

AS-COMSAT Communication System

Author: Raja Murad

Last Update: 17.03.2022 11:21

III

CONTENT

Content ... III

1 The Plan .. 5

2 Setting Up the Experiment Requirements ... 6

2.1 Installing and Testing HackRf Packages .. 6

2.2 Installing GNUradio Companion .. 8

2.3 Installing GQRX ... 9

3 Experiments ... 11

3.1 Receiving/Transmitting Raw IQ Files ... 11

3.2 Receiving Basic FM Stations Through GNU Radio .. 12

3.3 FSK Transmission .. 15

3.4 QPSK Modulation Method ... 19

3.5 GFSK Modulation/Demodulation ... 21

3.6 Conclusion Up to 3.17.2022 .. 23

5

1 THE PLAN

This section is a complimentary part of the AS-COMSAT project. The aim of this section is to

establish a communication channel between the Cubesat satellite and a ground station. The station

shall transmit the control commands for the satellite as well as receiving different information from

it. The figure below shows the basic communication architecture between the Telemetry, Tracking,

and Control (TT&C) ground station and the satellite system. For primary prototyping and testing,

the communication frequencies in the figure below may vary and other frequencies might be used.

 The basic components of this architecture are the ground station controller (A regular

Laptop), a raspberry pi which is the onboard computer, and a second computer at the receiving end.

The communication devices are HackRf One which offers a state-of-art Software Defined Radio

(SDR) and GNUradio for rapid-implementing all digital signal processing.

6

2 SETTING UP THE EXPERIMENT REQUIREMENTS

To achieve the goal of this project, I used 2 computers that act as sending and receiving PCs

respectively. Each PC has Ubuntu OS which is much simpler and robust in such applications. In this

section, I will show the setup made and demonstrate the installation procedure of HackRf and

GNUradio modules on Ubuntu 20.04 LTS.

Figure 2-1. Experiment Setup. Computer A to the left and Computer B to the right

The setup, as shown in Figure 2-1 above, includes 2 PCs with the following specs:

- Computer A: HP Laptop equipped with Ubuntu 21.10 OS, 8 GB RAM, Intel Celeron CPU

N3060 @1.60 GHz x 2, and a 512 GB HDD.

- Computer B: HP Laptop equipped with Ubuntu 20.04 via Virtual Machine, 8 GB RAM,

Intel Core i5-6200U CPU @ 2.3 GHz 2.4 GHz, and a 200 GB HDD for the virtual machine.

The setup is used to boost the testing and make sure every device is working well before

mounting to the onboard computer. The reason why Ubuntu is chosen because it is much simpler

than windows to install already existing Debian packages by sudo commands through terminal

window.

2.1 INSTALLING AND TESTING HACKRF PACKAGES
Open a terminal window and insert the following commands.

1- Run the update command to update package repositories and get latest package

information.

sudo apt-get update -y

2- Run the install command with -y flag to quickly install the packages and dependencies.

sudo apt-get install -y hackrf

7

The HackRf now is installed. To check the hackrf available commands, open a terminal

window and type hackrf_ and press the “Tab” button twice to list all available commands as shown

below.

Figure 2-2. HackRf available commands

The important commands for this application are “hackrf_info” which can be executed to check

the information of the connected HackRf and “hackrf_transfer” which is used to send or receive IQ-

type or binary-type files. It has the following documentation:

Figure 2-3. Hackrf_transfer command documentation

8

2.2 INSTALLING GNURADIO COMPANION
The GNU Radio is an open-source development toolkit that provides signal processing blocks

to implement software radios. It can be used with plenty pf low to high-cost RF hardware to create

software-defined radios (SDRs, or without hardware in a simulation environment. Installing GNU

Radio is easy, just open a terminal window and type the following commands:

1- To access the current released version (3.10), we shall add the GNU Radio ppa and remove

all existing versions:

$ sudo add-apt-repository ppa:gnuradio/gnuradio-releases

2- Update the apt sources, and install gnuradio

$ sudo apt-get update
$ sudo apt install gnuradio

3- Install python module ‘packaging’ using pip which may also need to be installed:

$ sudo apt install python3-pip
$ pip install packaging

Once the GNU Radio is installed, open it either by clicking on its icon in the applications

menu or by typing “gnuradio-companion” in a terminal window. The GNU Radio will open a new

script as shown below.

Figure 2-4. GNU Radio main page

9

The GNU Radio’s new script has the following parts:

- A: The option block, it sets special parameters for the flow graph. Only one option block is

allowed per flow graph. The generate options controls the type of code generated. Non-

graphical flow graphs should avoid using graphical sinks or graphical variable controls. In

a graphical application, run can be controlled by a variable to start and stop the flowgraph

at runtime. The id of this block determines the name of the generated file and the name of

the class. For example, an id of my_block will generate the file my_block.py and class

my_block(gr...).

- B: The variable block, it maps a value to a unique variable. This variable block has no

graphical representation.

- C: Functions list, different function blocks can be selected from this menu by dragging the

desired block to the workspace.

- D: Output window, here, you can track the flowgraph’s status and used for debugging.

- E: The variables window, this window shows all the variables placed inside the workspace

in which you can track them easily and change their values.

-

2.3 INSTALLING GQRX
GQRX is a SDR receiver application. It supports many SDR hardware including HackRf. It

will be used to check the presence of signals in a selected frequency band. To install it, open a

terminal window and type the following commands:

1- Run update command to update package repositories and get latest package information

$ sudo apt-get update -y

2- Run the install command with -y flag to quickly install the packages and dependencies.

$ sudo apt-get install -y gqrx-sdr

Once it is installed, open a terminal window and type “gqrx” to open it. The software

will ask you to configure the hardware device as in the figure below:

10

Figure 2-5. GQRX Configuration menu

In the device tab, choose the HackRf device (make sure the device string tab updates with the

selected HackRf device). The input rate or in other words the sample rate must be chosen between

4 and 8 MHz to not heavily-load the CPU and good results can be achieved. In the Device tab, choose

the speaker hardware (built-in hardware) and press OK. If everything was configured well, the

following main menu will be displayed:

Figure 2-6. GQRX main menu

- A: The selected baseband frequency in MHz.

- B: Waterfall display of the frequency bandwidth. This is a good representation of where

are the strong signals in the frequency spectrum,

- C: Tuning knob. This can be used to change the baseband frequency.

- D: This menu here can change the frequency in different decimals quickly (10s, 100s, or

1000s of KHz).

- E: The output mode. If you are receiving a voice signal, choose WFM(stereo) option to

activate the internal amplifiers of your PC speakers.

11

- F: Change the receiving amplifier power.

- G: This button can be used to record the signal and save it in IQ or binary format.

- H: The button to the right can be used to edit the hardware configuration and the button

to the left starts receiving. Once everything is configured correctly, press the start button.

Once the start button is pressed, the GUI’s menu becomes:

Figure 2-7. GQRX receiving FM radio station at 100.7 MHz

As can be seen from Figure 2-7 above, the spectrum spans about 8 MHz and the central

frequency is tuned at 100.7 MHz. The amplitude of pulse represents the power of the channel in DB.

Using GQRX makes it easier to ensure the reception of a specific frequency.

3 EXPERIMENTS

This section handles all the experiments done (including failed and succeeded ones) in order

to achieve a well-functioning communication system between 2 HackRfs. The main aim of the

experiments is to be able to send a custom text from one source to a receiver.

3.1 RECEIVING/TRANSMITTING RAW IQ FILES
At first, I tried to receive raw IQ files through hackrf by using terminal commands. Figure 2-3

above shows the commands that can be used to transmit or receive available signals at the

determined frequency. I started the experiment by receiving click buttons from a Proton Persona

key which transmits data information with a carrier frequency of 433.92 MHz and then tried to re-

transmit them again to the other HackRf. I used the following terminal command to receive key

signal:

$ hackrf_transfer -r fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000

12

The command above will receive an “iq” file name “fileReceived” and save it in the current

repository. The center frequency is 433.92 MHz and I ensured that both the antenna and power

amplification are enabled. The hackRf’s sampling frequency was set to 8 MHz.

I tried pushing the key button 3 or 4 times to make sure it was clearly detected and saved. I

kept the receiving process running for 8 seconds. Then I tried to transmit the file using the first

hackRf that I received by entering the following command:

$ hackrf_transfer -t fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000 -x 47

The only difference is that I used the letter “t” for transmission instead of “r” for receiving and

I enabled the maximum transmission amplification of 47 db. On the other hackRf, I reused the

receiving command to store the data coming from the first hackRf:

$ hackrf_transfer -r fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000

And as expected, I received the exact same signal coming from car’s key at the second hackRf.

3.2 RECEIVING BASIC FM STATIONS THROUGH GNU RADIO
After making sure the HackRfs are operating correctly and can send/receive data, I made a

simple “hello world” SDR application that detects FM radio stations by using GNU Radio

Companion. The below figure shows the receiving flow graph.

Figure 3-1. Flow graph of receiving FM stations via GNU Radio

The flow graph has embedded python code for each block. There are mainly 2 sensitive

parameters that must be configured precisely in order for the flow graph to operate smoothly; the

receiving central frequency and the sample rate. The central frequency can be tuned until a FM

13

station is detected. However, sample rate should be treated differently. The output of the FM station

is sound, hence, a 48 KHz sampling frequency should be present at the output to drive the speakers

efficiently. But, the sampling rate of the HackRf (which is the input) should be something between

4 and 8 MHz. Thus, the sample rate must be narrowed down to match the speaker’s rate at the

output. The flow graph, with each block’s sample rate, works as follow:

1- Soapy HackRF Source: This block receives the signal detected by the hackRf’s antenna at

the specified center frequency and amplifies by a factor of “IF Gain” and “VGA Gain”

determined. The bandwidth could be specified so that it regulates for some frequency

errors. The sample rate of the HackRf was set to 4 MHz.

Figure 3-2. Soapy HackRF Configuration

2- Signal Source: this block is used to generate a cosine signal that is capable of shifting the

central frequency when multiplied with the received signal. The frequency of this block is

determined by how far is the center frequency from the selected (tuned) frequency. Hence,

it is selected as (center frequency – selected frequency). This block does not affect the

sample rate.

3- Low Pass Filter: From its name, a low pass filter allows the passage of frequencies below

its cutoff frequency and prevents the passage of frequencies above it. It is used to eliminate

the carrier frequency and keeps the original message. It affects the sample rate thus, a

decimation of 20 is set so the sample rate at the block’s output will be equal to the sample

rate of its input divided by 20 (4 MHz / 20 = 200 KHz).

4- Rational Resampler: This block affects the sample rate by multiplying the input’s rate by

the “interpolation” and divides it by “decimation” values. Thus, the sample rate at the output

of this block is (200 KHz x 12) / 5 = 480 KHz.

14

5- WBFM Receive: This block does the demodulation of FM radio stations. The sample rate

of the input to this block must be 480 KHz and its output sample rate is divided by the

“decimation” value. Thus, the output sample rate of this block is (480 KHz / 10 = 48 KHz).

6- Multiply Constant: This block multiplies the input’s magnitude by the value specified. It

is used to control the volume.

7- Audio Sink: This block outputs the input signal directly to the speakers.

8- QT GUI Sink: This is a GUI that shows the received signals in frequency and time domain.

The GUI page when running the above flow graph appears as the below figure. The

“Channel Frequency” and “audio_gain” are 2 variables set by the “QT GUI Range” block

where the min and max values of these variables can be adjusted by configuring the QT

GUI Range block.

Figure 3-3. QT GUI Sink

15

Figure 3-4. QT GUI Sink Waterfall Representation

3.3 FSK TRANSMISSION
In this experiment, I connected 2 HackRfs to a 1 computer in order to form a communication

loopback system where 1 hackrf transmits and the other receives on the same PC. The modulation

scheme I am trying to send my data over is the Frequency Shift Keying (FSK) which transforms the

digital message into a varying frequency (high frequency for 1 and low frequency for 0). It is one of

the most useful transmission techniques requiring low receiver complexity.

Binary FSK (BFSK) is the simplest form of FSK where the two bits 0 and 1 correspond to two

distinct carrier frequencies F0 and F1 to be sent over the air. The bits can be translated into symbols

through the relations:

0 → −1

1 → 1

So, the frequencies can be written as:

𝐹𝑖 = 𝐹𝑐 + (−1)𝑖+1 = 𝐹𝐶 ± ∆𝐹

Where Fc is the nominal carrier frequency and ∆𝐹 is the frequency deviation from this

carrier. Thus, the signal waveform can be written as:

s(t) = Acos(2πFit + ϕ) = Acos[2π(Fc ± ΔF)t + ϕ]

where 0 ≤ 𝑡 ≤ 𝑇𝑏 and ϕ is an arbitrary phase. The message signal is taken to be a random

stream of bits. Figure 3-5 below displays a BFSK waveform for a random stream of data at a rate

of Rb=1/Tb. Note that we are not distinguishing between a bit period and a symbol period because

both are the same for a binary modulation technique.

16

Figure 3-5. FSK Modulated Signal

 As can be seen, for a digital “1”, the frequency of the modulated signal goes higher and when

the message bit is “0”, the frequency goes lower.

 The very basic scheme of an FSK modulation can be generated using the flowgraph below.

An FSK signal is generated with a center frequency of 1.5 KHz and a frequency deviation of 500 Hz.

This result in 2 carrier frequencies, one at 1 KHz (for 0), and one at 2 KHz (for 1).

Figure 3-6. FSK Modulation Flowgraph

The above flowgraph works as follows:

▪ Multiply the bits, e.g., 0,1,1,0,0,1,…, with the higher frequency wave at 2 kHz that produces

a 2 kHz wave for 1 bits and a blank space of zeros for 0 bits.

▪ Multiply one minus the bits, e.g., 1- (0,1,1,0,0,1,…), with the lower frequency wave at 1 kHz

that produces a 1 kHz wave for 0 bits and a blank space of zeros for 1 bits.

▪ Add the two waves together thus generating a BFSK waveform.

17

For the receiving part, a commonly used technique in the gnuradio is the quadrature

demodulation block. The below flowgraph shows the receiver diagram.

Figure 3-7. FSK Demodulation Flowgraph

Such a structure can be used to demodulate several frequency modulation schemes such as

FM, FSK and GMSK. The input to the block is the complex baseband waveform. Within the block, a

product of the one-sample delayed input and the conjugate original signal is computed, the output

of which is a complex number.

A “Frequency Xlating FIR Filter” with a center frequency of 1.5 KHz is employed. According

to its documentation, this block performs a frequency translation on the signal, as well as down-

samples the signal by running a decimating FIR filter on it. This operation places the modulated

signal at baseband and hence the two possible frequencies are now located at ±500 Hz. This is shown

by two impulses at ±500 Hz below that is the output of the flowgraph described above.

Figure 3-8. The transmitted signal and the filtered one (after the FIR filter)

18

Figure 3-9. Main Message (Green) and the demodulated Message (Red) at the reception

The command firdes.low_pass(1.0, samp_rate, 900,300) uses a lowpass filter with unity gain,

a sample rate of 32 kHz, a cutoff frequency of 900 Hz and a transition bandwidth of 300 Hz.

According to GNU Radio documentation, the cutoff frequency is meant to be at the center of

transition band in firdes.low_pass function. This implies that the edge of passband lies at 900-

300/2=750 Hz, well beyond the impulse location of 500 Hz.

Simulating the FSK modulation gave satisfactory results. However, when coming to real

hardware, the blocks “Soapy HackRf sink” and “Soapy HackRf source” block have been enabled.

The received signal along with the filtered signal (after the Xlating FIR filter) are shown below.

Figure 3-10 Received Signal and filter signal

https://www.gnuradio.org/doc/doxygen/classgr_1_1filter_1_1firdes.html#a772eb5c542093d65518a6d721483aace

19

Here, the XIR filter center frequency, which will shift and filter the entire spectrum, is chosen

based on the frequency deviation between the receiver (hackRf transmission frequency which is

chosen 433 MHz) and the message center which is located 6.5 KHz away from the center. The filter

could almost perfectly filter out everything but the message but message distortions appeared as in

the figure below.

Figure 3-11. Main message and the received message in real hardware application

The XIR filter requires a bit more tuning. The sample frequency also plays a major role in

message formation. Increasing or decreasing the sample rate significantly will lead to message

formation errors. I found that for FSK modulation, 32 KHz sample rate up-sampled to 4 MHz (for

the hackrf) is the best choice.

3.4 QPSK MODULATION METHOD
Transmitter:

20

Figure 3-12. QPSK Transmitter Flowgraph

Receiver:

Figure 3-13. QPSK Receiver

This resulted in an error “Burst shaper skipped 112 samples”. So I tried another technique:

21

Figure 3-14. QPSK second trial transmitter flowgraph

Figure 3-15. QPSK second trial receiver flowgraph

3.5 GFSK MODULATION/DEMODULATION

GFSK stands for Gaussian Frequency Shift keying. It is an improved version of the typical

FSK. It improves the frequency response by narrowing down the bandwidth.

In this experiment, I tried GFSK modulation and demodulation of a text file including the

letter “H “. Letter “H” has a decimal representation of 72 and the space has a decimal

representation of 32. The text file automatically includes an “end line” terminator which has a

decimal representation of 10. Hence, I am expecting my output message to be in form of 72 32

32 32 32 32 10. The figures below show the transmitter side (upper side of the flowgraph) and

the receiver side (lower part of the flowgraph). It can be clearly seen that the message has been

successfully transmitted (blue is the message and red is the received message).

22

3-16. GFSK mod/demod. Top part: TX, low part: RX

3-17. Received Frequency Spectrum (centered at 2.4 GHz)

3-18. Source message in blue and received message in red

23

Although I received the message successfully however, there might be times where the

message gets corrupted and the transmitting power must be minimized then maximized in order to

get the correct shape of the message.

3.6 CONCLUSION UP TO 3.17.2022
I got good results using GFSK modulation and demodulation blocks. However, sometimes,

the transmitted signal gets corrupted at the receiving end. One possible reason is that the source

message and the received message has to be synchronize via a packet code which I will be working

on during the next days.

