 is the efficiency of

the LiPo battery (80%) and the total load consumption is expressed in Amperes (A) which

can be obtained by adding all current consumption of each component and is approximated to

be 60A. This total load cannot be checked during flight, however it is assumed to be constant.

For this project, a 5000 mAh LiPo battery was chosen. In the other hand. AR Drone is

connected to another type of battery, as shown in Figure 3.11 (Type B), called “Parrot AR

Drone 2.0 1500mAh High Density”. These batteries have many advantages such as quick

recharging, high efficiency, etc. that are selected referring to them, and to its specifications

presented in Table 3.8.

Figure 3.11. Batteries chosen for the project

66

Table 3.8. HRB and AR Drone battery specifications

 HRB 5000mAh 11.1v

50C

Parrot AR Drone 2.0

1500mAh

Specifications Value

Voltage 11.1V 11.1V

Capacity 5000 mAh 1500mAh

Weight 376g 100g

Battery Cell Type Lithium Polymer Lithium Polymer

Dimensions (𝐿 × 𝑊 × 𝐻) 155 × 48 × 24𝑚𝑚 104.1 × 68.5 × 25.4𝑚𝑚

Balancer Connector Type JST-XHR JST-XH

3.11. GPS SENSOR

The Global Positioning System (GPS), shown in Figure 3.12, is used to determine

the geographical location of the quadcopter. The GPS is a device that communicates with 30+

navigation satellites around the Earth. The satellites’ locations are known through the

continuous signals sent out of them. Then, GPS receives these signals and calculates its

distance from several GPS satellites. Hence, the GPS receiver can figure out its latitude and

longitude positions. The GPS selected is the Ublox Neo 6m based on market availability and

its specifications are shown in Table 3.9.

Figure 3.12. Ublox Neo 6m GPS

67

Table 3.9. Ublox Neo 6m GPS specifications

Specification Value

Supply 2.7-3.6V

interface UART/USB/SPI/DDC(I2C compliant)

Navigation Up to 5 Hz

Accuracy
Position: 2.5 m CEP
SBAS: 2.0 m CEP

Tracking Sensitivity 161 dBm

3.12. POWER DISTRIBUTION BOARD

The Power distribution board or panelboard shown in Figure 3.13 (Type A), is used

in the leader to distribute the voltage over the 4 motors, plus, the whole system fixed on the

quadcopter. In the other hand, type B shown in Figure 3.13 is built-in power distribution

board in frame “DJI F450” that used for the follower 1. Power distribution boards (type A)

are selected based on their specifications presented in Table 3.10.

Figure 3.13. Power distribution board

Table 3.10. Power distribution board (type A) Specifications

Specifications Value

Current 4 × 20𝐴 (MAX)

Power input XT60 with 12AWG wire

68

Motor output 4 × 3.5𝑚𝑚 Female bullet plug

Aux output 2 pin JST compatible

Weight 27.3g (including wires)

3.13. ARDUINO MEGA 2560

The Arduino Mega 2560 is a development board based on ATmega2560

microcontroller. The main role of Arduino mega in this project is to tackle the high-level

control such as position and altitude control for the leader and follower 1. In the other hand,

AR Drone will be used as navigation controller.

3.14. GIMBAL

The camera gimbal is a device used to control the movement smoothly without

producing vibrations. It is mounted on the quadcopter to provide smooth video output from

the camera (vibration-free) and is driven by 3 brushless motors to stabilize the camera’s

position in 3 directions (roll, pitch and yaw). The selected gimbal is shown in Figure 3.14 and

has the specs listed in Table 3.11.

Figure 3.14. Gidy camera gimbal

69

Table 3.11. Gidy camera gimbal specs

Parameter Value

Pitch -90o to+30o

Roll 0o or 90o (horizontally and vertically)

Stabilization 3 axes (pitch, roll, yaw)

Weight 158.757 g

Now, going specifically to the fire detection implememtation requirements, it needs the

following devices to be implemented and completed.

3.15. VISION

The appropriate selection of vision system, or camera is very crucial for NN

application. There are several camera factors that will affect the performance of fire detection

algorithm which are frame rate, camera resolution, field of view, and ISO range. Fps drop

depends on the PC used, filters applied, and number of objects detected in a single frame. The

camera selected for this project is built-in with the gimbal device shown in Figure 3.14 and

its specs are listed in Table 3.12.

Table 3.12. Camera specs

Parameter
Value

Sensor
1/2.3’’ (CMOS), 12.35 MP

ISO range
Video: 100-3200

Photo: 100-1600

Image size
4K – 4000×3000

Video recording modes

C4K: 4096×2160 24p

4K: 3840×2160 24/25/30p

2.7K: 2720x1530 24/25/30p

FHD: 1920×1080 24/25/30/48/50/60/96p

70

HD: 1280×720 24/25/30/48/50/60/120p

3.16. COMMUNICATION

The communication system includes the video transmitting and receiving units. This

unit is responsible to transmit live video streams from quadcopter and receive them on the

central PC in order for these frames to be processed. These devices are chosen according to

their Radio Frequency (RF) bandwidth, power consumption, sending rate, and sending range.

For this project, it is desired to have a video-stream transmission within 1.5 to 2 km. Thus,

the selected communication system is shown in Figure 3.15 and its specs are listed in Table

3.13.

Figure 3.15. AKK video transmission system

Table 3.13. Communication system specs

Parameter Value

Sending range 2000 m and ≥3000 m in open areas

Number of channels 40 covering bands A, b, E, F, r

Operating voltage 7-16V

Power consumption 0.22/0.65A: non-transmitting/transmitting

@12V

Video format NTSC/PAL

Weight 85 g

71

3.17. CENTRAL PC

This is the most important component in this thesis. The central PC is responsible

for all fire detection process. It will receive raw images from the quadcopter flying over a

forest region, then it will process these incoming frames and detect fires using Artificial

Neural Networks (ANN). Fire detection was done on a central computer since ANN are

power-greedy and will noticeably reduce the flight time if calculated onboard. Choosing the

right PC for this application is a bit expensive.

3.17.1. Hardware Requirements

The chosen PC is based on CPU not GPU and all fire detection scripts will be run

by, which causes significant frames per second (fps) drop when detecting fires in frame. GPU

has very small fps drop when running fire detection scripts on, since it can handle more

graphical information than CPU but it is very expensive. However, CPU-based PC was

selected upon its availability, cheapness and is shown in Figure 3.16 with its specs listed in

Table 3.14.

Figure 3.16. HP laptop 15-da1xx

72

Table 3.14. HP laptop specs

Parameter Value

Processor Intel® core™ i5-8265U

Ram 8 GB

System type 64-bit Operating System (OS)

Windows 10

As mentioned before, the training will be held over “Google Collabs”, which is a

python development environment that runs in any browser, because it offers a GPU rather

than CPU which is way better to train a network over. Training a NN over a CPU would take

approximately 4-5 times more time than training it over a GPU, according to Buber et al.

[38]. “Google Collabs” uses the hardware specs listed in Table 3.15.

Table 3.15. Google Collabs hardware specs

Parameter
Value

GPU
Nividia k80/T4

GPU memory
12GB/16GB

GPU memory clock
0.82GHz/1.59GHz

Performance
4.1 TFlops/8.1 TFlops

Number of CPU cores
2

Available RAM
12GB (upgradeable to 26.75GB)

Disk space
358GB

3.17.2. Software Requirements

This section will show the necessary software applications to be installed on the

central laptop in order to setup and run all required files to detect fires in video frames. There

are mainly 2 required software applications that must be installed (all installation procedure is

shown in Appendix section).

73

3.17.2.1. Python

Python is a high-level and general-purpose programming language which is getting

more popular over time. It is widely used in Machine Learning (ML) applications because it

offers very easy and ready-to-use libraries. It includes a very famous computer vision library

(OpenCV) that provides a very large image processing functions. For this project, the

required libraries to run the fire detection code are: “OpenCV” and “Numpy”.

Figure 3.17. Python logo

3.17.2.2. LabelImg

LabelImg is an interactive image annotation tool written in python. It will be used to

label fire regions in the training data set (1000 images). LabelImg is one of many image

annotations tools but it is selected for its simplicity and “YOLOv3” network friendly. The

procedure of using this software application and setting up training set will be explained in

chapter 4.

Figure 3.18. LabelImg logo

74

3.18. CONCLUSION

As we mentioned before, the equipment used in our project is defined by three quadcopters, the

leader use MULTIWII and two followers which are AR drone and quadcopter that used NAZA-M. All

data, role, and specifications for the equipment was presented in this chapter. Additionally, all

hardware and software requirements to build an early fire detection system using NN were

shown. Python scripts for detecting fires will be handled by a CPU-based PC but training NN

will be held by a GPU-based hardware offered from “Google Collabs”.

75

CHAPTER 4. PROJECT DESIGN

4.1. INTRODUCTION

In this chapter, hardware implementation process of 3 quadcopters flying in formation having

different platforms will be presented. The implementation phase is divided into 3

subcategories; unit testing, integration testing and project validation. Unit testing focuses on

testing each individual component to ensure its functionality. Integration testing aims to

combine multiple platforms and test their functionality together. In addition, a Kalman Filter

(KF) will be implemented to better estimate position. Also, the procedure to train a neural

network using YoloV3 models to detect forest fires will be demonstrated. A brief

introduction for Neural Networks (NN) will be presented and the necessary parameters that

have to be tuned during training will be highlighted.

4.2. METHODOLOGY

In order to coordinate between 3 quadcopters (1 leader and 2 followers), the leader

is responsible for sending the high-level commands along with its position. These commands

are sent from a RC controller held by the operator and received by the leader which is valid

up to 2 Km of direct distance. Communication between the leader and the followers is

obtained by radio frequency modules (2.4 GHz). The high-level commands as states can be

summarized by the state diagram shown below.

 Taking off: All quadcopters will take off to approximately 2 meters above ground.

• Ascending/Descending: All quadcopters will ascend/descend to a specific altitude

determined by the leader.

76

• Position holding: All quadcopters will hold their current position.

• Navigating: Followers will follow the leader with a specified separation distance.

Figure 4.1. Autonomous State Diagram

4.3. NAZA CONTROLLER-BASED QUADCOPTER (LEADER)

The Naza controller, as mentioned earlier, is a standalone autopilot system

consisting of several features. The quadcopter which is equipped with the Naza controller is

configured as the leader. The leader is responsible for sending the high order commands (via

radio frequency module: nrf24) received from a ground operator via a remote control. To

access these signals from the RC operator, an Arduino uno is mounted over the Naza to

handle the high order commands; reading and decoding RC and GPS signals, sending the

leader’s position and commands to the followers and calculate the desired attitude in order for

the leader to follow the specified waypoints. Figure 4.2 shows the physical connections

between Arduino uno and Naza flight controller and Figure 4.3 illustrates the circuit diagram.

The Arduino will control the Naza via the TX inputs (as if it is the RC transmitter). Naza

flight controller has several features that can help during flight, and are summarized in the

below table [39].

77

Table 4.1. Naza Features

Feature Description Command

Automatic takeoff The drone will takeoff

and hold its altitude at

approximately 2.5

meters

Throttle stick at middle

position (> 1500 us).

Manual Mode This mode is for

acrobatics or racing

(not used in this

project)

Control mode switch at

upper position (1100 us)

Attitude Mode Will keep the drone

leveled when roll and

pitch sticks are at their

center position.

Control mode switch at

middle position (1500 us)

Attitude GPS Mode Will hold the

quadcopter in place.

Control mode switch at

lower position (1800 us)

Fortunately, Naza flight controller is easy to deal with. It is just required to know

when and where to give a certain command in order for the Naza to operate properly.

However, the complex part is configuring the Arduino to operate exactly as a remote-control

transmitter and decode Naza’s GPS/Magnetometer signals. The following subsections will

discuss the decoding processes in details.

78

Figure 4.2. Arduino-Naza Physical Connections

Figure 4.3. Arduino-Naza Circuit Diagram

79

4.3.1. RC Transmitter Signal Decoding

Traditional RC transmitters work with Pulse Width Modulation (PWM) signals. The

amount of on-time (T-ON) of the signal or the duty cycle determines the required action.

Generally, the refresh rate of a RC transmitter signal is 50 Hz which means 20 ms period

which is a standard communication signal between RC transmitters and flight controllers.

The duty cycle is varied between 1 and 2 ms which are the low-most and up-most commands

respectively. As mentioned before, the Arduino is responsible to read and decode these

signals from the transmitter which are 5 channels (throttling, rolling, pitching, yawing and the

auxiliary switch). Each channel of these has a varying duty cycle between 1000 and 2000 us

over a period of 20 ms and 5 V amplitude as shown below in Figure 4.4.

Figure 4.4. RC Transmitter Signal

The algorithm to read these signals must be to verify 5 digital pins as inputs and

continuously check if one of these inputs has changed its state (1 to 0 or 0 to1) then calculate

the time between these transitions. Fortunately, Arduino has Pin-Change Interrupt (PCINT)

feature over three groups of pins (in this project, PCINT group 1 is used: Pins A0 till A5)

which automatically stimulates an interrupt subroutine if one of these inputs has changed its

80

state. By doing this, the loop time of the code would take a much fewer time (several

microseconds) than continuously checking input pins (hundreds of milliseconds). The below

flowchart (Figure 4.5) describes how PCINT group 1 behaves if one of its inputs is changed.

Figure 4.5. PCINT Subroutine

The subroutine, when called, will save the current time in microseconds and start

checking the pins one by one (pins A0 till A4 refer to channel 1 till 5) to verify which pin has

changed its state. RC1:5 refer to the final measured time in us of the desired 5 channels which

will be used later to decide what commands to send and execute. The Arduino will write the

desired PWM signal in us to the RC receiver pins of the Naza. The code is attached in the

appendix and for further information about PCINT, the reader is directed to [40].

4.3.2. Naza GPS/Compass Decoding

In order for executing autonomous tasks, it is a must to know the current location of

the quadcopter. Most GPS devices in the market use the NMEA protocol when sending

81

position and time information [41] over normal serial communication bus. Naza GPS uses

CAN bus communication to transmit data over a serial bus. Figure 4.6 shows the Naza GPS

pinout diagram where only one serial pin is taken (TX pin) to receive its data.

Figure 4.6. Naza GPS Pinout

When connecting the GPS’s TX pin to Arduino’s RX pin, the following message is

shown using 115200 baud-rate [42]:

 55 𝐴𝐴 𝑋𝑋 𝑌𝑌 < 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 > 𝑍𝑍 𝑍𝑍 (4.1)

Where, 𝑋𝑋 is the length of the message, 𝑌𝑌 is the message ID, 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 is the

message content, and 𝑍𝑍 𝑍𝑍 is the checksum. Where ID 10 contains GPS data like 3D

position, number of satellites, fix type, time, horizontal and vertical accuracy and are sent

every 250 ms. ID 20 contains raw compass data and are sent every 30 ms. And ID 30

contains module version numbers which is sent every 2 seconds. For the best accuracy, it is

required to have at least 4 satellites seeing the GPS and a 3D fix type.

4.4. MULTIWII CONTROLLER-BASED QUADCOPTER (FOLLOWER)

Multiwii is also a standalone flight controller but with more complex tuning

parameters than Naza flight controller. However, Multiwii is an open source and can be

82

adjusted. As mentioned before, Multiwii consists of 3-axis gyroscope, 3-axis accelerometer,

3-axis magnetometer, and an altimeter. It uses a complementary filter to calculate the attitude

variables (𝜑 𝑎𝑛𝑑 𝜃) and the heading angle relative to north pole 𝜓 is obtained from the

magnetometer corrected with angular rate measurements. In the same manner of Naza

controller, an Arduino mega is attached as a high-level controller responsible for receiving

attitude and position information from Multiwii, applying the swarm navigation algorithms,

and controlling the behavior of the quadcopter over the RC receiver pins. Figure 4.7 shows

the connections between Arduino mega and Multiwii flight controller. The Multiwii sends

attitude data at 100 Hz refresh rate and position was configured via CFG messages [43] to

send data at 10 Hz.

Figure 4.7. Arduino-Multiwii Circuit Diagram

83

Figure 4.8. Multiwii GUI

Figure 4.9. Multiwii-Arduino Physical Connections

84

The Arduino mega will receive the leader’s position and high order commands from

the leader (Naza-controlled quadcopter) via radio frequency modules (nrf24) and will operate

accordingly. The procedure discussed in section 2.6.1 was followed to tune attitude PID gains

in Multiwii GUI (Figure 4.8) and the best attitude parameters are summarized in the Table

4.2.

Table 4.2. Multiwii Attitude PID Tuned Gains

 𝑘𝑝 𝑘𝑖 𝑘𝑑

Roll 2.2 0.002 5

Pitch 2.2 0.001 5

Yaw 2.0 0.003 0

 Altitude and position control were a bit challenging due to the malfunctioning

altimeter and GPS commands in Multiwii respectively. Thus, a standalone altitude and

position controllers is to be redesigned using the high-level Arduino mega controller.

4.4.1. Altitude Control

To bypass the problem of the malfunctioning altimeter, an ultrasonic sensor was

used to obtain the altitude of the quadcopter. This sensor will work well only up to 4 meters.

The ultrasonic sensor transmits an ultrasound wave (via its trigger pin) at the speed of light

and receive it back (via its echo pin) when it hits an obstacle. The measured time between the

emitting and receiving is to be measured knowing the traveling speed of the wave then the

estimated distance can be calculated. Coding wise, when transmitting a signal from an

ultrasonic sensor, it is required to wait until the reflected wave is received. This will result in

high waiting time (up to 10 ms) which will affect the control negatively. To mitigate this, the

ultrasonic sensor was connected to an external interrupt pin on Arduino mega (Pin 2) which

will execute an interrupt subroutine if the echo pin has changed from low to high or from

high to low (same concept of PCINT). By doing this, there is no wasted time when waiting

85

for ultrasonic sensor received wave and data is requested from the ultrasonic sensor on 50 Hz.

Figure 4.10 illustrates the practical block diagram of an altitude control PID algorithm.

Figure 4.10. Altitude Control Block Diagram

The goal of this PID loop is to calculate the best value of U1 in order for the

quadcopter to reach its desired altitude.

4.4.1.1. Moving Average and Complimentary Filter

The feedback sensor (ultrasonic) is noisy and it is required to filter out its readings

to make more sense of the altitude measurements. Moving average and complimentary filter

are 2 types of digital filters that act as low-pass filters. The moving average, from its name,

takes n number of measurements, add them together, and divide them by n and it has the

following equation:

 𝑍𝑘 =
1

𝑛
(𝑍𝑘 + 𝑍𝑘−1) (4.2)

Where, 𝑍𝑘 is the altitude measurement at time k, 𝑍𝑘−1 is the altitude measurement at

time k-1, and n is the window size. The window size, n, determines the lag between the

86

measured and filtered data. The higher it is, the higher the lag is. The window size in this

project was selected 30 so that there is no big lag between filtered and measured data.

The complimentary filter is used as a second-step filtration algorithm for its

robustness. A complimentary filter takes a portion of a certain variable and add it to the

complement portion of another variable. It is mainly used to compensate a more accurate

measurement with noticeably high uncertainty with a less-accurate measurement but with

very low uncertainty. A major drawback of complimentary filter is its lag between filtered

and measured quantities. It has the following discrete domain equation:

 𝑍𝑘 = 𝛼. 𝑍𝑘 + (1 − 𝛼). 𝑍𝑘−1 (4.3)

 Where, 𝛼 is a weighing factor between 0 and 1.

 𝑍𝐶𝐹 = 𝛼. 𝑍𝐶𝐹 + (1 − 𝛼). 𝑍𝑀𝐴 (4.4)

Where, 𝑍𝐶𝐹 and 𝑍𝑀𝐴 are the altitude measured from complementary filter and

moving average respectively. Here, the complimentary filter is used in an iterative manner,

where its reading from the current time step will be the previous readings of the next time

step. Increasing 𝛼 means adding reliability to the history data of the complimentary filter and

decreasing reliability over moving average readings. For the best accuracy and lowest lag,𝛼

was chosen 0.8 (or 80%). Figure 4.11 below shows the raw altitude measurements (when

moving the quadcopter randomly up and down) taken from the ultrasonic sensor which have

integer data type, the moving average, and complimentary filter algorithms. It can be clearly

seen that the complimentary filter behaves very well with the smoothest form and lowest lag.

87

Figure 4.11. Altitude Measurement of the Multiwii-based Follower. Complimentary Filtering

in Green, Moving Average in Blue and the Raw Measuremnt From The Ultrasonic Sensor in

Red

4.4.1.2. Adaptive PID Controller

The adaptive PID control has the same structure of an ordinary PID controller but

with varying proportional gain. As explained before, the throttling input on the Multiwii

accepts PWM signal with duty cycle varying between 1000 and 2000 us with 1000 us being

no thrust at all and 2000 us being the maximum throttle. After some experiments, a 50 us-

change in the throttle input causes a noticeable motors’ thrust. So, an adaptive P controller

was implemented to scale the proportional gain proportionally to the error when far from the

setpoint and a constant value within a defined range of the setpoint. It is also noteworthy that

the adaptive PID controller block uses the improved version of D-controller where the

derivative of the state is fed into the equation and not the error. The adaptive PID block

receives the error signal between the desired and measured altitudes and also receives the

88

estimated vertical velocity and outputs the desired throttling PWM which will be added to the

base PWM (PWM at which the quadcopter is hovering). The adaptive controller implemented

has the following form:

𝑒𝑧 = 𝑍𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑍𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑍𝑝𝑖𝑑 = 𝑘𝑝(𝑒𝑧). 𝑒𝑧 + 𝑘𝑖 ∫𝑒𝑧 𝑑𝑡 − 𝑘𝑑 . �̇�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(4.5)

 Where, 𝑒𝑧 is the error signal, 𝑘𝑝, 𝑘𝑖 𝑎𝑛𝑑 𝑘𝑑 are the PID gains. The derivative term

𝑘𝑑 . �̇�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 acts as a damping system, if the speed increases (quadcopter is accelerating

up), this term increases negatively and slows down the vertical acceleration and vice versa. It

is also noticed that 𝑘𝑝 is as a function of the error signal. The 𝑘𝑝 was chosen in a way to

increase linearly with the error if the error is outside a certain range from the setpoint and has

the following form:

 𝑘𝑝(𝑒𝑧) = {

1.4 𝑖𝑓 |𝑒𝑧| < 10

1.4 +
|𝑒𝑧| − 10

20
 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (4.6)

Where, 1.4 is the base kp which was tuned by trial and error, and
|𝑒𝑧|−10

20
 is the

adaptive kp factor.

4.4.1.3. Battery Compensation

Another factor to take into consideration when designing an altitude hold controller

is the battery voltage. As the voltage goes down, motors’ thrust goes down too. Imagine the

quadcopter is required to maintain an altitude of 1.5 meters. If an error exists, the PID

calculates the required PWM which will be added to the hovering base throttle (scientifically

known as mg which is the weight of the quadcopter) in order to maintain the quadcopter at

the desired altitude. However, after a short period, an oscillatory behavior will definitely

89

appear no matter how good the PID is. This is caused by the voltage drop of the battery

which affects the hovering throttle and the urge to compensate for this drop is a must. The

used LiPo battery used has voltage of 12.6 volts when fully-charged and 11 volts when empty

while the Arduino mega’s analog pins can withstand maximum voltage up to 5 volts. So, a

simple voltage divider circuit was designed to minimize the voltage level. Figure 4.12 shows

the designed voltage divider network. The values of R1 and R2 was chosen by fixing R1 to

10 kOhms and selecting R2 via equation (4.7).

 𝑉𝑎𝑛𝑎𝑙𝑜𝑔 =
𝑅1

𝑅1 + 𝑅2
. 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 (4.7)

Figure 4.12. Voltage Divider Circuit

Where, 𝑉𝑎𝑛𝑎𝑙𝑜𝑔 is the input to Arduino’s analog pin. By substituting 5 V to 𝑉𝑎𝑛𝑎𝑙𝑜𝑔

and 12.6 V to 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦, one can compute the value of R2. But by doing this, there is no safe

margin considered to protect the analog pin. If the battery voltage gets a bit higher than 12.6

V, then the analog pin will read voltage higher than 5 V and gets damaged. So, 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 is

taken to be 21 V and R2 value is selected accordingly.

The second step was to determine experimentally the required amount of hovering

PWM for different battery voltages. Figure 4.13 below shows the required hovering throttle

(in blue) for different battery voltages from complete charge to complete discharge. When the

battery is full, the required hovering throttle was 1480 us while when fully discharged the

90

required hovering throttle goes up to 1520 us. The battery compensation was assumed to be a

linear function (Figure 4.13: red line) and has the form of equation (4.8). When the voltage

drops to 11 V, the compensation PWM goes up to 40 and is added to the base hovering

throttle of 1480 us.

 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑢𝑠 = (12.6 − 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦) . 25 (4.8)

Figure 4.13. Battery Compensation PWM and The Required Hovering PWM vs. Battery

Voltage

The final form of the throttling control input U1 is then realized to be:

 𝑈1 = 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝐵𝑎𝑠𝑒 + 𝑃𝐼𝐷𝑍 + 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑉𝑏𝑎𝑡𝑡 (4.9)

4.5. KALMAN FILTER

Kalman Filter (KF) is an optimal estimation algorithm which is intended to estimate

a state x at time k by using linear stochastic difference equation with the assumption of the

state x at time k is evolved from the previous state x-
 at k-1 and can be written as:

91

 𝒙𝒌 = 𝑨𝒙𝒌−𝟏 + 𝑩𝒖𝒌−𝟏 + 𝒘𝒌−𝟏 (4.10)

Where, 𝑨 is the state transition matrix (aka state evolution matrix), 𝑩 is the input

matrix relating the input to the state and 𝒘 is known as process noise and is considered

normally distributed with 0 mean and Q covariance. The state equation has always to be

coupled with a measurement model which clarifies the relation between the state and the

measured quantity. The measurement model, declared by the matrix z, can be written as:

 𝒛𝒌 = 𝑯𝒙𝒌 + 𝒗𝒌 (4.11)

Where, 𝑯 is a transformation matrix which transforms the state into measurement

domain, and 𝒗𝒌 is the measurement noise vector and is also considered Gaussian with 0 mean

and covariance R.

 Kalman filtering has many advantages in autonomous systems design. They can be

summarized as:

• It filters out noisy measurements and makes sensor data clean and more

understandable.

• It updates the state based on a system kinematic model so it can predict states without

directly measuring them by a sensor.

• It increases the refresh rate of some control-critical states (e.g., position).

The Kalman filter equations are divided into 2 groups; time update (aka predictor)

and measurement update (aka corrector). The time update equations are responsible for

projecting forward the current state and error covariance matrices to give a priori knowledge

over the states for the next step. This step answers the question of where should the system be

92

next? The measurement update is responsible to correct the prediction phase by a reliable

measurement from a sensor (e.g., a GPS). Kalman filter predictor equations can be written as:

�̂�𝒌+𝟏 = 𝑨�̂�𝒌 + 𝑩𝒖𝒌−𝟏

�̂�𝒌+𝟏 = 𝑨�̂�𝒌𝑨
𝑻 + 𝑸

(4.12)

Where, the hat symbol denotes that the variable is estimated and �̂�𝒌+𝟏 is the

estimated error covariance matrix. The corrector equations can be written as:

𝑲𝒌 = �̂�𝒌+𝟏𝑯
𝑻(𝑯�̂�𝒌+𝟏𝑯

𝑻 + 𝑹)
−𝟏

�̂�𝒌 = �̂�𝒌+𝟏 + 𝑲𝒌(𝒛𝒌 − 𝑯�̂�𝒌+𝟏)

𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯)�̂�𝒌+𝟏

(4.13)

Where, 𝑲𝒌 is the Kalman gain. It is well noticed that when the estimated error

covariance P is large, the Kalman gain becomes less and the updated state relies more on the

previous estimated state. The Kalman gain is optimally tuned by itself and will settle to a

constant value after a short period (or maybe more depending on the states’ and error

covariance’s initial values) of time since the error covariances (R and Q) are considered to be

constants.

4.6. POSITION CONTROLLER

Initially, it is necessary to understand the frame in which the quadcopter will fly in.

In chapter 2, 2 frames were presented (body-fixed and inertial frames) where the body-fixed

frame follows a North-East-Down (NED) (where North refers to positive x-axis, East to

positive y-axis and down to positive z-axis) configuration and is attached to each

quadcopter’s center of mass while the inertial frame also has a NED configuration but it is

fixed and tangent to the earth’s curvature as shown in Figure 4.14 with the z-axis pointing

towards the center of the earth.

93

Figure 4.14. ECEF and Inertial Frames

Quadcopters will navigate in the inertial frame, so it is necessary to transform

attitude actions from body to inertial frame. The GPS sends its position data in inertial frame

at slow refresh rates (up to 10 Hz). The latitude and longitude information received from GPS

are expressed in degrees as shown below in Figure 4.15.

Figure 4.15. Latitude and Longitude of Earth

To transform these coordinates into a local navigation frame, it can be estimated that

each latitude (x-axis in local navigation frame) and longitude (y-axis in local navigation

94

frame) degree is equal to 111 Km. Another factor to take into consideration is the longitude

shrinking where it can be clearly seen from the image above that the distance between 2

consecutive longitude lines shrinks at the poles. The transformation from inertial frame to a

local navigation frame relative to a start position can be written as equation (4.14):

𝑥(𝑚) = (𝑙𝑎𝑡0 − 𝑙𝑎𝑡) × (
𝜋

180
) × (

𝑅𝑒𝑎𝑟𝑡ℎ

10000000
)

𝑦(𝑚) = (𝑙𝑜𝑛0 − 𝑙𝑜𝑛) × (
𝜋

180
) × (

𝑅𝑒𝑎𝑟𝑡ℎ × 𝑐𝑜𝑠𝐿𝑎𝑡0
10000000

)

(4.14)

Where, 𝑙𝑎𝑡0 and 𝑙𝑜𝑛0 are the initial latitude and longitude degrees or the coordinates

at where the quadcopter started, 𝑙𝑎𝑡 and 𝑙𝑜𝑛 are the current coordinates in degrees, 𝑅𝑒𝑎𝑟𝑡ℎ is

the radius of the earth and it is approximated to be 6378137 Km, and 𝑐𝑜𝑠𝐿𝑎𝑡0 is the longitude

shrinking factor which depends on the current latitude position. This shrinking factor is

required to be calculated only 1 time since quadcopters’ battery life do not allow them to

travel 1 latitude or longitude degree (or 111 km). To control the position of the quadcopters,

with translating the body-frame motion to inertial frame, an improved version of PD

controller is used which has the form of equation (4.15).

𝑥𝑒 = 𝑥𝑟𝑒𝑓 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙

𝑦𝑒 = 𝑦𝑟𝑒𝑓 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙

�̈�𝑑 = 𝑘𝑝. 𝑥𝑒 − 𝑘𝑑�̇�

�̈�𝑑 = 𝑘𝑝. 𝑦𝑒 − 𝑘𝑑�̇�

𝑟𝑜𝑙𝑙𝑎𝑑𝑗𝑢𝑠𝑡 = �̈�𝑑 cos(𝜓) − �̈�𝑑sin (𝜓)

𝑝𝑖𝑡𝑐ℎ𝑎𝑑𝑗𝑢𝑠𝑡 = �̈�𝑑 cos(𝜓) + �̈�𝑑sin (𝜓)

(4.15)

And finally, the roll and pitch control inputs, respectively, can be written as:

95

𝑈2 = 𝑈2𝑏𝑎𝑠𝑒
+ 𝑟𝑜𝑙𝑙𝑎𝑑𝑗𝑢𝑠𝑡 + 𝑈2𝑚𝑎𝑛𝑢𝑎𝑙

𝑈3 = 𝑈3𝑏𝑎𝑠𝑒
+ 𝑝𝑖𝑡𝑐ℎ𝑎𝑑𝑗𝑢𝑠𝑡 + 𝑈3𝑚𝑎𝑛𝑢𝑎𝑙

(4.16)

4.7. CONVOLUTIONAL NEURAL NETWORKS

A Convolutional Neural Network (CNN), which is also known as Multi-Layer

Perception (MLP), is a class of deep neural networks for learning frame works. The first

known CNN was introduced by LeCun in 1990 and is called LeNet [44]. CNNs, unlike

feedforward Networks, are used for image recognition and classification. Image classification

based on CNNs can optimally and automatically learn to extract image features effectively.

Figure 4.16 illustrates the flow of CNN-based fire detection algorithms. The detection CNN

has region proposals, feature extraction, and image classification functions. The first step

consists of the CNN accepting an image as an input and outputs region-based proposals by 2

main layers; convolution and pooling. Then, it is the turn of region-based fire detection CNN

to decide whether there is fire or not in proposal regions through convolutional, pooling,

fully-connected layers.

Figure 4.16. Convolutional Neural Network architecture

96

The convolutional layer is the most essential part in any CNN. Ordinary Neural

Networks (NN) use connection weights, biases and weighted sums while convolutional layer

is equipped with image transform filters also known as convolutional kernel in order to

generate feature map of the original image. So, a convolutional layer is nothing but a set of

convolutional kernels. The kernel slides over the whole image and computes a new pixel by

some sort of weighted sum of the pixel which is floating over, in order to generate a full

feature map. Equation (4.17) shows the main calculation formula of the convolutional layer.

 𝑦 = ∑∑𝑤𝑖𝑗 . 𝑥𝑚+1,𝑛+𝑗 . +𝑏, (0 ≤ 𝑚 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁)

𝐼−1

𝑖=0

𝐽−1

𝑗=0

 (4.17)

Where x is the input image of size 𝑊 × 𝐻, w is defined as a convolutional kernel of

size 𝐽 × 𝐼, b is a bias value and y is the output of the feature maps. Practically speaking, w

and b values are determined optimally through training process. Pooling layer samples the

feature map acquired from the convolutional layer attempting to significantly reduce the

overfitting, the number of parameters, and the computation in a CNN. Lastly, the fully-

connected layer produces the final classification vector. It is connected to every single neuron

in the layer before it decides the existence of possible matching between combination of

features found and class labels.

4.8. YOLO V3

You Only Look Once Version 3 (YOLO V3) is an object detection network which is

used after a feature extraction network to detect classify images with fires and smoke created

by Joseph Redmon and Ali Farhadi in 2018 [45]. The feature extraction layer uses Darknet-

53 network. YOLO V3 refers the idea of residual network to improve the accuracy of object

detection. In addition, this network performs perfectly on detection speed for it uses a one -

97

stage strategy. Figure 4.17 shows the detailed architecture of YOLO V3 network. The feature

extraction network, or Darknet-53, generates a small-scale feature map which 32 times

smaller than the original sampled images. Typically, YOLO V3 network accepts input images

with dimensions of 416 ×416 so the size of the feature map extracted from the Darknet-53

becomes roughly 13 × 13. The goal of this small feature map is to detect large objects. Then,

YOLO V3 network generates a large-scale feature map by enlarging the small-scale feature

map got from the feature extraction network (Darknet-53) and concatenating with an earlier

layer-feature map.

The large-scale feature map includes information of previous layers and other

complex features from deeper layers which are used to detect small objects. Practically, there

are 3 scales of feature maps; 8, 12 and 32 time smaller from the original image.

Figure 4.17. Yolo v3 Architecture

In the above figure (Figure 4.17), N in ResN clarifies that there are N number of Res

units connected in series. Whereas, Concat refers to the concatenation operation which

expands the dimension of the feature maps. It noteworthy that concatenation process is

different than an ordinary addition operation, the normal addition does not change the

dimension of the feature maps. YOLO V3 uses a sigmoid activation function to predict and

98

detect multilabel classifications per one bounding box. The sigmoid function has the form as

in equation (4.18) and Figure 4.18.

 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (4.18)

The main advantage of sigmoid function is that it is a smooth version of an ordinary

step function. In other words, it has a derivative everywhere. This is very important in neural

networks since the fully-connected layer in a CNN computes the gradients through

backpropagation to update the weights.

Figure 4.18. Sigmoid Activation Function

So, a YOLO V3 network can be trained to detect multiple objects in on frame. For

this thesis, it was trained to detect fires and smoke in a single frame image.

4.9. TRAINING AND TESTING

Training the CNN-based algorithm requires a huge amount of data. Therefore, in

this thesis, 1200 fire and smoke images were collected from different internet sources for

training and 200 for testing. Using LabelImg image annotation tool, each image in the dataset

is annotated with a bounding box around fire and smoke. Figure 4.19 shows the training

99

images setup procedure. Around 4500 fires were annotated in these 1000 images and 3265

smokes.

Figure 4.19. LabelImg Annotation Tool

4.10. GIMBAL CONTROL

This part will deal with designing an appropriate control method to drive the gimbal,

holding the camera, towards the fire and smoke region. In other words, the camera mounted

on the quadcopter will always concentrate on the center of the fire and smoke. The gimbal is

driven by 2 servo motors; to control the yaw and the roll angles. Fortunately, a built-in

feedback control system is already built inside each servo motor, thus it is enough to feed

through the desired rotation angle to the servos. The control methodology is illustrated in

Figure 4.20, gimbal design is shown in Figure 4.21, and the circuit diagram in Figure 4.22. In

short, the central PC will detect the presence of fire in video frames received from the

quadcopter and create bounding boxes around all fires and smokes in the frame. The center of

each bounding box has 2D coordinates (x or w: width, y or h: height) in the image frame

expressed in Pixels (px).

100

Figure 4.20. Gimbal Control Strategy

If there are multiple bounding boxes in the frame, it is required to calculate a central

position between all these bounding boxes. Thus, center of interest 2D coordinates are

calculated by equation (4.19):

𝑤𝑐 =
1

𝑛
∑𝑤𝑖

𝑛

𝑖=1

ℎ𝑐 =
1

𝑛
∑ℎ𝑖

𝑛

𝑖=1

(4.19)

Where, 𝑤𝑖 and ℎ𝑖 are respectively the width and height of bounding box center i and

n is the number of bounding boxes in the frame. In a control system manner, and as

mentioned before, it is required to keep the camera focusing on the center of interest so this

variable is the setpoint of the system which will continuously be compare with the center

coordinates of the frame (wf and hf). The error signal undergoes a simple P-controller (gain

K) to scale it and finally a mapping function is used to convert Pixels (px) into the desired

101

servo angle deviations to be sent back to the gimbal controller (Arduino Uno) mounted on the

quadcopter. Servo deviations calculation, restrained between 0o and 180o in yawing and 0o

and 65o in rolling, are shown in equation (4.20).

∆𝜓 = 𝑚𝑎𝑝(𝐾 × (𝑤𝑐 − 𝑤𝑓), 0, 180)

∆𝜑 = 𝑚𝑎𝑝(𝐾 × (ℎ𝑐 − ℎ𝑓), 0, 65)

(4.20)

And on the Arduino side, the required yawing and rolling is calculated through

equation (4.21):

𝜓 = 𝜓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝜓

𝜑 = 𝜑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝜑

(4.21)

Figure 4.21. Gimbal Designed 3D and Physical Models

102

Figure 4.22. Servo Motor Control Circuit Connections

4.11. CONCLUSION

This chapter presented the hardware design of the leader and followers quadcopters. In

addition, it briefly discussed the Kalman filter and position control implementation. Also,

training a neural network model of a fire detection system via a feature extraction deep

network (Darknet-53) and image recognition (YOLO V3) models was explained. And, a P-

control-driven gimbal controller was designed

103

CHAPTER 5. NON-TECHNICAL ASPECTS

5.1. INTRODUCTION

In this chapter, all components of each quadcopter will be presented with their cost

in Local/Global markets in addition to the approved method of management in this work. The

last part will cover the ethical, social, and environmental effect on society, as well as the

sustainability will be covered.

5.2. ECONOMICAL/FINANCIAL

The thesis is composed of 3 quadcopters (Leader, follower 1, follower 2), as

mentioned before. Table 5.1 lists the chosen items for each quadcopter and their cost

according to Local/Global markets. On the other hand, Table 5.2 shows the Engineering staff

costs.

104

Table 5.1. Material Cost

item price/

piece

LEADER follower 1 follower2

Turnigy Heavy Aerial

Lift frame

$40.84 1 0 0

DJI F450 Frame $69.99 0 1 0

PROPDRIVE V2 2826

motor

$15.44 0 4 0

A2212/13T motor $8.86 4 0 0

Propeller $2.99 2 2 0

Ready To Fly 30A $10.00 0 4 0

AFRO ESC 30A $13.50 4 0 0

MULTIWII Flight

controller

$22.95 1 0 0

NAZA Flight

Controller

$209 0 1 0

PARROT AR Drone $180.00 0 0 1

Power Distribution

Board

$5.91 1 0 0

Parrot AR Drone 2.0

1500mAh

$21.98 0 0 1

HRB 5000mAh 11.1v

50C

$69.99 1 0 0

Ublox Neo 6m GPS $15.00 1 1 1

Ultrasonic Sensor

HC-SR04

$0.66 1 0 0 Costs all in

all

$1601.99

Arduino Mega 2560 $40.30 1 0 0 X 1.3(with

overhead)

$2082.587

Arduino Uno $33.24 0 0 1

FCONEGY 5500mAh $39.97 0 1 0

Tools $10.00 1 0 0

Camera with Gimbal $609.00 1 0 0

Total ($)

910.07 441.7 250.22

https://hobbyking.com/en_us/turnigy-h-a-l-heavy-aerial-lift-quadcopter-frame-585mm.html?___store=en_us
https://www.amazon.com/Flame-Wheel-Basic-Quadcopter-Drone/dp/B00HNMVQHY
https://hobbyking.com/en_us/propdrive-v2-2826-1000kv-brushless-outrunner-motor.html?___store=en_us
https://www.aliexpress.com/item/4000601796488.html?spm=a2g0o.productlist.0.0.11a94b17LTUjiA&algo_pvid=db8265fd-aa43-4aad-a679-71901c5bc4c2&algo_expid=db8265fd-aa43-4aad-a679-71901c5bc4c2-7&btsid=0bb0623116142583856635636e5847&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_
https://www.readytoflyquads.com/f-30a-fire-red-normal-esc-with-rapidesc-fw-for-multirotor
https://www.ebay.com/c/1031470364
https://www.thanksbuyer.com/crius-mwc-multiwii-se-v2-0-standard-development-board-flight-control-module-for-mini-multicopter-46077
https://store.dji.com/product/naza-m-v2?from=buy_now
https://dronerush.com/product/parrot-ar-drone-2-0/
https://hobbyking.com/en_us/hobby-king-quadcopter-power-distribution-board.html
https://www.amazon.com/Parrot-Drone-1500mAh-Replacement-Battery/dp/B00JUAQKLY
https://www.amazon.com/HRB-5000mAh-50C-100C-Compatible-Brushless/dp/B088QX4BMN/ref=pd_lpo_21_img_2/146-7218414-3109527?_encoding=UTF8&pd_rd_i=B088QX4BMN&pd_rd_r=d737e870-4436-415f-971c-b4673dd1c840&pd_rd_w=vZjoh&pd_rd_wg=ZIBXD&pf_rd_p=16b28406-aa34-451d-8a2e-b3930ada000c&pf_rd_r=6B0NRFCN795NE2RV4Q9P&psc=1&refRID=6B0NRFCN795NE2RV4Q9P
https://makersportal.com/shop/neo-6m-gps-module
https://www.aliexpress.com/item/1005001621997017.html?spm=a2g0o.search0302.0.0.56821158XUGE84&algo_pvid=279f70ee-4c21-40a5-a122-4c765083bbf2&algo_expid=279f70ee-4c21-40a5-a122-4c765083bbf2-0&btsid=0b0a556a16150313877287645e40c3&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_
https://store.arduino.cc/usa/mega-2560-r3
https://www.amazon.com/stores/page/E111B456-C987-4951-A6EE-0F914AF1239E
https://www.ebay.com/itm/FCONEGY-5500mAh-11-1v-3-cell-40c-Lipo-Battery-RC-Racing-Pack-See-Details-/143860060831

105

Table 5.2. Engineering Staff Cost

Task
MM Qualification Salary/MM Total Salary

Assembling quadcopters
0.25 Eng. $1000 $250

Control system (Hardware

and Software development)

1 Eng. $1000 $1000

Testing quadcopters
0.5 Eng. $1000 $500

Integration quadcopters

process

0.5 Eng. $1000 $500

Swarm Quadcopter Testing
0.5 Eng. $1000 $500

Project Management
1 Eng. $1000 $1000

Programming (training)
5 Eng. $500 $2500

Testing
1 Eng. $500 $500

Total Man Power Costs
 $6750

5.3. PROJECT MANAGEMENT

The thesis is divided into 3 main phases: Gathering Data, Simulation, and

implementation. Thesis started by gathering data and literature surveys. This phase started in

July 27 until Aug 24, in other words, it took 20 days. After that, the simulation phase started

by modeling and designing the High/Low level control of quadcopters. The Simulation took

60 days, from Aug 24 to Nov 13. Finally, the implementation phase covers all hardware,

testing, and system validation processes. The period of this phase extended from Feb 28 to

Aug 24, in a total of 86 days. All phases and tasks are presented in Figure 5.1 below.

Figure 5.1. Thesis Gantt chart

106

Whereas the fire detection system is also divided into 3 main phases: Gathering

Data, Simulation, and Software. Thesis started by gathering data and literature surveys. This

phase started in July 27 until 16 Oct, in other words, it took 60 days. Then, the simulation

phase started by modeling and designing the High/Low level control of quadcopters. The

Simulation took 20 days, from Aug 24 to Sep 18. At the end, the Software phase covers

programming, Training, and testing processes. The period of this phase extended from Sep 18

to Jun 2, in a total of 184 days. All phases and tasks are presented in Figure 5.2.

Figure 5.2. Thesis Gantt Chart

5.4. ETHICAL AND SOCIAL

Ethics on definition are the moral values that guide the performance of an action or

administer a person’s behavior.

5.4.1. Quadcopter

All types of drones face different ethical issues that vary depending on the drone’s category

(Recreational, Civilian and Commercial, and Military) [46]. This thesis’ quadcopters are

categorized as civil and commercial aiming for fire foreign surveillance. The use of drones

107

for this aim raises ethical problems related to the collection of citizen’s data located inside or

nearby the forest. This issue leads to an invasion of privacy. This adds to the noise of the

operating drone problem. Also, having too many quadcopters used for surveillance purpose in

a limited space might be challenging.

5.4.2. Camera

Taking photographs or live stream via camera mounted on a drone for a diverse

purpose, may not have an ethical issue related to them. However, if a person accidentally

takes a picture of another person, it can be an invasion of privacy. Hence, photography can

only be evaluated based upon the action, intention, and the consequence of the actions

intended by the photographer [47].

5.4.3. Neural Networks

Due to the hidden and complex implementation of algorithm elements or the

intermediate layer of statistically trained ‘neurons’, there is a topic that proposes a cognitive

dilemma and brings related ethical issues for deep learning (neural networks) [48].

Otherwise, computer scientists and software engineer themselves are increasingly worried

about the lack of transparency of AI and deep learning [49]. This opacity of algorithmic black

boxes poses a direct and long-term challenge to lawmakers and policymakers. At the end, in

Thilo Hagendorf’s (2020) review of twenty-two recommendations on the ethical guidelines

of AI by governments and NGO’s, transparency (in general, AI systems) is second only to

privacy, fairness, and accountability. In other word, it is the fourth important theme of 22

themes [50].

108

5.5. ENVIRONMENTAL AND SUSTAINABILITY

Quadcopter is an environmentally friendly electric machine, that is widely used as

an alternative of polluting ones. For instance, a study conducted in 2018, compared ten

environmental impact categories (listed in Table 5.3) as well as the number of particulates

produced during 1 Kilometer of delivery between Drone (used as delivery), and motorcycle

(gasoline and electric motorcycle) in Korea [51]. The study showed that the traditional

motorcycle (gasoline motorcycle) had the highest Global Warming Potential (GWP) followed

by the electric motorcycle, while, drones had the lowest GWP. Therefore, electric

motorcycles produced more particulates than gasoline and drone, as shown in Figure 5.3

below:

Figure 5.3. GWP and particulates of 1 Kilometer delivery by electric motorcycle, gasolian

motorcylce, and drone. (a) GWP of 1 Km delivery; (b) PM2.5 of 1 Km delivery

Table 5.3. Environmental Impact of Selected Categories

 Impact Category Unit

ADP Abiotic Depletion Potential 1/year

AP Acidification Potential kg SO2-eq

EP Eutrophication Potential kg PO4
3−-eq

109

FAETP Freshwater Aquatic Ecotoxicity

Potential

kg 1,4 DCB-eq.

GWP Global Warming Potential kg CO2-eq.

HTP Human Toxicity Potential kg 1,4 DCB-eq.

MAETP Marine Aquatic Ecotoxicity Potential kg 1,4 DCB-eq.

ODP Ozone Depletion Potential kg CFC11-eq.

POCP Photochemical Oxidants Creation

Potential

kg ethylene-eq.

TETP Terrestrial Ecotoxicity Potential kg 1,4 DCB-eq.

PM2.5 Particulates Matter kg PM2.5-eq.

Finally, the results show that the environmental improvement effect would be higher

with the use of drones.

5.6. STANDARDS

5.6.1. Quadcopter Standards

According to Lebanese Regulations and Laws, there is no drone laws issued.

However, it does not mean that you can take flight wherever you like. In fact, it is possible

that legislators will oppose the use of drones in general. To avoid any problem or have the

drone taken away, contacting the Lebanese Directorate General of Civil Aviation (DGCA)

will be recommended. In the other hand, the U.S.’s Federal Aviation Administration’s has

some rules for drone usage. We list here some of them in Table 5.4 below:

Table 5.4. FAA’s Model Aircraft Rules

Nb. Rules

1
Avoid flying within five miles of an airport

2
Keep the drone within visual line-of-sight

3
Fly at or below 400 feet

110

Particularly, UAVs are regulated by several standards and laws around the world.

According to them, quadcopters are dispersed into classes, categories, and labels. One of the

most famous regulations are Eu’s number 2019/947 and 2019/945 standards from European

Union Aviation Agency (EASA) [52] [53]. According to them, quadcopters used in this

thesis are classified as “Open-A3”.

Plus, there are several developed UAVs standards (i.e., ISO 21384-1, ISO 21384-2,

ISO 21384-3, ISO 21384-4), and other incomplete so far (i.e., ISO/IEC AWI 22460-2,

ISO/IEC AWI 4005-1, etc.) [54].

5.6.2. Neural Networks Standards

In general, there are many standards that define and classify Artificial intelligence,

machine learning, deep learning, and Neural network. Some of them are approved and other

still under study. Table 5.5 lists some of IEEE Standards related to Neural Networks

(completed and incomplete) [55].

Table 5.5. IEEE Standards Related to Neural Networks

ID Title

IEEE 3333.1.1-2015 Standard for Operator Interfaces of Artificial Intelligence

IEEE 3333.1.2-2017
Standard for the Perceptual Quality Assessment of Three-

Dimensional (3D) and Ultra-High-Definition (UHD) Contents

4
Fly during daylight or civil twilight

5
Fly at or under 100 mph

6
Yield right of way to manned aircraft

7
Do not fly directly over people

8
Do not fly from a moving vehicle, unless in a sparsely populated area

https://standards.ieee.org/standard/3333_1_1-2015.html
https://standards.ieee.org/standard/3333_1_2-2017.html

111

P3333.1.3
Standard for the Deep Learning-Based Assessment of Visual

Experience Based on Human Factors

P3333.1.1

Standard for Quality of Experience (QoE) and Visual-Comfort

Assessments of Three-Dimensional (3D) Contents Based on

Psychophysical Studies

P2941.1 Standard for Operator Interfaces of Artificial Intelligence

5.7. CONCLUSION

As mentioned before, all components used in each quadcopter were presented with

their cost in local/global markets in addition to the approved method of management in this

work. Finally, the ethical, social, and environmental effects on society, and the sustainability

were presented in this chapter.

https://standards.ieee.org/project/3333_1_3.html
https://standards.ieee.org/project/3333_1_1.html
https://standards.ieee.org/project/2941_1.html

112

CHAPTER 6. RESULTS

6.1. INTRODUCTION

This chapter will present the results associated with hardware design. Multiple scenarios were done

to test and validate the efficiency of individual and swarm controllers. Also, the NN training and

testing results will be shown as well.

Training accuracy, training losses and training precision percentages will be plotted.

In addition, the servo motor-controlled angles will be plotted vs. fires and smoke

frames in a video stream.

6.2. KALMAN FILTER

The Kalman filter was able to significantly reduce the noise of the GPS readings

with also estimating the velocity of the quadcopter. The first test was done to figure out the

values of the process noise Q and measurement noise R. In fact, these variables are tuned via

trial and error with small reference to the GPS’s datasheet. Figure 6.1 below shows 2

scenarios, stationary and moving quadcopter. It can be seen that when the quadcopter is

stationary, the GPS has, in its best cases, a 3.5 meters deviation in the latitude direction and

approximately 2 meters deviation in the longitude direction. According to the GPS’s

datasheet, the standard deviation of the used module is 5 meters. Thus, the measurement

covariance is taken for 3.5 meters in both directions. The process noise was chosen in a way

that the estimated position follows the measured one quickly with the least noise. Increasing

Q increases the lag between the estimated and measured variables. This, Q was chosen 0.001

for latitude and longitude.

113

Figure 6.1. Kalman Filter Algorithm. Stationary Quadcopter (Left), a Small Quadcopter Tour

(Right)

Another test was done to validate the estimated speed. The quadcopter was put in a

car which is moving at known speeds between 0 and 40 Km/h or 0 to 11 m/s with several

accelerations and decelerations. Figure 6.2 below shows the estimated speed of the

quadcopter when it was moving at an average speed of 20 Km/h or 5.5 m/s.

Figure 6.2. Estimated Quadcopter Speed

6.3. NAZA-BASED QUADCOPTER

As mentioned before, the leader quadcopter is equipped with a Naza flight controller

and GPS/compass modules. The scenario here was to test if the leader quadcopter can

114

individually track a setpoint with adjusting its bearing. The setpoint was set, relative to its

first position, to (-18 m, -18 m) or approximately 25 m of direct distance. The leader was

able to adjust its heading and reach the desired waypoint in around 12 seconds. However, a

slight deviation from the desired goal position can be noticed and it can be neglected.

Figure 6.3. Calculated Heading (Left), Actual Path (Right)

6.4. AR-DRONE

The goal was to control the AR Drone using AR Drone Simulink Development-Kit

V1.1 (by David Escobar Sanabria) on MATLAB (version 2014). AR Drone has been able to

receive just two high-level commands (takeoff and land), in addition to waypoint tracking via

the serial monitor of Arduino UNO. But many problems have been encountered, such as

unexpected information loss and malfunctioned software (caused by limited capability of

available PC). The AR drone kit did not meet the need for video extraction to detect fire

through its camera. To solve this problem, Python is adopted instead of MATLAB. Via

Python, full control was achieved with accessing the AR Drone Camera, thus, real video

stream and image capturing. But the libraries do not support the extraction of sensors’ data

(e.g., accelerometer, magnetometer, etc.), thus, no full access to data for extraction. Finally,

115

to solve this problem, NodeJS was adopted instead of Python. Via NodeJS, full control and

data extraction were achieved. However, flying according to leader data was not achieved

yet. All this work has been done with ruined battery (maximum flight time does exceed 1

min).

To eliminate this issue, AR Drone was connected directly to a power supply with a

cable of 1.5 mm2 thickness and length of 10 m. But this method failed due to completely

unknown reasons, even if the length of the cable was decreased or the voltage was increased

to avoid the voltage drop and other consequences.

6.5. SWARMING

After a lot of unsuccessful trials to coordinate between the leader and the followers

because of hardware issues, the expected trajectory of the 2 followers was simulated and is

shown in Figure 6.4.

Figure 6.4. Quadcopter Swarm Following a Desired Setpoint

116

6.6. NEURAL NETWORKS

Training the Neural Network model to detect fires and smoke in a live video stream

was done by iterating 30000 times. Figure 6.5 shows the essential training parameters.

Training losses and average training losses should be as low as possible and if the average

training losses becomes less than 0.0607, the training can be stopped and best results are

acquired. The fire and smoke detection accuracy graphs shows that the detection accuracy

after approximately 1000 iterations becomes 20% and after 30000 iterations, it settles at

approximately 98% for fire and 95% for smoke. The precision percentage is the ratio of true

positive images (images containing fire and smoke) to the total number of positive

predictions. Intersection over Union (IoU) percentage is the accuracy of the detection

algorithm given a dataset. The F1-score is the model’s accuracy over a give dataset. It is a

combination between the precision percentage and recall percentage of the model. And

finally, the mean average precision percentage from its name, is the average of the training

precision percentage.

117

Figure 6.5. Training Losses (a), Detection Accuracy (b), Training Precision Percentage (c),

Average Intersection Over Union (d), F1 Score (e), and Mean Training Precision (f)

118

Figure 6.6. Detected Fires and Smokes in a Video Frame

6.7. GIMBAL

The gimbal is receiving its commands from python which calculates the desired

servo deviation angles based on the fires and smoke center coordinates. The gimbal’s center

position is at (roll = 30o, yaw = 30o). Table 6.1 below shows the desired rolling and yawing

gimbal angles calculated from the central x and y coordinates and Figure 6.7 shows the

gimbal desired angles received from python.

119

Table 6.1. Gimbal Roll and Yaw Data Associated to the frame coordinates

X Y Roll Yaw
0

42

50

47

42

23

54

61

53

49

39

48

50

50

47

61

51

33

70

60

61

48

38

32

53

42

38

50

0

47

50

52

32

50

46

59

70

37

45

54

62

50

52

59

74

43

35

47

50

40

48

47

70

43

44

39

30

32

32

30

42

42

45

38

24

33

36

33

24

24

22

15

70

75

85

87

87

94

95

97

80

85

89

96

30

44

44

49

63

111

103

83

77

79

99

102

102

102

107

87

13

43

7

-11

-30

-26

-4

28

22

36

57

57

120

62

45

49

53

96

94

35

44

Figure 6.7. Gimbal Input Controlled from PC

6.8. CONCLUSION

This chapter presented the hardware results of individual and swarming tests done. The leader

was expected to calculate its bearing and follow a predefined setpoint then the followers were

expected to follow it with keeping a safe distance between them. The training showed

satisfactory results in terms of fire and smoke detection with accuracy up to 98%.

121

CHAPTER 7. CONCLUSION

7.1. GENERAL CONCLUSION

This thesis presented the design and implementation of an autonomous swarm of 3

quadcopters. The first stage covered the simulation via Simulink of the quadcopters flying

with triangular shape and following a predefined path along with an offline obstacle

avoidance algorithm based on artificial potential fields. The second part covered the hardware

and software implementation of 3 system-different quadcopters where each has its own

functions. However, this project gave unsatisfactory results in terms of swarming but with

good enough individual controllers. Dealing with different systems was the main interrupting

factor that led to coordination errors. Hence, it was more feasible to fully deploy the system

on 1 drone only and then generalize it on 2 other drones. All the work done in this thesis can

be summed by:

• A successful coordination between the leader (Naza-based) and 1 follower

(MultiWii-based) quadcopters was done. The 2 drones were able to arm together and

receive high order commands such as takeoff or land. Hence, the first part

(communication between drones) to achieving a functional swarm of quadcopters is

done.

• A sudden ESC failure in the MultiWii-based follower occurred which prevented the

continuity of the cooperative control. Where, all the used parts in this project were

borrowed and any replacement part cannot be bought because of the economic crisis

in Lebanon.

122

• Sudden sensor failures occur in the MultiWii board and a calibration is needed every

2 consecutive power ONs. This can be because the MultiWii flight controller has

been settled unused for approximately 4 years which resulted in sensor malfunctions.

• The plan from the beginning was to use a ready-to-use flight controllers and focus

only on the swarming part. However, the position and altitude controller functions in

the MultiWii flight controller were malfunctioned which was a very time-consuming

to redesign a new altitude and position controllers.

• Besides the very good results obtained from Kalman filter when filtering GPS data

only, it was very difficult to increase the position refresh rate by fusing the

accelerometer measurements with GPS ones. This depends on the accelerometer

quality which was not that good at all.

For the fire detection system, the project implementation of a forest fire and smoke

detection system based on Darknet-53 and YOLO v3 object detection networks. A camera

was mounted on a quadcopter, which was not shown intact, that will transmit back a live

video stream of the target forest in order for the detection system to calculate the desired

gimbal deviations to maintain the video stream back at the middle of the fires and smoke.

Training the neural network model was held on Google Colab’s GPU while the detection was

performed on a CPU-based processor. The system was able to detect fires and smoke in a

video stream successfully. Through analyzing and validating the output results, it can be

concluded that:

• Running the fire and smoke detection system on a GPU is 7 times faster than

running it on a CPU. A significant fps drop resulted from running the system on

CPU.

• Training YOLO v3 models is much flexible compared to other types of models

such as RCNN, faster RCNN etc.

123

• Training the model on 5000 iterations gave significantly unsatisfactory detection

accuracy of 55% for smoke and 65% for fires. The model needed to be trained at

a minimum number of 11,000 iterations to exceed the 90% accuracy line.

7.2. FUTURE WORK

From the valuable experience gained from this project, a complete drone-based fire

detection system will be designed focusing only on 1 drone and by adding the work from the

fire detection algorithms using neural networks group. In addition, by providing accurate

drone position and heading in case of fire presence, it is possible to coordinate with a survey

engineering team unit to precisely locate the fire on a map and take the necessary actions.

And the fire detection system can be further developed in many ways. The propagation speed

of the fires can be estimated for extra monitoring information that can help locals to better

take decisions. In addition, the system can be trained to detect humans in video frames and

send special kind of alert to the stakeholders.

124

APPENDIX A.

A.1. PARAMETERS ESTIMATION

In this section, physical parameters estimation is handled.

A.1.1. Thrust and Drag Coefficients

Thrust and drag constants are calculated according to the propellers used. UIUC

university provides a datasheet for different types of propellers. In this work, GWS 1045

propellers are used (10 inches in length and 4.5 inches pitch).

𝑡ℎ𝑟𝑢𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑏 =
𝐶𝑇 × 𝜌𝑎𝑖𝑟 × 𝑅4

4𝜋2

𝑑𝑟𝑎𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑑 =
𝐶𝐻 × 𝜌𝑎𝑖𝑟 × 𝑅5

4𝜋2

With:

𝐶_𝑇: 𝑇ℎ𝑟𝑢𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.137

𝐶_𝐻: 𝐷𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.0092

𝜌𝑎𝑖𝑟: 𝐴𝑖𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1.135
𝑘𝑔

𝑚3

𝑅: 𝑅𝑜𝑡𝑜𝑟 𝑅𝑎𝑑𝑖𝑢𝑠 = 5 𝑖𝑛𝑐ℎ𝑒𝑠 = 0.127 𝑚

A.1.2. Drag Force

𝑘𝑓𝑥 = 𝑘𝑓𝑦 = 𝑘𝑓𝑧 =
1

2
𝐶𝐷𝜌𝑎𝑖𝑟𝑆

𝐶𝐷: 𝐷𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.63

𝑆: 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎, 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑜𝑟𝑡ℎ𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 0.006 𝑚2

125

A.1.3. Moment of Inertia

The quadcopter is assumed to be symmetrical. It can be seen as a main sphere with

its center coincides with the center of mass connected into 4 smaller spheres (motors) through

rectangle rods. The inertia around each axis can be calculated as:

𝐼𝑥𝑥 = 𝐼𝑦𝑦 =
2

5
× 𝑀 × 𝑅2 + 2 × 𝑚𝑚𝑜𝑡𝑜𝑟 × 𝑙2

𝐼𝑧𝑧 =
2

5
× 𝑀 × 𝑅2 + 4 × 𝑚𝑚𝑜𝑡𝑜𝑟 × 𝑙2

Where:

𝑅: 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑠𝑝ℎ𝑒𝑟𝑒 (𝑚)

𝑙: 𝑄𝑢𝑎𝑑𝑐𝑜𝑝𝑡𝑒𝑟 𝑎𝑟𝑚 𝑙𝑒𝑛𝑔𝑡ℎ

𝑀:𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑠𝑝ℎ𝑒𝑟𝑒 (𝑘𝑔)

𝑚𝑚𝑜𝑡𝑜𝑟:𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟𝑠 (𝑘𝑔)

126

REFERENCES

[1] Y.R. Tang, Y. Li, "Dynamic modeling for high-performance controller design of a UAV

quadrotor," IEEE Int. Conf. Informat. Automation , pp. 3112-3117, 2015.

[2] M. H. a. H. R. K. X. Huo, ", Attitude stabilization control of a quadrotor UAV by using

backstepping approach, Mathematical Problems in Engineering," , 2014, pp. 1-9..

[3] .. J. G. Leishman, " "Principles of Helicopter Aerodynamics with CD Extra,","

Cambridge University Press, London, , 2006.

[4] .. Wikipedia, "“Curtiss-Wright Vz-7,Wikipedia, The Free Encyclopedia,” 2012,,"

Available: http://en.wikipedia.org/wiki/Curtiss-Wright_VZ-7, Accessed on 01/10/2012.

[5] "Quadcopter Arena," 12 December 2018. [Online]. Available:

https://quadcopterarena.com/the-history-of-drones-and-quadcopters.

[6] A. T. a. S. McGilvray, ", Attitude stabilization of a VTOL quadrotor aircraft, IEEE Trans.

Control Syst. Technol. vol. 14, pp. 562-571,," 2006.

[7] K. F, "Survey of advances in guidance, navigation, and control of unmanned rotorcraft

systems," Field Robot , no. 29, pp. 78-315, 2012.

[8] Yun B, Chen BM, Kai YL and Tong HL, "Design and implementation of a leader-

follower cooperative control system for unmanned helicopters," Control Theory Appl,

vol. 8, pp. 8-61, 2010.

[9] Nathan PT, Almurib HA et al, " A review of autonomous multi-agent quadrotor control

techniques and applications," 4th Int. Conf. on Mechatronics (Kuala Lumpur), pp. 1-7,

2011.

[1

0]

Insurance Information Institute, "Facts + Statistics: Wildfires," 2020.

[1

1]

""Lebanon forest fires,"," 13 October 2019. . [Online]. Available: [Online]. Available:

Wikipedia: https://en.wikipedia.org/wiki/2019_Lebanon_forest_fires#cite_note-4..

[1

2]

"BBC," 15 October 2019. [Online]. Available: https://www.bbc.com/news/av/world-

middle-east-50063429.

[1

3]

A. NOLTE, "Swarming Behavior: Drone Swarms to Survey Unknown Environments,"

Northrop Grumman , Nov 9th 2020.

[1 "University of Michigan Engineering," 15 Nov 2019. [Online]. Available:

127

4] https://www.youtube.com/watch?v=XNF_Sddlgy4&ab_channel=UniversityofMichiganE

ngineering.

[1

5]

Lewis MA and Tan K-H, "High precision formation control of mobile robots using virtual

structure Autonomous Robot," vol. 4, pp. 387-403, 1997.

[1

6]

Balch T and Arkin RC, "Behavior-based formation control for multirobot teams," IEEE

Trans. Robot. Automa, vol. 14, 1998.

[1

7]

Roldão V, Cunha R, Cabecinhas D, Silvestre C and Oliveira P, "A leader-following

trajectory generator with application to quadrotor formation flight Robot," Auton. Syst,

2014.

[1

8]

P. K. C. Wang, "“Navigation strategies for multiple autonomous mobile robots moving in

formation,”," (1991) J.Robot.Syst...8,177-195,.

[1

9]

Weitz LA, Hurtado JE and Sinclair AJ, "Decentralized cooperative-control design for

multivehicle formations," Guidance, Control and Dynamics, p. 31, 2008.

[2

0]

O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots,"

International Journal Robotics Research, vol. 5, pp. 90-99, 1986.

[2

1]

I. F. I. f. P. P. a. I. Affairs, "FOREST FIRES IN LEBANON: A RECURRING

DISASTER," AUB, Beirut, 2019.

[2

2]

Nguyen Xuan-Mung and Sung Kyung Hong, "Robust adaptive formation control of

quadcopters based on a leader–follower approach," International Journal of Advanced

Robotic Systems, pp. 1 - 11, 2019.

[2

3]

Falin Wu , Jiemin Chen and Yuan Liang, "Leader-Follower Formation Control for

Quadrotors," in IOP Conf. Ser.: Mater. Sci., 2017.

[2

4]

Mu B, Zhang K, and Shi Y, "Integral sliding mode flight controller design for a quadrotor

and the application in a heterogeneous multi-agent system," IEEE Trans Ind Electron,

vol. 64, no. 2, p. 9389–9398, 2017.

[2

5]

Khaled AG and Youmin Z, "Formation control of multiple quadrotors based on leader-

follower method," in International conference on unmanned aircraft systems (ICUAS),

Denver, CO, 2015.

[2

6]

Mercado D A, Castro R, and Lozano R, "Quadrotors flight formation control using a

leader follower approach," in European control conference (ECC), Zurich, 2013.

[2

7]

Reagan L. Galvez, Gerard Ely U. Faelden, Jose Martin Z. Maningo, Reiichiro Christian

S. Nakano, Elmer P. Dadios, Argel A. Bandala, Ryan Rhay P. Vicerra and Arvin H.

Fernando, "Obstacle Avoidance Algorithm for Swarm of Quadrotor Unmanned Aerial

128

Vehicle Using Artificial Potential Fields," in IEEE Region 10 Conference (TENCON),

Malaysia, 2017.

[2

8]

Milad Nazarahari, Esmaeel Khanmirza, and Samira Doostie, "Mult-iobjective multi-robot

path planning in continuous environment using an enhanced genetic algorithm," Expert

Systems with Applications, vol. 115, pp. 106-120, 2019.

[2

9]

Derek J Bennet and Colin R McInnes, "Distributed control of multi-robot systems using

bifurcating potential fields," Robotics and Autonomous Systems , vol. 58, no. 3, pp. 256-

264, 2010.

[3

0]

A. Rodriguez, "Analysis and Design of Multivariable Feedback Control Systems," in

CONTROL3D, 2002.

[3

1]

Gonzalez-Sanchez, M., L. Amezquita-Brooks, E. Liceaga-Castro and P. d. C. Zambrano-

Robledo, "Simplifying quadrotor controllers by using simplified design models,"

Decision and Control (CDC) , pp. 4236-4241, 2013.

[3

2]

T. Bresciani, "Modelling, Identification and Control of a Quadrotor Helicopter,"

Department of Automatic Control Lund University, Lund, Sweeden, 2008.

[3

3]

A. Das, K. Subbarao and F. Lewis, "Dynamic inversion with zero-dynamics stabilisation

for quadrotor control," IET Control Theory and Applications, vol. 3, no. 3, p. 303– 314,

2009.

[3

4]

T. Dierks and S. Jagannathan, "Output Feedback Control of a Quadrotor UAV Using

Neural Networks," IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 50-66,

2010.

[3

5]

Z. Zuo, "Trajectory tracking control design with command-filtered compensation for a

quadrotor," IET Control Theory & Applications, vol. 4, no. 11, pp. 2343-2355, 2010.

[3

6]

A. Benallegue, A. Mokhtari and L. Fridman, "High‐order sliding‐mode observer for a

quadrotor UAV," International Journal of Robust and Nonlinear Control, vol. 18, no. 4-

5, pp. 427-440, 2008.

[3

7]

Sivaranjini Srikanthakumar, Cunjia Liu and Wen-Hua Chen, "Optimization-based Safety

Analysis of Obstacle Avoidance Systems for Unmanned Aerial Vehicles," Department of

Aeronautical and Automotive Engineering, Loughborough University, 2015.

[3

8]

E. BUBER and B. DIRI, "Performance Analysis and CPU vs GPU Comparison for Deep

Learning," in International Conference on Control Engineering & Information

Technology (CEIT), Istanbul, 2018.

[3 DJI, Naza-M V2 Quick Start Guide, DJI, 2015.

129

9]

[4

0]

K. Eyeone, "Arduino Project Hub," Arduino, 29 July 2019. [Online]. Available:

https://create.arduino.cc/projecthub/kelvineyeone/read-pwm-decode-rc-receiver-input-

and-apply-fail-safe-6b90eb.

[4

1]

E. Gakstatter, "What Exactly Is GPS NMEA Data?," GPS World, 4 February 2015.

[Online]. Available: https://www.gpsworld.com/what-exactly-is-gps-nmea-data/.

[4

2]

pawelsky, "DJI NAZA GPS communication protocol - NazaDecoder Arduino library,"

RC Groups, 11 September 2013. [Online]. Available:

https://www.rcgroups.com/forums/showthread.php?1995704-DJI-NAZA-GPS-

communication-protocol-NazaDecoder-Arduino-library.

[4

3]

U-Blox, u-blox 6 Receiver Description Including Protocol Specificaions, Zuercherstrasse:

U-Blox, 2018.

[4

4]

Y. LeCun et al, "Handwritten digit recognition with a back-propagationnetwork," inProc.

Adv. Neural Inf. Process. Syst., p. 396–404, 1990.

[4

5]

Synced, "Medium," Medium, 27 March 2018. [Online]. Available:

https://medium.com/syncedreview/the-yolov3-object-detection-network-is-fast-

fcceae0ab650.

[4

6]

D. M. Marshall, Introduction to Unmanned Aircraft Systems, Second ed., CRC Press,

Taylor and Francis Group, 2012, pp. 29-49.

[4

7]

"Photography ethicscenter," 25 April 2018. [Online]. Available:

https://www.photoethics.org/content/2018/5/31/photography-ethics-and-why-they-matter.

[4

8]

B. Long, "Blog of the APA," 13 August 2020. [Online]. Available:

https://blog.apaonline.org/2020/08/13/the-ethics-of-deep-learning-ai-and-the-epistemic-

opacity-dilemma/.

[4

9]

P. Voosen, "ScienceMag," 6 Jul 2017. [Online]. Available:

https://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-

box-deep-learning.

[5

0]

T. Hagendorff, "The Ethics of AI Ethics: An Evaluation of Guidelines," pp. 99-120, 28

july 2020.

[5

1]

Jiyoon Park, Solhee Kim, Kyo Suh, "A Comparative Analysis of the Environmental

Benefits of Drone-Based Delivery Services in Urban and Rural Areas," p. 7, 20 March

2018.

[5 E. U. A. Agency, "EASA," 13 jan 2021. [Online]. Available:

130

2] https://www.easa.europa.eu/document-library/easy-access-rules/easy-access-rules-

unmanned-aircraft-systems-regulation-eu.

[5

3]

"DRONERULES," july 2020. [Online]. Available:

https://dronerules.eu/en/recreational/eu_regulations_updates.

[5

4]

"ISO," [Online]. Available:

https://www.iso.org/search.html?q=drone&hPP=10&idx=all_en&p=0&hFR%5Bcategory

%5D%5B0%5D=standard.

[5

5]

I. SA, "IEEE STANDARDS ASSOCIATION," [Online]. Available:

https://standards.ieee.org/search-

results.html?q=neural+network&facetValue=4294967245.

