

	[image: ]
	

	




	


AS-COMSAT Communication System






Author: Raja Murad








Last Update: 17.03.2022 11:21


Error! No text of specified style in document.


III
Content
Content	III
1	The Plan	5
2	Setting Up the Experiment Requirements	6
2.1	Installing and Testing HackRf Packages	6
2.2	Installing GNUradio Companion	8
2.3	Installing GQRX	9
3	Experiments	11
3.1	Receiving/Transmitting Raw IQ Files	11
3.2	Receiving Basic FM Stations Through GNU Radio	12
3.3	FSK Transmission	15
3.4	QPSK Modulation Method	19
3.5	GFSK Modulation/Demodulation	21
3.6	Conclusion Up to 3.17.2022	23



Error! No text of specified style in document.
Error! No text of specified style in document.

											
29

32

31
[bookmark: _Toc98408139]The Plan
This section is a complimentary part of the AS-COMSAT project. The aim of this section is to establish a communication channel between the Cubesat satellite and a ground station. The station shall transmit the control commands for the satellite as well as receiving different information from it. The figure below shows the basic communication architecture between the Telemetry, Tracking, and Control (TT&C) ground station and the satellite system. For primary prototyping and testing, the communication frequencies in the figure below may vary and other frequencies might be used.
[image: ]
	 The basic components of this architecture are the ground station controller (A regular Laptop), a raspberry pi which is the onboard computer, and a second computer at the receiving end. The communication devices are HackRf One which offers a state-of-art Software Defined Radio (SDR) and GNUradio for rapid-implementing all digital signal processing. 
[bookmark: _Toc98408140]Setting Up the Experiment Requirements 
To achieve the goal of this project, I used 2 computers that act as sending and receiving PCs respectively. Each PC has Ubuntu OS which is much simpler and robust in such applications. In this section, I will show the setup made and demonstrate the installation procedure of HackRf and GNUradio modules on Ubuntu 20.04 LTS. 
[image: ]
[bookmark: _Ref96589466]Figure ‎2‑1. Experiment Setup. Computer A to the left and Computer B to the right
The setup, as shown in Figure ‎2‑1 above, includes 2 PCs with the following specs:
· Computer A: HP Laptop equipped with Ubuntu 21.10 OS, 8 GB RAM, Intel Celeron CPU N3060 @1.60 GHz x 2, and a 512 GB HDD.
· Computer B: HP Laptop equipped with Ubuntu 20.04 via Virtual Machine, 8 GB RAM, Intel Core i5-6200U CPU @ 2.3 GHz  2.4 GHz, and a 200 GB HDD for the virtual machine.
The setup is used to boost the testing and make sure every device is working well before mounting to the onboard computer. The reason why Ubuntu is chosen because it is much simpler than windows to install already existing Debian packages by sudo commands through terminal window. 
[bookmark: _Toc98408141]Installing and Testing HackRf Packages
Open a terminal window and insert the following commands. 
1- Run the update command to update package repositories and get latest package information.
	[bookmark: _Hlk96590607]sudo apt-get update -y


2- Run the install command with -y flag to quickly install the packages and dependencies.
	[bookmark: _Hlk96593526]sudo apt-get install -y hackrf


The HackRf now is installed. To check the hackrf available commands, open a terminal window and type hackrf_ and press the “Tab” button twice to list all available commands as shown below.
[image: ]
Figure ‎2‑2. HackRf available commands
The important commands for this application are “hackrf_info” which can be executed to check the information of the connected HackRf and “hackrf_transfer” which is used to send or receive IQ-type or binary-type files. It has the following documentation:
[image: ]
[bookmark: _Ref96602358]Figure ‎2‑3. Hackrf_transfer command documentation
[bookmark: _Toc98408142]Installing GNUradio Companion
The GNU Radio is an open-source development toolkit that provides signal processing blocks to implement software radios. It can be used with plenty pf low to high-cost RF hardware to create software-defined radios (SDRs, or without hardware in a simulation environment. Installing GNU Radio is easy, just open a terminal window and type the following commands:
1- To access the current released version (3.10), we shall add the GNU Radio ppa and remove all existing versions:
$ sudo add-apt-repository ppa:gnuradio/gnuradio-releases
2- Update the apt sources, and install gnuradio
$ sudo apt-get update
$ sudo apt install gnuradio
3- Install python module ‘packaging’ using pip which may also need to be installed:
$ sudo apt install python3-pip
$ pip install packaging
Once the GNU Radio is installed, open it either by clicking on its icon in the applications menu or by typing “gnuradio-companion” in a terminal window. The GNU Radio will open a new script as shown below. 
[image: ]
Figure ‎2‑4. GNU Radio main page


The GNU Radio’s new script has the following parts:
· A: The option block, it sets special parameters for the flow graph. Only one option block is allowed per flow graph. The generate options controls the type of code generated. Non-graphical flow graphs should avoid using graphical sinks or graphical variable controls. In a graphical application, run can be controlled by a variable to start and stop the flowgraph at runtime. The id of this block determines the name of the generated file and the name of the class. For example, an id of my_block will generate the file my_block.py and class my_block(gr...).
· B: The variable block, it maps a value to a unique variable. This variable block has no graphical representation.
· C: Functions list, different function blocks can be selected from this menu by dragging the desired block to the workspace.
· D: Output window, here, you can track the flowgraph’s status and used for debugging.
· E: The variables window, this window shows all the variables placed inside the workspace in which you can track them easily and change their values.  
· 
[bookmark: _Toc98408143]Installing GQRX 
GQRX is a SDR receiver application. It supports many SDR hardware including HackRf. It will be used to check the presence of signals in a selected frequency band. To install it, open a terminal window and type the following commands:
1- Run update command to update package repositories and get latest package information
$ sudo apt-get update -y
2- Run the install command with -y flag to quickly install the packages and dependencies.
[bookmark: _Hlk96602746]$ sudo apt-get install -y gqrx-sdr

Once it is installed, open a terminal window and type “gqrx” to open it. The software will ask you to configure the hardware device as in the figure below:
[image: ]
Figure ‎2‑5. GQRX Configuration menu
In the device tab, choose the HackRf device (make sure the device string tab updates with the selected HackRf device). The input rate or in other words the sample rate must be chosen between 4 and 8 MHz to not heavily-load the CPU and good results can be achieved. In the Device tab, choose the speaker hardware (built-in hardware) and press OK. If everything was configured well, the following main menu will be displayed:
[image: ]
Figure ‎2‑6. GQRX main menu
· A: The selected baseband frequency in MHz. 
· B: Waterfall display of the frequency bandwidth. This is a good representation of where are the strong signals in the frequency spectrum, 
· C: Tuning knob. This can be used to change the baseband frequency.
· D: This menu here can change the frequency in different decimals quickly (10s, 100s, or 1000s of KHz). 
· E: The output mode. If you are receiving a voice signal, choose WFM(stereo) option to activate the internal amplifiers of your PC speakers. 
· F: Change the receiving amplifier power. 
· G: This button can be used to record the signal and save it in IQ or binary format. 
· H: The button to the right can be used to edit the hardware configuration and the button to the left starts receiving. Once everything is configured correctly, press the start button. 
Once the start button is pressed, the GUI’s menu becomes:
[image: ]
[bookmark: _Ref96600161]Figure ‎2‑7. GQRX receiving FM radio station at 100.7 MHz
As can be seen from Figure ‎2‑7 above, the spectrum spans about 8 MHz and the central frequency is tuned at 100.7 MHz. The amplitude of pulse represents the power of the channel in DB. Using GQRX makes it easier to ensure the reception of a specific frequency. 
[bookmark: _Toc98408144]Experiments
This section handles all the experiments done (including failed and succeeded ones) in order to achieve a well-functioning communication system between 2 HackRfs. The main aim of the experiments is to be able to send a custom text from one source to a receiver. 
[bookmark: _Toc98408145]Receiving/Transmitting Raw IQ Files
At first, I tried to receive raw IQ files through hackrf by using terminal commands. Figure ‎2‑3 above shows the commands that can be used to transmit or receive available signals at the determined frequency. I started the experiment by receiving click buttons from a Proton Persona key which transmits data information with a carrier frequency of 433.92 MHz and then tried to re-transmit them again to the other HackRf. I used the following terminal command to receive key signal:
$ hackrf_transfer -r fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000

The command above will receive an “iq” file name “fileReceived” and save it in the current repository. The center frequency is 433.92 MHz and I ensured that both the antenna and power amplification are enabled. The hackRf’s sampling frequency was set to 8 MHz. 
I tried pushing the key button 3 or 4 times to make sure it was clearly detected and saved. I kept the receiving process running for 8 seconds. Then I tried to transmit the file using the first hackRf that I received by entering the following command:
$ hackrf_transfer -t fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000 -x 47

The only difference is that I used the letter “t” for transmission instead of “r” for receiving and I enabled the maximum transmission amplification of 47 db. On the other hackRf, I reused the receiving command to store the data coming from the first hackRf:
$ hackrf_transfer -r fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000

And as expected, I received the exact same signal coming from car’s key at the second hackRf. 
[bookmark: _Toc98408146]Receiving Basic FM Stations Through GNU Radio
After making sure the HackRfs are operating correctly and can send/receive data, I made a simple “hello world” SDR application that detects FM radio stations by using GNU Radio Companion. The below figure shows the receiving flow graph. 
[image: ]
Figure ‎3‑1. Flow graph of receiving FM stations via GNU Radio
The flow graph has embedded python code for each block. There are mainly 2 sensitive parameters that must be configured precisely in order for the flow graph to operate smoothly; the receiving central frequency and the sample rate. The central frequency can be tuned until a FM station is detected. However, sample rate should be treated differently. The output of the FM station is sound, hence, a 48 KHz sampling frequency should be present at the output to drive the speakers efficiently. But, the sampling rate of the HackRf (which is the input) should be something between 4 and 8 MHz. Thus, the sample rate must be narrowed down to match the speaker’s rate at the output. The flow graph, with each block’s sample rate, works as follow:
1- Soapy HackRF Source: This block receives the signal detected by the hackRf’s antenna at the specified center frequency and amplifies by a factor of “IF Gain” and “VGA Gain” determined. The bandwidth could be specified so that it regulates for some frequency errors. The sample rate of the HackRf was set to 4 MHz. 
[image: ]
Figure ‎3‑2. Soapy HackRF Configuration
2- Signal Source: this block is used to generate a cosine signal that is capable of shifting the central frequency when multiplied with the received signal. The frequency of this block is determined by how far is the center frequency from the selected (tuned) frequency. Hence, it is selected as (center frequency – selected frequency). This block does not affect the sample rate. 
3- Low Pass Filter: From its name, a low pass filter allows the passage of frequencies below its cutoff frequency and prevents the passage of frequencies above it. It is used to eliminate the carrier frequency and keeps the original message. It affects the sample rate thus, a decimation of 20 is set so the sample rate at the block’s output will be equal to the sample rate of its input divided by 20 (4 MHz / 20 = 200 KHz). 
4- Rational Resampler: This block affects the sample rate by multiplying the input’s rate by the “interpolation” and divides it by “decimation” values. Thus, the sample rate at the output of this block is (200 KHz x 12) / 5 = 480 KHz.
5- WBFM Receive: This block does the demodulation of FM radio stations. The sample rate of the input to this block must be 480 KHz and its output sample rate is divided by the “decimation” value. Thus, the output sample rate of this block is (480 KHz / 10 = 48 KHz). 
6- Multiply Constant: This block multiplies the input’s magnitude by the value specified. It is used to control the volume. 
7- Audio Sink: This block outputs the input signal directly to the speakers. 
8- QT GUI Sink: This is a GUI that shows the received signals in frequency and time domain. The GUI page when running the above flow graph appears as the below figure. The “Channel Frequency” and “audio_gain” are 2 variables set by the “QT GUI Range” block where the min and max values of these variables can be adjusted by configuring the QT GUI Range block. 
[image: ]
Figure ‎3‑3. QT GUI Sink
[image: ]
Figure ‎3‑4. QT GUI Sink Waterfall Representation
[bookmark: _Toc98408147]FSK Transmission
In this experiment, I connected 2 HackRfs to a 1 computer in order to form a communication loopback system where 1 hackrf transmits and the other receives on the same PC. The modulation scheme I am trying to send my data over is the Frequency Shift Keying (FSK) which transforms the digital message into a varying frequency (high frequency for 1 and low frequency for 0). It is one of the most useful transmission techniques requiring low receiver complexity. 
Binary FSK (BFSK) is the simplest form of FSK where the two bits 0 and 1 correspond to two distinct carrier frequencies F0 and F1 to be sent over the air. The bits can be translated into symbols through the relations:


So, the frequencies can be written as:

Where Fc is the nominal carrier frequency and  is the frequency deviation from this carrier. Thus, the signal waveform can be written as:

where  and ϕ is an arbitrary phase. The message signal is taken to be a random stream of bits. Figure ‎3‑5 below displays a BFSK waveform for a random stream of data at a rate of Rb=1/Tb. Note that we are not distinguishing between a bit period and a symbol period because both are the same for a binary modulation technique.
[image: ]
[bookmark: _Ref97672206]Figure ‎3‑5. FSK Modulated Signal
	 As can be seen, for a digital “1”, the frequency of the modulated signal goes higher and when the message bit is “0”, the frequency goes lower. 
	The very basic scheme of an FSK modulation can be generated using the flowgraph below. An FSK signal is generated with a center frequency of 1.5 KHz and a frequency deviation of 500 Hz. This result in 2 carrier frequencies, one at 1 KHz (for 0), and one at 2 KHz (for 1). 
[image: ]
Figure ‎3‑6. FSK Modulation Flowgraph
The above flowgraph works as follows: 
· Multiply the bits, e.g., 0,1,1,0,0,1,…, with the higher frequency wave at 2 kHz that produces a 2 kHz wave for 1 bits and a blank space of zeros for 0 bits.
· Multiply one minus the bits, e.g., 1- (0,1,1,0,0,1,…), with the lower frequency wave at 1 kHz that produces a 1 kHz wave for 0 bits and a blank space of zeros for 1 bits.
· Add the two waves together thus generating a BFSK waveform.
For the receiving part, a commonly used technique in the gnuradio is the quadrature demodulation block. The below flowgraph shows the receiver diagram. 
[image: ]
Figure ‎3‑7. FSK Demodulation Flowgraph
Such a structure can be used to demodulate several frequency modulation schemes such as FM, FSK and GMSK. The input to the block is the complex baseband waveform. Within the block, a product of the one-sample delayed input and the conjugate original signal is computed, the output of which is a complex number.
A “Frequency Xlating FIR Filter” with a center frequency of 1.5 KHz is employed. According to its documentation, this block performs a frequency translation on the signal, as well as down-samples the signal by running a decimating FIR filter on it. This operation places the modulated signal at baseband and hence the two possible frequencies are now located at ±500 Hz. This is shown by two impulses at ±500 Hz below that is the output of the flowgraph described above.
[image: ]
Figure ‎3‑8. The transmitted signal and the filtered one (after the FIR filter)
[image: ]
Figure ‎3‑9. Main Message (Green) and the demodulated Message (Red) at the reception
The command firdes.low_pass(1.0, samp_rate, 900,300) uses a lowpass filter with unity gain, a sample rate of 32 kHz, a cutoff frequency of 900 Hz and a transition bandwidth of 300 Hz. According to GNU Radio documentation, the cutoff frequency is meant to be at the center of transition band in firdes.low_pass function. This implies that the edge of passband lies at 900-300/2=750 Hz, well beyond the impulse location of 500 Hz. 
Simulating the FSK modulation gave satisfactory results. However, when coming to real hardware, the blocks “Soapy HackRf sink” and “Soapy HackRf source” block have been enabled. The received signal along with the filtered signal (after the Xlating FIR filter) are shown below. 
[image: ]
Figure ‎3‑10 Received Signal and filter signal
Here, the XIR filter center frequency, which will shift and filter the entire spectrum, is chosen based on the frequency deviation between the receiver (hackRf transmission frequency which is chosen 433 MHz) and the message center which is located 6.5 KHz away from the center. The filter could almost perfectly filter out everything but the message but message distortions appeared as in the figure below.
[image: ]
Figure ‎3‑11. Main message and the received message in real hardware application
The XIR filter requires a bit more tuning. The sample frequency also plays a major role in message formation. Increasing or decreasing the sample rate significantly will lead to message formation errors. I found that for FSK modulation, 32 KHz sample rate up-sampled to 4 MHz (for the hackrf) is the best choice. 
[bookmark: _Toc98408148]QPSK Modulation Method
Transmitter:
[image: ]
Figure ‎3‑12. QPSK Transmitter Flowgraph
Receiver:
[image: ]
Figure ‎3‑13. QPSK Receiver
This resulted in an error “Burst shaper skipped 112 samples”. So I tried another technique:
[image: ]
Figure ‎3‑14. QPSK second trial transmitter flowgraph
[image: ]
Figure ‎3‑15. QPSK second trial receiver flowgraph
[bookmark: _Toc98408149]GFSK Modulation/Demodulation
GFSK stands for Gaussian Frequency Shift keying. It is an improved version of the typical FSK. It improves the frequency response by narrowing down the bandwidth.
In this experiment, I tried GFSK modulation and demodulation of a text file including the letter “H “. Letter “H” has a decimal representation of 72 and the space has a decimal representation of 32. The text file automatically includes an “end line” terminator which has a decimal representation of 10. Hence, I am expecting my output message to be in form of 72 32 32 32 32 32 10. The figures below show the transmitter side (upper side of the flowgraph) and the receiver side (lower part of the flowgraph). It can be clearly seen that the message has been successfully transmitted (blue is the message and red is the received message).
[image: ]
‎3‑16. GFSK mod/demod. Top part: TX, low part: RX
[image: ]
‎3‑17. Received Frequency Spectrum (centered at 2.4 GHz)
[image: ]
‎3‑18. Source message in blue and received message in red
Although I received the message successfully however, there might be times where the message gets corrupted and the transmitting power must be minimized then maximized in order to get the correct shape of the message.  
[bookmark: _Toc98408150]Conclusion Up to 3.17.2022
I got good results using GFSK modulation and demodulation blocks. However, sometimes, the transmitted signal gets corrupted at the receiving end. One possible reason is that the source message and the received message has to be synchronize via a packet code which I will be working on during the next days.    
image2.jpeg
Hardware in the loop (HIL) Test System

3 Hardware in the loop (HIL) Test System
3.1 System Design of HIL

2: HackRF tools (hackrf_transfer -r
..., hackrf_transfer -t ...

HackRF

Linux, Raspberry Pi

1: Gnuradio

HackRF
3: Gnuradio, RTL-SDR, Linux

Linux in VM / Windows, Laptop in VM / Windows, Laptop

Payload: Sending from 1 to 2 an AIS file on 161.975 MHz — Sending from 2 to 3 this file on 2.6 GHz

Telemetry, Tracking & Control (TT&C): Sending from 1 to 2 a control command file on 2.6 GHz,
sending from 2 to 1 a file with sensor information on 2.6 GHz

34




image3.jpeg




image4.png
=

rajage1@ubuntu:~$ hackrf_
hackrf_cpldjtag ~hackrf_info
hackrf_debug hackrf_:

rajagé1@ubuntu:~$ hackrf.

rajag61@ubuntu: ~

hackrf_sweep

flash hackrf_transfer




image5.png
m

raja961@ubuntu: ~ Q -

raja96iQubuntui~$ hackrf_transfer
specify one of: -t, -c, -r, -w

Usage:

-h # this help
[-d serial_nunber] # Serial number of desired HackRF.
-r <filename> # Receive data into file (use '-' for stdout).
-t <filename> # Transmit data from file (use '-' for stdin).
-w # Receive data into file with WAV header and automatic name.
# This is for SDR# compatibility and may not work with other software.
f freq_hz] # Frequency in Hz [6MHZ to 7250MHz].
1 if_freq_hz] # Intermediate Frequency (IF) in Hz [2150MHz to 2750MHz].
0 lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [84MHZ to 5460MHz].
n image_reject] # Image rejection filter selection, 0=bypass, i=low pass, 2=high pass.
a amp_enable] # RX/TX RF amplifier 1=Enable, @=Disable.
p antenna_enable] # Antenna port power, 1=Enable, @=Disable.
1 gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps
g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps
-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps
s sample_rate_hz] # Sample rate in Hz (4/8/10/12.5/16/20MHz, default 10MHz).
n nun_samples] # Nunber of samples to transfer (default is unlimited).
s buf_size] # Enable receive streaning with buffer size buf_size.
c amplitude] # CW signal source mode, amplitude ©-127 (DC value to DAC).
-R] # Repeat TX mode (default is off)
b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.
ssible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/16/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.
C ppm] # Set Internal crystal clock error in ppm.
H hw_sync_enable] # Synchronise USB transfer using GPIO pins.





image6.png
File Edit View Run Tools Help

Output Language
Generate Option:

Block paths:
Just/share/gnuradio/grc/blocks

Loading: "/home/raja961/HackRF/gr-morse-code-gen/MorseGen_xmt.grc"
>>>Done

Loading: "/home/raja961/HackRF/Receive HackRF/testingReceive.grc"
>>>Done

untitled - GNU Radio Companion

IC
Imports
~ Variables
samp_rate 32000

Q

CR

~ Core

»

Audio

Boolean Operators
Byte Operators
Channelizers
Channel Models
Coding

Control Port
Debug Tools
Deprecated

Digital Television
Equalizers

Error Coding

File Operators
Filters

Fourier Analysis
GUI Widgets
Impairment Models
Industrial /O
Instrumentation
1QBalance

1Q Correction
Level Controllers
Math Operators
Measurement Tools
Message Tools
Misc

Madulabare




image7.png
Configure /0 devices

1/Q input
Device | Other... -
Device string |hackrf=2a69c3
Input rate 8000000 -
Decimation |None -

Sample rate 8.000 Msps
Bandwidth | 0.000000 MHz

LNB LO | 0.000000 MHz i

Audio output

Device | ES1371/ES1373 / Creat

Sample rate |48 kHz -

©cancel





image8.png
View Help

-100

141

142

144.500.000

A
B

143 144

Ggrx 2.12 - hackrf=2a69¢3

100 80 60 40 20 0

145 146

147

148

Receiver Options
Hardware freq: 144.500000 MH;
Frequency|  144500.000 |3 kHz|
Filter width | User (10 k)
Filter shape | Normal

AGC | Medium

squelch | -150.0d8 2| A

Noise blanker | NB1 NB2

Inputc... | Receiver... | FFTS...

Audio





image9.png
Gqrx 2.12 - hackrf=2a69¢3 - 5 ®
Eile Tools yiew Help
mag !

= 8x

100.700.000

Receiver Options.

0.000 k4

Hardware freq 100.700000 MHz

Freauency [ 1007b0000 2|

S = S Filter width | User (10 k)

Filter shape | Normal
Mode | WFM (stereo)

98 99 100 01 102 103 104

AGC | Medium -

Squelch | -150.0d8 =/ A | R

Noise blanker | NB1 || NB2

Inputc...  Receiver ...

st

Audio

Mute | UDP

SCSPIR T e PO R
o i

R AT

s oot ot i i o el




image10.png
Options
Output Language: Python
Generate Options: QT GUI

Variable
1D: samp,_rate
Value: 4t

Variable
1D: center_freq

Value: 579

‘Soapy HackRF Source.

Device arguments: hackt=0
Variabte | 8 sampie Rates an

1D: chamnel width Center Frea (Ha): 579

Value: 200k

QT GUI Range

Offset:
QT GUI Range Initial Phase (Radians): 0

1D: channel fre

Label: Chanel Frequency.

s79m

Multiply

QT GUI sink

FFT Size: 1024
Center Frequency (Hz): 97.9M

ndwidth (Hz): 200k

Update Rate: 10

Low Pass Filter
Decimation: 20
Gain: 1

Sample Rate: 41 oy

Cutoff Freq: 75k
Transition Width: 25k
Window: Kaiser
Beta: 675

Rational Resampler
Interpolation: 12

Decimation: 5
Taps:
Fractional BW: 0

Audio Sink
‘Sample Rate: 48 kHz





image11.png
Properties: Soapy HackRF Source =

General  Advanced  RFOptions  Documentation

e
—
T

oK Ccancel Apply




image12.png
Channel Frequency

‘audio_gain' =

Frequency Display | Waterfall Display

Relative Gain (dB)
it

~100 -

120 J

Time Domain Display |~ Constellation Display

97900000

0.100

= Data0

97800.00

Max Hold

Min Hold

V| Display RF Frequencies

Window: | Blackman-harris

T
97850.00

T
97900.00

Frequency (kHz)

T 1
97950.00 98000.00

Average

0

FFT Size: | 1024




image13.png
ol

ol

Channel Frequency = 97900000
audio_gain' = |00
Frequency Display | Waterfall Display | Time Domain Display = Constellation Display |
-200 -150 -100 -50 [}
e D e |
o
g
=
E 1.00e+01
£
S
oo ‘ : ‘ ‘
Frequency (kHz)
-200 -150 -100 -50 [}
(aosae | S "

Display RF Frequencies





image14.png
Not titled yet

Modulated Signal Axes.
msignal 1 v| Autoscale
19 v Grid
V' Axis Labels
Yoffset: | + || -
05 -
YRange: | + || -

XMax: | + || -

Trigger

Amplitude
o
?

S

L

=

» Free =
% Positive =
05 Level: | + || -
o

£

Delay: | + || -

a4 Extras

Autoscale

5 15 20 25 [>start.
Time (ms)

Message =
Jef ‘ H H = Main Message Autoscale

® Modulated Message Grid
V' Axis Labels

HH o Yoffset: | + || -





image15.png
GNU Radio Companion ~ Mar8 22:56

*FSK_Fromscratch.grc - /home/rajag61/HackRF/FSK

File Edit View Run Tools Help

/ = Yo
°Ia'-'f'l.l!l BEE® o eerm DE &
QPSK_Mod @ x x FSK_FromScratch @ MorseCodeTX @
Options Variable Variable Variable | [ Variable | [ Variable Variable Variable
Author: 3j3961 Value: 32K Value: 500 Vaiue:aM | | Value: 16 | | Value: 15¢ | | value: 500 Value: 2
Output Language: Python
Generate Options: 0T GUI e
. Sample Rate: 3¢ QT GUI Frequency Sink
QT GUI Range g Name: TX Spectrum
1D: center frea tune foveror ] FFT Size: 1026
. Default Value: -15k e ) ey [ Center Frequency (Hz): 15k
Start: 20¢ s 1 Bandwidth (Ha): 1k
e Stop: 10k in
Step: 250 ks e (BSdSe1:D Rational Resampler
ing) Interpolation: 125
Soapy HackRF Sink
in Sample Rate: 4M
Random Source [529] canter Freq h: 16
Repeat Char To Float
o2 S crpotaton: o0 R <o ot a7 Gt Time stk
e Name: Hakitea Sal
s ] Number of Points: 1026k Frwr—
Constant Source ey d Sample Rate: 32k S
P E—s subtract[il—> -
i1 Muttipty |G
Signal Source i1
= Sample Rate: 32k
| Waveform: Cosine
Gma| Freauency: 1k out
Amplitude: 1
offset:0

Initial Phase (Radians): 0

QT GUI Frequency Sink QT GUI Frequency Sink





image16.png
COAPPYESG

GNU Radio Companion ¥

Edit View Run Tools

Help

R -Bx 0@

QPSK_Mod @

Virtual Source
Stream ID: tx_out

Soapy HackRF Source
Device arguments: hackrf=1
Sample Rate: 4

Center Freq (H2): 16

Mar 8 22:56

*FSK_Fromscratch.grc - /home/rajag61/HackRF/FSK

Sample Rate: 32k
Cosine.

Amplitude: 1
offse

Initial Phase (Radians): 0

e

FSK_FromScratch @ MorseCodeTX @

Multiply

QT GUI Frequency Sink
Name: Received

FFT Size: 1024

Center Frequency (Hz): 16
Bandwidth (Hz): 32k

QT GUI Frequency Sink
Name: filtered
FFT Size: 1024
Center Frequency (Hz): 0
Bandwidth (Hz): 32

Rational Resampler
Interpolation: 1
Decimation: 125
Taps:

Fractional BW: 0

Frequency Xiating FIR Filter
Decimation: 1

Taps: firdes low_pass(Lsa.
Center Frequency: 15k
Sample Rate: 32«

Quadrature Demod
Gain: 101859

B Binary Sticer |ii

ol

| uchar To Float [FI————ifl

QT GUI Time Sink
Name: Message.
Number of Points: 2
Sample Rate: 32«
Autoscale: No





image17.png
(dB)

Relative Gais

Relative Gain (dB)

3
8
I

&
5
I

g
I

8
I

8
I

140 7

Not titled yet

Filtered
= Data 0
m {\ m\w u
T T T T T T T
-15.00 -10.00 500 0.00 500 1000 15.00
Frequency (kHz)
Received
= Data 0
T T T T T T T
999985.00 999990.00 999995.00 1000000.00 1000005.00 100001000 1000015.00

Frequency (kHz)




image18.png
Amplitude

1(dB)

05 -

05

Not titled yet

Time (ms)
Message
T T T T T
10 20 30 a0 50
Time (ms)
Filtered

Axes
® Main Message Autoscale
® Modulated Message Grid
V' Axis Labels
YOffset: | +

Trigger
Free Y
Positive -
Level | +
Delay: | +
Extras
Autoscale
[>start

= Data0





image19.png
Relative Gain (dB)
¢

g
‘

-120 J

Relative Gain (dB)
g8 &8 & & B
[t

-120 o

1203

Filtered

m Data 0
[ M
-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00
Frequency (kHz)
Received
m Data 0
Message
Receiver 6.5 KHz Message
—
Center Center
4329;!5.00 4329;0.00 4329'95.00 4330(‘)0.00 ASBD‘OS.M 4330'1 10.00 4330; 5.00




image20.png
Amplitude

ad

05 -

°
I

05

Not titled yet

PR e v e v v e e e e v vy

0 10 15 20 25
Time (ms)
Message
T T T T T
0 10 20 30 a0 50
Time (ms)

Filtered

= Main Message

= Modulated Message

Extras
Autoscale

Wistop

Axes.
Autoscale
Grid

V' Axis Labels

Y Offset: | +

YRange: | +

XMax: | +
Trigger

Free

Positive

Level: | +

Delay: | +
Extras

Autoscale

[>start




image21.png
GNU Radio Companion ¥

File Edit View Run Tools

QPSK_Mod @

Mar

23:34

*QPSK_Mod.grc - /home/raja961/HackRF/PSK

Help

R-B-8x 08

FSK1 @

-9 nm

MorseCodeTX @

—— Variabie | [Varisote | [ Variabie Parametsr RRC Fiter Tops Variable
o o arceing | | 10:E8W 10:cotertea | [ 10y cort 102 RRC et 10: req ot valoe
Vabie: 350m Valon: 300 Labe:Consetaton Gam: 32 Value: 50
Values <gnaac GT2e410130> | Sample Rate (Hals 2
Generate Options: QT GUI Variable R carrier requency Symbonate iy 1 || Dl ieover varsmited
e Constetaton defmtin et | gy et
a Variable | [Variable Value: Import Paremeter At the recanver end, we will
1012 7| 02 2 mportiumpy [ | 102t forma e o dawnconvert 59731
Vaie: 10 || Vake: 4 samplente. Labl: HeadrFormatter oot ased cosine defniiof L0 e
etermines oW CostomEnbesed | vamicHextr ormster
Samples  Samplesper ol rarsmater and raceier pyhon Blockuses
Pl it i shoukdbe Brger e bty [rem——

than BW of signal tsel.

QT GUI Message Edit Box

Pair Made: Faize
Static Mode: Faz=

Tagged Stream Mux

PDU to Tagged Stream
Length tag name: len ey

Length tag names: en oy

Protocol Formatter

Format Obj: <gru. 20610
Langth Tag Name: en foy

Repac Bits

s perinput byte:
Bis per outputbyte: 1

Togged Stream Multiply Length Tag
Length tag names: n tzy
Length Scalar: 40

Fxlength ag o reflectthe resampling

Ganerate neader
Differential Encoder

Coding: Diferenial
Madul

Chunks to Symbels

SymbolTable: 1.1
Dimension: 1

Muttp

Constant: 500m Muttiply

Signal Source

Sample Rate: a1
(up convert

Inital Phase (Radians): O

[rosp——

Burst Shaper
Window Taps: numpyones(500)
Pre-padding Lengeh &
Post-pading Lengehe 1
Insert phasing symbols: Yes
Length Tag Name: en toy

Polyphase Arbitrary Resampler|
Resampling Rate: 40
Taps: RC_iter tas
Number of Fikers: 2

Stop band Attenuation: 100

Resample. Apply RRC fiker

Perform fraquency taniation




image22.png
GNU Radio Companion ~ Marg 23:34

*QPSK_Mod.grc - /home/raja961/HackRF/PSK

File Edit View Run Tools Help

R-B-8x 08 -9 nm

QPSK_Mod @ x FSK1 @ x MorseCodeTX @

Virtusl Source
Stream ID:T ot

i P Ration Resampler] Power Squelch FLL Band-Edge
== interpalation: ! Samples per Symbot ¢ R
ample Rate: Muttiply ] Decimation: 10 B Fiter oot Factor: 50
o : Prototype Fiter Size: 45 |GRSEH
G| Frequency:-30¢

Loop Bandwidth: 20m

= Perform requency transia - =
ofiset (down convert Dawnsany
Inial Phase (Radians): 0

Camerrequency sy

tocal ascilator Palyphase Clock Sync
SamplesiSymbo: 4

Loop Bandwidth: 31 i

Taps: RAC_iter taps

Fiker Siza: 32

IniialPhase: 16

Maximum Rate Devition: 15

Output Ps.

Feed Forward AGC
Num Samples: 512
Referenca: |

Costas Loop
Loop Bandwidth: 10m
Order: 2

Linear Equalizer
Num, Taps: 11
Input Samples per Symbol: 1

Timing 5o Fine carr frequency and phase sync

Correlate Accass Code -Tag Stream

Differential Decoder
Constalltion Soft Decoder ccass Code:

- Binary Sticer [Gl——JB Coding: Diferert Bt ACCS55 Code: 1010121111100 i) o—
Gonstellation Object: 530> caston: O

Decizon Tagged Streamto PDU block up ahead nesds

Comeiates with acce: packed bytes

cote to saracttne payioad,

Toased Stream o POU
F o cnc
et mame: e ey2 ‘bq e CROR e | pe——

rordtecton ] e

>

COAPPYESG

on Type: Variable Constelstion

PDU Vectors: On
SymbolMap: 0.1.3.2 adaptive Algorithm
orrt_pdl Constellation Poins: .11 1D:3lg
Rotational Symmetry: & Aigorthm Type: Lits
Display ecovered Dimensionaity: | StapSize: 1

o Normatzation Type: Ampitide





image23.png
GNU Radio Companion ~ Mar8g 23:37

*QPSK2.grc - /home/rajag61/HackRF/PSK

File Edit View Run Tools Help
R-FB -8 e erm G

QPSK_Mod @ QPSK2 @ FSK1 @ x MorseCodeTX @

o Protocol Formatter
a Me“’:‘:';:: :;’“';:n = B - > PDU to Tagged Stream | eeiiee e Repack Bits
o el < 5| Longt g mome:pocs e [ B o permotiee:s [
7 ML msa Bits per output byte:
- Tagged Stream Mux n

e Chunke to Symbets Cr Interpetating FIR Fifr —
SymbolTable: 111143 B——T8 prer o ocon [T Inerpolaton: o

Length Tag Name: packet_len

COAPPYESG




image24.png
COAPPYESG

GNU Radio Companion ¥

Edit View Run Tools Help

R -Bx 0@

QPSK_Mod @ QPSK2 @ FSK1 @

Constellation Object
1D: gpsk_mod

Mar 8 23:37

*QPSK2.grc - /home/rajag61/HackRF/PSK

]
®

Constellation Type: Variable Constellation
Symbol Map: 0,123

Constellation Points: ..1+1]
Rotational Symmetry: 4

Variable
1D: RCC Filter Taps RX.

Dimensionality: 1
Normalization Type: Amplitude

Y > =u

MorseCodeTX @

out—

out—

—_—
o Decimation: 1 | R ——— e e
Clock Recovery MM /
I s s00m E— | (oo, B, B> 1 conorc: o BUE—fi| Bits per input byte: 2
Gain Mu: 175m Tag Name: packet len Bits per output byte: 8
P Lot tag name: packet len [PIIEF ~~PTBGE] v ) dus? rint.





image25.png
Options. Variable | [ Variable | [ Variable

itle e el yer 100z e | | 10230 101

Acthors e aluer 3| | Values 15 | | v 4231

‘Output Language: Fithon

Generste Option=1 70U | [Variable | [ Variable | | Variable
Wi | |01 ceriey| [ 10057
Velucs50 | [velues 107 | | Values So0m

File Source
s ik pean st

Add begin tag:

offseti0

Lengthi0

Soapy HackRF Source
Device arguments:hack=0.

Semple Rater
Center Freq (2 £330

a7 GUI Range | [ aTGuiRange | [ orcurRange || arcuimange || orcurRange
10112 sin 101 vE_guin 101 guin 101 gen e 101 free e
Labei Ture 7 Gsin | | Labeli e VG4 Goin [ Lol ure T i || Labek Tune Mo s | [ Labes T Frea e
ufoult Values 36 | | Default Values30 | [Defauit Values 5. || DefaultValues0 || Defeut Values O
Stopr 20 Stopi ez stopr &7 Stopi 10 stopi1
stepr3 stepr: e Stepr1om Steprim
GrsKtod
SampleciSymboli 30
Sensititys 107
npacks 0F
Vsl Sink
Stream D1 meg ot o GUI ik
Names fecived

Vireual Sink
StreamDs resived

Virtusl Source
Stream D1 demecsd.meg ot

GrSK Demod
Samplec/symboli 50
Sensituitys 107

Mo (Unuzedino
Ormege Relative U
Freq Erron0

Conter Frequency (Haly £33
Banduidth iy 34
Update Retes 10

QT GUI Time Sink
Number ofpantes 200
Sample Rates

Autoscaler i I

Vsl Sink

charTo ot [ s e

“:knm





image26.png
IR

1

[ & &
g 2

w
7 9
v

H
&g g £

g °





image27.png
Not titled yet

Tune TX Gain

Tune Mu Gain

Tune Freq Error [,

' TUNeVGAGAN T oo s
- TunelF Gain S T o eef
g Message Axes
 Message v Autoscale
o4 = Demod Message v/ Grid
v Axis Labels
Sy -
Yoffset: | + || -
ol YRange: | + || -
. XMax: |+ || -
£
2 s0q Tri
_E' rigger
E ] Free =
Positive -
30 Level | + | -
Delay: | + | -
20
Extras
[~ ] 104 Autoscale
r T T T T T T
. o 10 20 30 40 50 0 M stop
Time (us)




image1.jpeg
@ AECENAR
Association for Economical and Technological Cooperation

in the Euro-Asian and North-African Region

WWW.aecenar.com





