
Emer-comm Technical Development V1.0

1 | P a g e

EMERGENCY COMMUNICATION SYSTEM

DEVELOPMENT

Document

Version
Description Edited By Release Date

V1.0 Initial Release Raja Mourad 3/1/2023

Written By:

Raja Mourad

LAST UPDATED: January 3, 2023

Emer-comm Technical Development V1.0

2 | P a g e

Emer-comm Technical Development V1.0

3 | P a g e

TABLE OF CONTENTS
1 Introduction .. 6

2 Requirements .. 6

3 System Overview ... 8

3.1 System Setup .. 9

4 Understanding Wireless Range Calculations .. 9

4.1 Power and dbm Calculations .. 9

4.2 Path Loss ... 10

5 Intervention Units .. 11

5.1 IUs System Architecture ... 11

5.2 IUs System Components .. 11

5.3 NRF24 Signal Interpretation .. 12

6 Scouting Units .. 13

7 Base Station ... 13

7.1 Base Station Components ... 13

7.2 Base Station Software Packages .. 14

7.3 Communicating with IUs ... 15

7.3.1 Building the Receiver and Decoder ... 15

7.3.2 Building the Transmitter ... 23

8 How to Use ... 28

Emer-comm Technical Development V1.0

4 | P a g e

List of Figures

Figure 2-1 System Planned GUI ... 8

Figure 3-1 System Architecture .. 8

Figure 3-2 System Setup .. 9

Figure 5-1 Intervention unit basic architecture .. 11

Figure 5-2 An Enhanced Shockburst packet with payload (0 - 32 bytes) 12

Figure 5-3 Packet control field ... 12

Figure 7-1 Gnuradio NRF24 demodulator and decoder (V1.02)... 15

Figure 7-2 Low pass filter response to TX packets being received 16

Figure 7-3 Binary slicer and multiply constant output... 18

Figure 7-4 Before a NRF packet is received .. 18

Figure 7-5 After NRF packets are received .. 18

Figure 7-6 After NRF packet is received zoomed in ... 19

Figure 7-7 NRF24 packet received ... 19

Figure 7-8 Decode NRF24 python block flowchart (V1.02) ... 21

Figure 7-9 Gnuradio NRF24 Transmitter (V1.02) .. 23

Figure 7-10 NRF24 Packet Generator block flowchart (V1.02) .. 24

Figure 7-11 Packed TX output byte stream .. 25

Figure 7-12 Unpacked TX output byte stream ... 26

Figure 7-13 GFSK modulation block output .. 27

Figure 8-1 Arduino Nano configuration in Arduino IDE .. 28

Figure 8-2 Successful connection to NRF24 ... 29

Figure 8-3 Gnuradio GUI TX menu ... 30

Figure 8-4 Gnuradio GUI RX menu .. 30

List of Tables

Table 2-1 EmerComm Software Requirements ... 6

Table 5-1 Intervention unit system components (for prototyping) 11

Table 7-1 Base Station Components .. 13

Table 7-2 Soapy HackRF source block parameters ... 15

Table 7-3 Low pass filter block parameters .. 16

Table 7-4 Decode NRF24 python block parameters .. 20

Table 7-5 NRF24 Packet Generator block parameters .. 24

Table 7-6 Soapy hackRF sink block parameters .. 27

Emer-comm Technical Development V1.0

5 | P a g e

SOURCE CODE VERSION CONTROL

Version Features

V1.0 Initial release: Gnuradio script (Base Station) to receive packets from NRF24

with 2 Mbps data air rate and configurable communication channel.

V1.01 Text messages received from NRF24 through gnuradio are now decoded and

the payload is extracted.

V1.02 Base station can send text data back to NRF24 modules

Emer-comm Technical Development V1.0

6 | P a g e

1 INTRODUCTION
This article demonstrates the development process of an emergency communication

system (EmerComm). This system is intended to be used where secured and independent

communication channels are requested. It communicates via a Control Station (CS) with

multiple Intervention Units (IU) and multiple Scouting Units (SU).

The Control Station (CS) is responsible for:

• Sending position and altitude commands to scouting units.

• Sending text and voice messages to intervention units.

• Receiving position, images, and video livestream from SU.

• Receiving position, text, and voice information from IU.

2 REQUIREMENTS
The system software requirements are listed in the requirements tracking sheet. In

short, the following requirements shall be met.

Table 2-1 EmerComm Software Requirements

Req. ID Description Field Status

Req_001 The EmerComm system consists of 3

parts: Control station "CS", Scouting

units "SU", and intervention units "IU".

General

Req_002 SU shall send its location (Lat, Long, Alt)

periodically to the CS.

SU

Req_003 SU shall be able to send images or video

to the CS on request.

SU

Req_004 SU shall change its location by a CS

command.

SU

Req_005 SU shall use an SDR for its

communication with the CS.

SU

Req_006 A voice communication channel shall be

established to make a streaming voice

communication channel between the IUs

and IU-CS (broadcasting).

General

Req_007 IU shall be able to send/receive text

message to/from the CS.

IU

Req_008 IU shall send its location (Lat, Long, Alt)

periodically to the CS.

IU

EmerCom_requirements_221027.xlsx

Emer-comm Technical Development V1.0

7 | P a g e

Req_009 IU may use any Mid-Range

communication module to make the

communication with the CS.

IU

Req_010 All communication packages shall be

encrypted.

General

Req_011 The AES standard shall be used for the

encryption.

General

Req_012 IU may have its own interaction

hardware "Input/Output" or it may

connect to a mobile phone via Bluetooth

to do it.

CS

Req_013 The CS application shall be developed to

be run on windows computer, with an

SDR unit connected for the

communication.

CS

Req_014 The CS application main dashboard

consists of: radio module, units Listing

module, mapping module, chatting

module.

CS

Req_015 The radio module used to listen and

calling the IUs.

CS

Req_016 The units Listing module used to show

the on-range units with their info (Name,

details, status).

CS

Req_017 The map module shall be used to locate

units (SU, IU) on map using pins.

CS

Req_018 Distinct pins shall be used for SU and IU. CS

Req_019 SU pin shall be movable to send the unit

a command to change its location.

CS

Req_020 The map module may also use the

images provided by the SUs instead of

the map to locate the units.

CS

Req_021 The chat module shall be used to

send/receive text message between the

CS and IU.

CS

Req_022 The CS shall have the ability to send text

message to a specific IU or to all

(broadcasting).

CS

Emer-comm Technical Development V1.0

8 | P a g e

Figure 2-1 System Planned GUI

 The planned Graphical User Interface shall consist of a text interface between the

intervention units and the bas station. In addition, it should view, in real time, the current

position of each IU and each SU. Numbers of connected devices should clearly be

displayed with the name of each device.

3 SYSTEM OVERVIEW

Figure 3-1 System Architecture

Emer-comm Technical Development V1.0

9 | P a g e

 The system, as mentioned before, is composed of 3 units: base station, intervention

units, and scouting units. The communication channels between the BS and the IUs are

held somewhere between 2.4 and 2.5 GHz where this band is very efficient for digital

communication protocols.

3.1 System Setup

The system is assembled on a lab-scaled level as shown in Figure 3-2. Each unit is

described with a separate section below in the document.

Figure 3-2 System Setup

4 UNDERSTANDING WIRELESS RANGE CALCULATIONS
One of the key calculations in any wireless design is range, the maximum distance

between transmitter and receiver for normal operation.

4.1 Power and dbm Calculations

RF power is most commonly expressed and measured in decibels with a milliwatt

reference, or dBm. A decibel is a logarithmic unit that is a ratio of the power of the system

to some reference. A decibel value of 0 is equivalent to a ratio of 1. Decibel-milliwatt is

the output power in decibels referenced to 1 mW.

Since dBm is based on a logarithmic scale, it is an absolute power measurement. For

every increase of 3 dBm there is roughly twice the output power, and every increase of

10 dBm represents a tenfold increase in power. 10 dBm (10 mW) is 10 times more

Emer-comm Technical Development V1.0

10 | P a g e

powerful than 0 dBm (1 mW), and 20 dBm (100 mW) is 10 times more powerful than 10

dBm. You can convert between mW and dBm using the following formulas:

𝑃(𝑑𝐵𝑚) = 10. log10(𝑃(𝑚𝑊))

𝑃(𝑚𝑊) = 1 𝑚𝑊. 10
(

𝑃(𝑑𝐵𝑚)
10

)

(4-1)

4.2 Path Loss

Path loss is the reduction in power density that occurs as a radio wave propagates

over a distance. The primary factor in path loss is the decrease in signal strength over

distance of the radio waves themselves. Radio waves follow an inverse square law for

power density: the power density is proportional to the inverse square of the distance.

Every time you double the distance, you receive only one-fourth the power. This means

that every 6-dBm increase in output power doubles the possible distance that is

achievable.

Besides transmitter power, another factor affecting range is receiver sensitivity. It is

usually expressed in –dBm. Since both output power and receiver sensitivity are stated

in dBm, you can use simple addition and subtraction to calculate the maximum path loss

that a system can incur:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑎𝑡ℎ 𝑙𝑜𝑠𝑠

= 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑝𝑜𝑤𝑒𝑟 – 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑔𝑎𝑖𝑛𝑠 – 𝑙𝑜𝑠𝑠𝑒𝑠
(4-2)

Gains include any gains resulting from directional transmit and/or receive

antennas. Antenna gains are usually expressed in dBi referenced to an isotropic antenna.

Losses include any filter or cable attenuation or known environmental conditions. This

relationship can also be stated as a link budget, which is the accounting of all gains and

losses of a system to measure the signal strength at the receiver:

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑝𝑜𝑤𝑒𝑟 + 𝑔𝑎𝑖𝑛𝑠 – 𝑙𝑜𝑠𝑠𝑒𝑠

(4-3)

The goal is to make the received power greater than the receiver sensitivity.

In free space (an ideal condition), the inverse square law is the only factor affecting

range. In the real world, however, the range also can be degraded by other factors:

• Obstacles such as walls, trees, and hills can cause significant signal loss.

• Water in the air (humidity) can absorb RF energy.

Emer-comm Technical Development V1.0

11 | P a g e

• Metal objects can reflect radio waves, creating new versions of the signal. These

multiple waves reach the receiver at different times and destructively (and sometimes

constructively) interfere with themselves. This is called multipath.

5 INTERVENTION UNITS

5.1 IUs System Architecture

Each intervention unit is supposed to send the location, text, and voice messages to

the CS and shall receive the same from the CS. (The architecture is changeable upon the

change of requirements).

Figure 5-1 Intervention unit basic architecture

Each intervention unit shall connect to an operator’s cell phone via Bluetooth

interface. The user shall send text and voice data to the unit which will be processed by a

microcontroller and fed to NRF24 module in order to be transmitted by air.

5.2 IUs System Components

Table 5-1 Intervention unit system components (for prototyping)

Component Description

Nano-RF24

• Microcontroller: ATmega328P-MU QFN32

• Bootloader: Newest 1.8.8

• Wireless: Nrf24L01+ 2.4G

• BLE chip: TI CC2540

• Work channel: 2.4G – 2.528G

• Transmission distance: ~100m

• Architecture: AVR

• Input voltage: USB power supply, Vin 6-12V

• Operating Voltage: 5V

• Flash Memory: 32KB of which 2KB used by bootloader

• SRAM: 2KB

• Clock Speed: 16MHz

Emer-comm Technical Development V1.0

12 | P a g e

5.3 NRF24 Signal Interpretation

The first step to establish a communication channel between the base station and the

IUs is to detect and decode the signal from the NRF24L01 module and be able to replay

a signal back to it. This module modulates its signal using Gaussian Frequency Shift

Keying (GFSK) with user-defined channel (2.400 to 2.528 GHz separated at 1 MHz @ 1

Mbps and 2 MHz @ 2 Mbps), air rate (1 or 2 Mbps), and antenna power. The module uses

Enhanced Shockburst packet format for data transmission which contains a preamble

field, address field, PCF field, payload field, and CRC field.

Figure 5-2 An Enhanced Shockburst packet with payload (0 - 32 bytes)

The preamble (1-byte long) is a bit sequence used to detect the 0 and 1 levels in the

receiver. It is either 01010101 or 10101010. This is done to ensure there enough transitions

in the preamble to stabilize the receiver.

The address is for the receiver. An address ensures that the correct packet is detected

by the receiver. It can be configured as 3 to 5 bytes long. When choosing the address, one

shall avoid using repetition in characters nor cyclic codes (e.g., 000FFFFFFF or

0101010101) which will raise the packet-error-rate.

The Packet Control Field (PCF) is a 9-bit long sequence which gives information about

the payload. This field is only used if the Dynamic Payload Length function is enabled.

Figure 5-3 Packet control field

Payload length gives the information about the user-defined message length sent by

the transmitter. It can be either static or dynamic.

The 2-bit PID (Packet Identification) field is used to detect if the received packet is

new or retransmitted. PID prevents the receiver from presenting the same payload more

than once to the. The PID field is incremented at the transmitter side for each new packet

received through the SPI. The PID and CRC fields are used by the receiver device to

determine if a packet is retransmitted or new. When several data packets are lost on the

Emer-comm Technical Development V1.0

13 | P a g e

link, the PID fields may become equal to the last received PID. If a packet has the same

PID as the previous packet, nRF24L01 compares the CRC sums from both packets. If the

CRC sums are also equal, the last received packet is considered a copy of the previously

received packet and discarded.

The Cyclic Redundancy Check (CRC) is the error detection mechanism in the packet.

It my either be 1 or 2 bytes and is calculated over the address, PCF, and payload:

The polynomial for 1 byte CRC is X8 + X2 + X + 1, Initial value 0xFF. The polynomial

for 2-byte CRC is X16+ X12 + X5 + 1, Initial value 0xFFFF

The goal is to develop a transceiver with the same packet format described by the

NRF24 module. In reception mode, the receiver (SDR at the CS side) shall locate the

presence of a known address to start interpreting the data. While in transmitting, the CS

shall assemble the same packet format in order for the module to receive successfully.

6 SCOUTING UNITS
Still under implementation

7 BASE STATION

7.1 Base Station Components

The base station components are listed in Table 7-1 below.

Table 7-1 Base Station Components

Component Description

Hackrf one

RF Device:

• 30 MHz to 6 GHz operating frequency

• Half-duplex transceiver

• Up to 20 million samples per second

• 8-bit quadrature samples (8-bit I and 8-bit Q)

• Software-configurable RX and TX gain and baseband filter

• Software-controlled antenna port power (50 mA at 3.3 V)

• Power amplification up to 15 dBm.

PC

Processing Device:

• 64-bit operating system

• At least 4 GB RAM

• SSD is preferred.

• Linux-based OS (Ubuntu 20.04)

Emer-comm Technical Development V1.0

14 | P a g e

7.2 Base Station Software Packages

The following software packages must be installed on the ubuntu-based machine for

development.

1. GNU Radio Companion: Used to control the HackRf transceiver which will be

used between the control station and the scouting units.

sudo add-apt-repository ppa:gnuradio/gnuradio-releases

sudo apt-get update

sudo apt-get install gnuradio python3-packaging

2. Arduino IDE (Prototyping): Used to program the nrf24-based controllers for

Intervention units.

https://www.arduino.cc/en/software

3. Hackrf board packages.

sudo apt-get install hackrf

4. to make sure the hackrf is working correctly, open the terminal and type:

hackrf_info

Emer-comm Technical Development V1.0

15 | P a g e

7.3 Communicating with IUs

IUs use the GFSK modulation technique for message transmission. Hence, a GFSK

modulator and demodulator are to be designed and implemented on the base station to

handle this communication. Both the receiver and transmitter are put in the same

flowgraph but they are separated in this section for explanation reasons.

7.3.1 BUILDING THE RECEIVER AND DECODER

Figure 7-1 Gnuradio NRF24 demodulator and decoder (V1.02)

 The soapy HackRF Source block receives the IQ signal from the air. The user

should determine some configuration parameters for this block.

Table 7-2 Soapy HackRF source block parameters

Parameter Description Type Variable Value

Device

arguments

Determines the address of the SDR connected to the

PC.

String -

‘hackrf =

0’

Sample

rate

Determines the required sample rate, in samples per

second, of the hackrf device. It should be chosen

according to the received air sample rate.

Float samp_rate 2e6

Center

frequency

Determines the center frequency, in Hz, in which the

transmitter is transmitting on.

Float 2.4e9 +

nrf_channel

* 1e6

2.5e9

Emer-comm Technical Development V1.0

16 | P a g e

Bandwidth This is the expected bandwidth, in Hz, of the received

message.

Float - 1e6

IF Gain Intermediate frequency gain. Float - 25

VGA Gain Variable Gain Amplifier. Float - 30

 The received IQ signal is fed into a magnitude calculator and then into a low pass

filter to make it smoother. The magnitude calculator transforms the complex IQ signal

into just a magnitude. In other words, it only highlights the necessary part of signal. All

the obvious high frequency noises are smoothed via a low-pass filter. The output of the

low pass filter is shown below in Figure 7-2 which corresponds to TX identical packets

received from the transmitter. The LPF parameters are listed in Table 7-3 below.

Table 7-3 Low pass filter block parameters

Parameter Description Type Variable Value

FIR type The type of the input and output of this block. - - Float -> Float

(Decimating)

Decimation Decimates the sample rate. i.e., divides the sample

rate by this value.

Int - 1

Sample

rate

The sample rate of the message entering this filter. Float Samp_rate 2e6

Cutoff

frequency

Determines the LPF cutoff freq. Any frequencies

above this value will not pass.

Float - 1e6

Transition

width

Is a range of frequencies that allows a transition

between a passband and a stopband of a signal

processing filter.

Float - 100e3

Window - - Hamming

Beta Low pass filter constant Float - 6.76

Figure 7-2 Low pass filter response to TX packets being received

Emer-comm Technical Development V1.0

17 | P a g e

 On the other side, the IQ signal received, which is GFSK-modulated, undergoes

quadrature demodulation which demodulates the FSK signals. This block retrieves the

message sent from the transmitter. The output of this block is the signal frequency in

relation to the sample rate, multiplied with the gain. Mathematically, this block calculates

the product of the one-sampled delayed input and the conjugate un-delayed signal and

then calculates the argument of the resulting complex number:

 𝑌[𝑛] = arg (𝐴2𝑒
𝑗2𝜋

𝑓
𝑓𝑠) (7-1)

 Where, 𝐴 is real, and so is 𝐴2, and hence it only scales, therefore arg(.) is invariant

which leads to:

 arg (𝐴2𝑒
𝑗2𝜋

𝑓
𝑓𝑠) =

𝑓

𝑓𝑠
 (7-2)

The gain of this block is determined by the sample rate and the FSK frequency

deviation (which is 170 KHz) and pugging the numbers:

gain =

𝑓𝑠

2𝜋 (
𝑓𝑑𝑒𝑣

8
)

=
2𝑒6

2𝜋 (
170𝑒3

8)
= 14.9793

(7-3)

The binary slicer block slices a float value producing 1 bit output. Positive input

produces a binary 1 and negative input produces a binary zero. In other words, it scales

the float input from the quadrature demodulator into 1s and 0s.

The incoming signal may be weak, so a soft amplification has to be done in order

to better interpret the signal. Figure 7-3 below shows the output of the binary slicer

followed by the gain multiplication of 80. It is clear that the output now is swinging

between 0 and 80 instead of 0 and 1.

The following step is to only take the required part of this messy signal. By

multiplying the demodulated and amplified signal and the output of the low pass filter

(which only focuses on the magnitude of the IQ signal), we can only extract what is

necessary and remove what is noise. Hence, the multiply block takes the output of the

low pass filter and the output from the amplified quadrature demodulation and outputs

the baseband signal.

Emer-comm Technical Development V1.0

18 | P a g e

Figure 7-3 Binary slicer and multiply constant output

 The output after multiplying the LPF output with the demodulated and amplified

signal is shown below in Figure 7-4 and Figure 7-5. It is clearly visible that the noise’s

amplitude (before receiving the NRF packet) is somewhere between 0 and 4 in amplitude

unit.

Figure 7-4 Before a NRF packet is received

Figure 7-5 After NRF packets are received

Emer-comm Technical Development V1.0

19 | P a g e

 Zooming in the above figure:

Figure 7-6 After NRF packet is received zoomed in

 Figure 7-6 above holds the entire packet within it. But it is still hard to distinguish

the packet received from the NRF. Hence, a threshold block is added to filter out the

noises from this signal. This block outputs a 1 if the input is greater than its high threshold

and a 0 if the input is below its low threshold. The high and low thresholds have been

chosen as 10 and 8 respectively. In other words, the necessary information in the signal

lay above the amplitude of 10 and anywhere below 8 is considered as noises.

 The packet received after adding threshold is shown below in Figure 7-7. The

address field is chosen in the Arduino sketch which is completely custom.

Figure 7-7 NRF24 packet received

Emer-comm Technical Development V1.0

20 | P a g e

 After successful reception of the packet, the packet must be decoded to extract the

payload. So, a custom python block, decode NRF24, is added. The input to this block is a

stream of bytes, it accepts the address and the payload length as parameters, and outputs

the payload as stream of bytes. When writing this block, several factors must be

considered to ensure proper packet-decoding:

• The input stream is received as a complete list and not element by element.

• The input stream of unpacked bytes (0s and 1s) is in form of a list, input =

[0,1,0,0,1,0,….,1,0], with variable length.

• The input stream sample rate is determined by the block before it where it is

2Mbps.

• Processing the input stream and manipulating it with complex CPU functions will

result in delayed-sampling period which affects the functionality of the flowgraph.

• The block has 2 main functions; “init ()” and “work ()”. The “init” function is called

once when the flowgraph is active and the “work ()” function is called whenever

there is a new input stream present at the input terminal.

The SW design of this block took into consideration the user custom addresses set

by the NRF24 transmitter and the payload size determined also by the TX side.

Table 7-4 Decode NRF24 python block parameters

Parameter Type Comments

Input Stream of bytes -

Output Stream of bytes -

Address String of HEX Max: 5 bytes. Example: FFEEDDCCBB

Payload_length Int Min: 1 – Max: 32

As mentioned before, manipulating the input stream with complex functions will

absolutely result in delayed-sampling of the input stream and eventually result in bad

packet decoding in addition to gnuradio freezing. To solve this problem, the input stream

must not be processed when not necessary or when the TX side transmits nothing. The

SW design flowchart of this block is shown below in Figure 7-8.

Emer-comm Technical Development V1.0

21 | P a g e

Figure 7-8 Decode NRF24 python block flowchart (V1.02)

 The methodology illustrated above processes the input stream as a whole string of

bits (“0100101010…”). Thus, the address parameter, which is input from the user, should

be expressed as bits and not bytes (ex: 0x80A0 = 1000000010100000). A mapping function

is used to map the address string to its equivalent string of bits which is 5-bytes long.

 When a new input is present, the average of the list is calculated. If the average is

0, this means that all the input list is 0 and no new packet has arrived and no further

processing is required. However, when at least 1 packet is received, the average of the

input list becomes different than 0. So, the packet can be processed. This small change

calculation will robustly remove the delayed-sampling and process only what is

important.

 The Decode NRF24 block code is written using VS code and is shown below:

Emer-comm Technical Development V1.0

22 | P a g e

"""

Decode NRF24 Packet:

This block receives NRF24 packets at 2 Mbps. If the average of the input list is 0,

this block will ignore the input. Otherwise, useful packet is received, the block will

process the data as a string. This is done to prevent data delayed-sampling.

"""

import numpy as np

from gnuradio import gr

import re

import binascii

import time

import pmt

class blk(gr.sync_block): # other base classes are basic_block, decim_block,

interp_block

 """NRF24 Decoding - This block decodes the stream coming from NRF24 BTLE

 Parameters:

 self.address: Is the self.address put by the transmitter. The self.address for

both ends must match to decode

 the message.

 Payload Length: The message length in bytes

 """

 def __init__(self, address = '0x00', payload_length = 32): # only default

arguments here

 """arguments to this function show up as parameters in GRC"""

 gr.sync_block.__init__(

 self,

 name='Decode NRF24', # will show up in GRC

 in_sig=[np.byte],

 out_sig=[np.byte]

)

 self.address = address

 # Map the address to its equivalent string of bits

 self.address = str(bin(int(self.address, 16))[2:].zfill(8))

 # Complete the string with MSB 0s to complete the 40 bits

 self.address = '0' * (40 - len(self.address)) + self.address

 # Express the payload length in bits instead of bytes

 self.payload_length = payload_length * 8

 self.text_rec_prev = ""

 def work(self, input_items, output_items):

 bits = "" # Variable string to store input stream

 input = input_items[0] # save the input stream

 avg = sum(input) / len(input) # Calculate Input Average

 # if the input stream is different than 0

 # this avoids delayed-sampling

 if avg > 0:

 for i in range (len(input)):

 bits += str(input[i])

 preamble_header = [m.start() for m in re.finditer('01010101', bits)] # Extract

the preamble sequence

 output_items[0][:] = '0' # Clear all residual data in the output buffer

 if len(preamble_header) > 0:

 for header_index in preamble_header:

 text_rec = "" # Variable to store the characters of the payload

 if bits[header_index + 8: header_index + 8 + len(self.address)] ==

self.address:

Emer-comm Technical Development V1.0

23 | P a g e

 PCF = bits[header_index + 8 + len(self.address): header_index + 8

+ len(self.address) + 9]

 PLD_LENGTH = int(PCF[0:6], 2)

 PID = int(PCF[6:8], 2)

 NO_ACK = int(PCF[8], 2)

 #print(PLD_LENGTH, PID, NO_ACK)

 payload = bits[header_index + 8 + len(self.address) + 9:

header_index + 8 + len(self.address) + 9 + self.payload_length]

 for x in range(self.payload_length):

 # Update the output stream

 output_items[0][x] = payload[x]

 for pld in range(0,len(payload) - 1, 8):

 an_integer = int(payload[pld:pld + 8], 2)

 ascii_char = chr(an_integer)

 text_rec += ascii_char

 if self.text_rec_prev == text_rec:

 print(text_rec) # Print the payload

 self.text_rec_prev = text_rec

 return(len(output_items[0]))

 return(len(output_items[0]))

7.3.2 BUILDING THE TRANSMITTER

Figure 7-9 Gnuradio NRF24 Transmitter (V1.02)

 The transmitter design is the complete opposite of the receiver. The payload must

be packetized in the same form of the packet format in Figure 5-2. The whole packet then

should undergo GFSK modulation to match the format of the NRF24 packet. Figure 7-9

above shows the gnuradio flowgraph to transmit a text message to the hackRF. The

“NRF24 Packet Generator” is a custom block used to combine the payload with the

preamble and the address. Note that the CRC checking is disabled in both the gnuradio

Emer-comm Technical Development V1.0

24 | P a g e

TX and the NRF24 RX for the aim of simplicity but will be added in the future. This block

has the following user-defined parameters:

Table 7-5 NRF24 Packet Generator block parameters

Parameter Type Comments

Address string The write address. This must match with the receiver in order

to accept the message. Max: 5 bytes

Repeat int The number of times to repeat the TX message.

Msg_in PMT Receives the payload from a text field editor in form of pmt

message.

Clear_input PMT Used to clear the text field editor after processing.

Out byte Byte of packed bits.

 The TX flowgraph must be executed whenever a new string message is entered in

the text field in order to not interfere with the RX flowgraph. Thus, the SW design

architecture of the packet generator is as follows:

Figure 7-10 NRF24 Packet Generator block flowchart (V1.02)

 When writing a message in the textbox editor and set the repeat parameter to 1,

the output byte stream looks like:

https://wiki.gnuradio.org/index.php/Polymorphic_Types_(PMTs)

Emer-comm Technical Development V1.0

25 | P a g e

Figure 7-11 Packed TX output byte stream

 The code of the NRF24 packet generator block is as follows:

import numpy as np

from gnuradio import gr

import pmt

import time

textboxValue = ""

class blk(gr.sync_block):

 """This block generates the NRF24 packet format."""

 def __init__(self, repeat = 5, address = str(00)): # only default arguments here

 """arguments to this function show up as parameters in GRC"""

 gr.sync_block.__init__(

 self,

 name='NRF24 Packet Generator', # will show up in GRC

 in_sig=None,

 out_sig=[np.byte]

)

 self.message_port_register_in(pmt.intern('msg_in'))

 self.message_port_register_out(pmt.intern('clear_input'))

 self.set_msg_handler(pmt.intern('msg_in'), self.handle_msg)

 self.repeat = repeat

 self.address = address

 self.address = str(bin(int(self.address, 16))[2:].zfill(8))

 self.address = '0' * (40 - len(self.address)) + self.address

 self.address_str = ""

 for i in range (0, len(self.address), 8):

 an_integer = int(self.address[i:i + 8], 2)

 self.address_str += chr(an_integer)

 def handle_msg(self, msg):

 global textboxValue

 textboxValue = pmt.symbol_to_string(msg)

 def work(self, input_items, output_items):

 global textboxValue

Emer-comm Technical Development V1.0

26 | P a g e

 for i in range (len(output_items[0])):

 output_items[0][i] = 0

 # get length of string

 _len = len(textboxValue)

 if (_len > 0):

 # Add the preamble and the address to the payload

 textboxValue = "U" + self.address_str + textboxValue

 _len += 1 + len(self.address_str)

 for i in range (self.repeat):

 # store elements in output array

 for x in range(_len):

 output_items[0][x + (i * _len * self.repeat)] =

ord(textboxValue[x])

 textboxValue = ""

 self.message_port_pub(pmt.intern('clear_input'), pmt.intern(''))

 return (len(output_items[0]))

 else:

 return (0)

The packet needs to unpacked before undergoing modulation. Thus, an unpack

block is added which unpacks the packet to (8 bits per byte). The packet after unpacking

looks like:

Figure 7-12 Unpacked TX output byte stream

 Where the above packet looks very similar to the NRF24 packet detected in Figure

7-7. Thus, the packet is now ready for modulation.

 A GFSK modulator block is used to do all the magic. This block converts the stream

of unpacked bytes to 2 frequencies:

 𝑓𝑜𝑢𝑡 = {
𝑓𝑏𝑎𝑠𝑒 + 𝑓∆, 𝑖𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 1
𝑓𝑏𝑎𝑠𝑒 − 𝑓∆, 𝑖𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 0

 (7-4)

Emer-comm Technical Development V1.0

27 | P a g e

 Where, 𝑓𝑏𝑎𝑠𝑒 is the center frequency in Hz and 𝑓∆ is the FSK deviation frequency of

170 KHz. The input sample rate of the GFSK modulation block is 2Mbps. The output

sample rate of the GFSK mod block can be found as:

 𝑓𝑠𝑜𝑢𝑡
= 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑠𝑦𝑚𝑏𝑜𝑙 × 𝑓𝑠𝑖𝑛

 (7-5)

 Where, the samples per symbol determine how many frequency deviations are

there. By default, this is set to 2 and cannot be less than 2. The output of the GFSK mod

block, of the same message as above, is as follows:

Figure 7-13 GFSK modulation block output

 Finally, a soapy hackRF block is used to transmit this message. The parameters of

the hackRF sink are:

Table 7-6 Soapy hackRF sink block parameters

Parameter Description Type Variable Value

Device

arguments

Determines the address of the SDR connected to the

PC.

String -

‘hackrf =

0’

Sample

rate

Determines the required sample rate, in samples per

second, of the hackrf device. It should be chosen

according to the transmitted air sample rate.

Float samp_rate *

2

4e6

Center

frequency

Determines the center frequency, in Hz, in which to

transmit the message at.

Float 2.4e9 +

nrf_channel

* 1e6

2.5e9

Bandwidth This is the expected bandwidth, in Hz, of the

transmitted message.

Float - 1e6

VGA Gain Variable Gain Amplifier. Float - 47

Emer-comm Technical Development V1.0

28 | P a g e

8 HOW TO USE
To run the program, follow the following steps:

1. Open the Arduino transmitter sketch using Arduino IDE.

Arduino_TX_060123

.ino

2. Choose Arduino nano from the select board selection bar along with the COM port

and then click the upload button (must be done once). The configurable

parameters are the address, the communication channel in the radio.setChannel()

function (by default it is 100), and the baud rate.

Figure 8-1 Arduino Nano configuration in Arduino IDE

If everything was OK, Arduino IDE must show a “success” message in the serial

monitor.

Emer-comm Technical Development V1.0

29 | P a g e

Figure 8-2 Successful connection to NRF24

3. Type the message you wish to send in the serial monitor.

4. To receive from the NRF24 module, upload the receiver sketch.

Receiver.ino

5. Open GNUradio flowgraph and click on RUN.

NRF24-demodulato

r.grc

6. Enter desired transmit message in the edit box as shown in Figure 8-3.

7. The RX menu in the GUI shown in Figure 8-3 view the received packets from the

NRF24 module.

8. The user can change the NRF communication channel from the counter input.

Emer-comm Technical Development V1.0

30 | P a g e

Figure 8-3 Gnuradio GUI TX menu

Figure 8-4 Gnuradio GUI RX menu

