

I

IAP_ECS
Emergency Communication System to be

implemented into IAP Satellite System

IAP_ECS Demonstration Platform

Project duration: May 2013 – Jan 2014

Authors:

Mahmoud Zohby

Samir Mourad

All rights reserved © AECENAR

January 2014

Content

II

Content

ABBREVATIONS .. 5

1 ABSTRACT .. 7

2 PROJECT MANAGEMENT .. 9

2.1 PROJECT DEFINITION HISTORY .. 9

2.2 SYSTEM BUDGET (TIME AND COST) FOR DEMO SYSTEM ... 9

2.3 AT 21 JAN STILL OPEN TASKS FOR IAP ECS DEMO SYSTEM WHEN USING (ONLY INTEGRATION) 9

3 BASICS ... 11

3.1 COMMUNICATION BASICS .. 11

3.1.1 Transmitter design from http://en.wikibooks.org/wiki/Electronics/Transmitter_design 23
3.1.1.1 Frequency synthesis and frequency multiplication .. 25
3.1.1.2 Frequency mixing and Modulation .. 26
3.1.1.3 RF power amplifiers .. 31
3.1.1.4 Linking the transmitter to the aerial ... 32
3.1.1.5 EMC matters .. 32

3.2 RECEIVER DESIGN FROM HTTP://EN.WIKIPEDIA.ORG/WIKI/TUNER_(ELECTRONICS) ... 37

3.3 ANTENNA ... 38

3.4 SOFTWARE DEFINED RADIO (SDR).. 40

3.5 HDSDR (HIGH DEFINITION SOFTWARE DEFINED RADIO) ... 40

3.6 EXTIO.DLL ... 41

3.7 HOW DO I DEVELOP AN EXTIO.DLL ? ... 41

3.8 VISUAL C++ 2008 EXPRESS ... 41

3.9 QT .. 41

3.10 RF HARDWARE (USB STICK) ... 41

3.10.1 TERRATEC ran T stick DVB-T/DAB/DAB + Stick USB 2.0 ... 41

3.10.2 Hackrf (an-open-source-SDR-platform) .. 42

3.11 RF OVERVIEW ... 42

3.12 RF FREQUENCIES POLICIES .. 43

3.13 RF MODULES .. 47

3.13.1 STD-402.. 47
3.13.1.1 Special for MB-STD-RS232 ... 47
3.13.1.2 Special for STD-402 (Transceiver) .. 50

3.13.2 RFM42B-RFM31B 433MHz ... 51

3.13.3 BOWITZ W.T. ... 53

3.13.4 Comparison between modules .. 53

4 SPECIFICATION .. 55

4.1 SYSTEM REQUIREMENTS .. 55

4.2 HARDWARE REQUIREMENTS .. 55

4.3 SOFTWARE REQUIREMENTS ... 55

5 SYSTEM DESIGN ... 57

5.1 SYSTEM OVERVIEW ... 57

5.2 CENTRAL STATION ... 57

5.2.1 Architecture .. 57

5.2.2 SDR development side... 57

5.2.3 Graphical User Interface .. 58

5.3 MOBILE STATIONS ... 59

6 MECHANICS ... 61

Content

III

6.1 MECHANICAL DESIGN .. 61

6.2 PROTOTYPE WITHOUT COVER ... 61

7 SCS-SMS ... 63

7.1 ABSTRACT OF SCS-SMS ... 63

7.2 SYSTEM DESIGN ... 63

7.3 ARCHITECTURES .. 64

7.4 PIC SOFTWARE .. 70

7.5 TEST... 83

8 AES ENCRYPTION .. 87

8.1 INTRODUCTION .. 87

8.2 AES ALGORITHM ... 87

8.3 CODING ... 90

9 HARDWARE OF ECS DEMO SYSTEM ... 103

9.1 REALIZATION OF RF MODULE ... 103

9.1.1 Using STD-402 ... 103

9.1.2 Realization of RF Module Using RFM42B-RFM31B – 433MHz .. 107
9.1.2.1 Serial Periferal interface (SPI) ... 107
9.1.2.2 The new hardware design .. 107
9.1.2.3 MSSP module to establishing (SPI) ... 109

10 FURTHER WORK: SYSTEM INTEGRATION AND INTEGRATION TEST OF ECS DEMO SYSTEM

 115

APPENDIX A: ALTERNATIVE PROJECT PLANS ... 117

APPENDIX B: ALL ABOUT HACKRF .. 121

B.1 HackRF overview .. 121

B.2 Jawbreaker .. 123

B.3 Jellybean .. 123

B.4 Lemondrop ... 124

APPENDIX C: ALTERNATIVE SYSTEM DESIGNS... 129

LITERATURE .. 130

5

Abbrevations

ECS Emergency Communication System

7

1 Abstract

9

2 Project Management

2.1 Project Definition History

First there were developed SMS-SCS and AES. (June – August 2013). Later on there was an

investigation about the possibility of using SDR (Software Designed Radio). (September, October).

Later on it was decided to make a demonstration system for an Emergency Communication

System. (October). IAP ECS was developed. SMS-SCS and AES were integrated into this system.

(October 2013 – January 2014).

2.2 System budget (time and cost) for Demo system

Part Task
Time

(week)

Cost

(USD)

Project Plan 1 engineer (Project manager) 3 weeks E.C.

Client Side SCS-SMS project hardware (components for 2

items)

2 week
30$ x 2

PIC program development (1 engineer) 3 weeks E.C.

RF transceiver for SCS-SMS (components for 3

sides)

2 weeks
12$ x 6

Base Station

Side

Know how of HDSDR 1/2 week E.C.

Know how of WinRad 1/2 week E.C.

Know how of HackRF 1 week E.C.

VC++ & Qt software tutorials 2 weeks E.C.

Qt GUI interface 2 weeks E.C.

SDR platform (2 USB stick) 1 week 40$ x 2

Overall

System

Documentation and report 1 week E.C.

Testing system and solving problem 1 week E.C.

Total: 19 weeks 212 $

One engineer cost 200$ each week. So, for 19 weeks he costs: 200$ x 19= 3800$

Summation with the hardware cost: 4012$

4000$ in approx. 5 months

2.3 At 21 Jan still open tasks for IAP ECS Demo System when using (Only

Integration)

Event Time

Using WinRad to receive Radio wave using ran T-stick+ 1 week

Complete the SCS-SMS project 1 of secured communication system 3 weeks

SW for connection SCS-SMS hardware to the RF module, testing 1 week

Take I and Q from WinRad to a file 1 week

Adapting GUI interface to read SMS from file 2 weeks

System testing 1 week

Planned time: approximately 6 weeks

11

3 Basics

3.1 Communication Basics1

Die Aufgabe der Nachrichtentechnik besteht darin, Informationen von einem Sender zu einem

Empfänger zu befördern. Die Nachrichtentechnik kann grob in zwei große Gebiete geteilt werden,

in die

• Übertragungstechnik und in die

• Vermittlungstechnik.

1 Many is taken from: Prof. Dr.-Ing. Gerhard P. Fettweis, Technische Universität Dresden, Fakultät

Elektrotechnik, Skript zur Vorlesung Einführung in die Nachrichtentechnik, Sommersemester 2012

Basics

12

Beispiele für nachrichtentechnische Anwendungen sind:

• Hörrundfunk und Fernsehen

– analog: AM-Radio (Mittelwelle), FM-Radio (UKW),

– digital: DAB (digital audio broadcasting), DVB (digital video broadcasting),

• Telefon

– Festnetz,

– Mobilfunk.

Nachrichtenübertragungssysteme
Man kann Nachrichtenübertragungssysteme durch das in Abb. 2.1 dargestellte Modell beschreiben.

Begriffe
Die Bausteine Quelle, Quellcoder, Kanalcoder, Modulator und Multiplexer werden unter dem

Begriff Sender zusammengefaßt. Dementsprechend gehören zu dem Empfänger die Baugruppen

Demultiplexer, Demodulator, Fehlerkorrekturelemente, Quelldecoder und eine Senke. Sender und

Empfänger können sowohl stationär (z.B. Fernsehsender) als auch mobil (z.B. Handy) sein, sind

aber immer leistungsbegrenzt. Der Kanal als Übertragungsmedium ist bandbreitenbegrenzt.

Durch Störrauschen, Amplitudenschwankungen (fading, verursacht durch Bewegung und

Abschattung), Interferenzerscheinungen, Zeit- (delay spread, verursacht durch

Mehrwegeausbreitung) und Frequenzdispersion (Doppler spread, verursacht durch Bewegung von

Sender, Empfänger und/oder Streuern/Reflektoren usw.) werden die gesendeten Informationen

beeinflußt.

Modulator

Communication Basics

13

analoge Amplitudenmodulation (AM) und Frequenzmodulation (FM) eines niederfrequenten Signals

Übertragungsmedien
Die Wahl des Übertragungsmediums hängt sehr stark von den Anforderungen an den

Übertragungskanal ab (z.B. bezüglich Frequenzbereich oder Signalbandbreite, aber auch

hinsichtlich der gleichzeitigen Anzahl der Nutzer). Mögliche Übertragungsmedien sind

• ”Twisted Pair“ (verdrillte Kupferkabel),

– z.B. Telefonkabel (Endgeräteanschluß)

• Koaxkabel,

– z.B. Antennenkabel, Kabelfernsehen

• Hohlleiter,

– z.B. Antenneneinspeisung bei hohen Frequenzen (Giga-Hertz-Bereich)

• Lichtwellenleiter,

– z.B. Übertragung mit sehr hohen Datenraten

• Funkkanal.

– z.B. Mobilfunk, Hörrund- und Fernsehfunk

Im Funkbereich unterscheidet man auch zwischen Indoor- und Outdoor-Anwendungen. Ein

typisches Beispiel für Indoor-Anwendungen könnte die Versorgung aller Räume eines

Bürogebäudes mit einem WLAN (wireless local area network) sein. Outdoor-Anwendungen sind

z.B. die bundesweit verbreiteten zellularen Mobilfunknetze, derzeit GSM-900, DCS-1800 (D1-, D2-,

Eplus- und E2-Netz) und zukünftig auch UMTS.

Auch die Frequenz- bzw.Wellenlängenbereiche werden unterschieden, angefangen von den

bekannten MW- und UKW-Bereichen bis hin zu den Millimeterwellen-Bereichen und weiter

Infrarot-Bereichen der optischen Nachrichtentechnik.

Eigenschaften

Basics

14

Im folgenden werden einige Eigenschaften von Nachrichtenübertragungssystemen aufgezählt.

Dabei wird keinerlei Anspruch auf Vollständigkeit erhoben.

Simplex/Duplex Ein Unterscheidungskriterium ist, ob Systeme im Simplex- oder

Duplexmodus betrieben werden. Simplexbetrieb bedeutet, daß Nachrichten nur in eine Richtung

übertragen werden (z.B. Rundfunk), während im Duplexbetrieb die Informationen in beide

Richtungen übertragen werden (z.B. Telefonie).

Single-Cast/Multi-Cast Es gibt Single-Cast-Systeme (Telefon: 1 Quelle, 1 Empfänger) und Multi-

Cast-Systeme (Rundfunk: 1 Quelle mit vielen Empfängern)

Paket/Leitungs-Vermittlung Ein weiteres Merkmal ist, ob Nachrichten leitungsvermittelt (z.B. ”das

gute alte“ Telefon) oder paketvermittelt (z.B. Datenübertragung im Internet – IP-Protokoll) übertragen

werden.

Signalpegel
Oftmals sind Signale mit großen Pegelunterschieden gegeben. Typische Werte für Signalleistungen

P liegen zwischen 1μW und 1kW. Das entspricht einem Unterschied von 109. Aus diesem Grund

ist eine logarithmische Skala vorteilhaft. Eine solche Skala ist die dBm-Skala, bei der die

Leistungspegel LP auf Pref = 1 mW normiert werden, also

• In der Tab. 2.1 sind einige absolute Leistungswerte und die dazugehörigen dBm-Werte

angegeben.

• 2 W-Handy (D-Netz): Pmax = 2 W, äquivalente Darstellung als Pegel LPmax = 10 lg 2W/1mWdBm = 10

lg(2 · 103)dBm = (10 lg(2) + 10 lg(103))dBm = 33dBm. Im GSM-Standard ist spezifiziert, daß

der Pegel an der Basisstation mindestens -102 dBm betragen muß, d.h. es können sich

Pegeldifferenzen von bis zu 135 dBm bzw. 1013 ergeben.

Communication Basics

15

• 0.8 W-Handy (E-Netz): ≡ 29dBm. Da mit einer geringeren Leistung gesendet wird und bei 1.8

GHz wesentlich stärkere Dämpfungsverhältnisse vorliegen, ist im E-Netz eine größere Anzahl von

Basisstationen gegenüber dem D-Netz erforderlich, was sich in den Infrastrukturkosten

niederschlägt.

• Auch Signalspannungen können im logarithmischen Maßstab angegeben werden. Als

Bezugsspannung wird meist 0.775 V verwendet und entspricht 0 dBu. (Wahl der

Referenzzpannung: Welche Spannung ist notwendig, um an einem 600 Normwiderstand eine

Leistung von 1 mW entstehen zu lassen? = 0.7752V2/600 = 1mW) Die Wahl eines anderen

Normwiderstandes bzw. Referenzspannung verschiebt die dB-Skala entsprechend.

Ebenso lassen sich Verstärkungsfaktoren von Systemen äquivalent als Pegel angeben. Bezeichnen

z.B. x und y den Ein- bzw. Ausgang eines Systems, so ergeben sich die Pegel zu

Besonders bei passiven Systemen werden oft Dämpfungs- statt Verstärkungsfaktoren angegeben.

Oftmals sind die Pegelverhältnisse zwischen Nutz- und Störsignalen von Interesse. Das Verhältnis

gibt das Nutzsignal-/Störsignalleistungsverhältnis (signal-to-noise-ratio) an. Beachten Sie bitte,

• daß Pegelangaben in dB immer Verhältnisse zweier Leistungen oder Amplituden (z.B.

Verstärkungsfaktor, Signal-Rausch-Abstand) bezeichnen

• daß Pegelangaben in dBm (Referenz: Leistung Pref = 1 mW), dbW (Referenz: Leistung

Pref = 1 W), dBu (Referenz: Spannung Uref = 0.775 V) usw. immer absolute Leistungen

oder Spannungen bezeichnen

• daß sich beim Rechnen mit Pegeln folgende Einheiten ergeben:

Basics

16

Quelle

Quell-coder

Kanal-coder/

Modulator/

Multiplexer

Kanal

Demodulator/

Demultiplexer/

Kanal-decoder

Senke

Quell-decoder

Communication Basics

17

From “Microwave and RF Design: A Systems Approach”, Chapter 1 (Modulation, Transmitters

and Receivers)(www.ece.ucsb.edu/yuegroup/Teaching/Lectures/steer_rf_chapter1.pdf‎):

Basics

18

Communication Basics

19

Basics

20

Communication Basics

21

Modern Transmitter Architectures

Basics

22

Modern Receiver Architectures

Communication Basics

23

Summary

This chapter presented the RF frontend architectures used from the beginnings of wireless

communications up to those used in modern systems. Similar architectures are used in the

frontends of radar and sensor systems. Wireless systems proliferate, and even in established

domains such as cellphones, architectures are evolving to achieve greater efficiency, greater

multifunctionality, and lower cost primarily by monolithically integrating and digitizing as much

as possible of the RF frontend. Size drives the replacement of superheterodyne architecture by

eliminating large intermediate filters.

3.1.1 Transmitter design from

http://en.wikibooks.org/wiki/Electronics/Transmitter_design

Radio transmitter design is a complex topic which can be broken down into a series of smaller

topics.

Contents

1 Frequency synthesis and frequency multiplication

1.1 Synthesis

1.1.1 Fixed frequency systems

1.1.2 Variable frequency systems

1.2 Multiplication

2 Frequency mixing and Modulation

2.1 AM modes

2.1.1 Low level and High level

2.1.1.1 Low level

http://en.wikibooks.org/wiki/Electronics/Transmitter_design
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Frequency_synthesis_and_frequency_multiplication
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Synthesis
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Fixed_frequency_systems
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Variable_frequency_systems
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Multiplication
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Frequency_mixing_and_Modulation
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#AM_modes
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Low_level_and_High_level
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Low_level

Basics

24

2.1.1.2 High level

2.1.2 Types of AM modulators

2.1.2.1 Plate AM modulators

2.1.2.2 Screen AM modulators

2.2 Other modes which are related to AM

2.2.1 Single-sideband modulation

2.2.1.1 Filter method

2.2.1.2 Phasing method

2.2.2 Vestigial-sideband modulation

2.2.3 Morse

2.3 FM modes

2.3.1 Direct FM

2.3.2 Indirect FM

3 RF power amplifiers

3.1 Valves

3.1.1 Advantages of valves

3.1.2 Disadvantages of valves

3.2 Solid state

4 Linking the transmitter to the aerial

5 EMC matters

5.1 RF leakage (defective RF shielding)

5.2 Spurious emissions

5.2.1 Harmonics

5.2.2 Local oscillators and unwanted mixing products

5.2.3 Instability and parasitic oscillations

6 Reference

7 Further reading

http://en.wikibooks.org/wiki/Electronics/Transmitter_design#High_level
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Types_of_AM_modulators
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Plate_AM_modulators
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Screen_AM_modulators
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Other_modes_which_are_related_to_AM
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Single-sideband_modulation
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Filter_method
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Phasing_method
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Vestigial-sideband_modulation
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Morse
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#FM_modes
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Direct_FM
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Indirect_FM
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#RF_power_amplifiers
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Valves
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Advantages_of_valves
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Disadvantages_of_valves
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Solid_state
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Linking_the_transmitter_to_the_aerial
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#EMC_matters
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#RF_leakage_.28defective_RF_shielding.29
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Spurious_emissions
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Harmonics
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Local_oscillators_and_unwanted_mixing_products
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Instability_and_parasitic_oscillations
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Reference
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Further_reading

Communication Basics

25

3.1.1.1 Frequency synthesis and frequency multiplication

Synthesis

Fixed frequency systems

For a fixed frequency transmitter one commonly used method is to use a resonant quartz crystal in

a Crystal oscillator to fix the frequency. For transmitter where the frequency has to be able to be

varied then several options can be used.

Variable frequency systems

An array of crystals—This approach uses several oscillators, each tuned to a different fixed

frequency.

Variable frequency oscillator (VFO)

Phase locked loop (PLL) frequency synthesizer

Multiplication

It is often the case for VHF transmitters that it is not possible to operate the crystal controlled or

variable frequency oscillator at the frequency of the final output. Also, for reasons including

frequency stability, it is better to multiply the frequency of the free running oscillator up to the

final frequency which is required.

If the output of a amplifier stage is tuned to a multiple of the frequency which the stage is driven

with, the stage is optimised to give a larger harmonic output than that found in a linear amplifier.

In a push-push stage, the output will only contain the even harmonics. This is because the currents

which would generate the fundamental and the odd harmonics in this circuit (if one valve was

removed) are canceled out by the second valve. Note that in these diagrams that the bias supplies

and the neutralization have been omitted for clarity. In a real system it is likely that tetrodes would

be used as plate to grid capacitance in a tetrode is lower so making the stage less likely to be

unstable.

Here in the push-pull stage

the output will only contain

the odd harmonics because of

the canceling effect.

Basics

26

3.1.1.2 Frequency mixing and Modulation

The task of many transmitters is to transmit some form of information using a carrier wave. This

process is called modulation. There are many types of RF modulation, and the choice of

modulation often depends on the type of information being transmitted.

For instance, audio information is continuous in time and value, and scaling by a constant (i.e.

signal inversion, volume control) is acceptable, so AM and FM transmission work. But for digital

communications, the signal is discrete in time and discrete in value, and inversion of the signal is

unacceptable, so AM and FM are not (on their own) satisfactory. For digital communications, a

modulation such as frequency shift keying (FSK) or on-off keying (OOK) over FM would be better.

AM modes

In many cases the carrier wave is mixed with another electrical signal to impose upon it the

information. This occurs in Amplitude modulation (AM).

Low level and High level

Low level

Here a small audio stage is used to modulate a low power stage, the output of this stage is then

amplified using a linear RF amplifier.

Advantages

The advantage of using a linear RF amplifier is that the smaller early stages can be modulated,

which only requires a small audio amplifier to drive the modulator.

Disadvantages

The great disadvantage of this system is that the amplifier chain is less efficient, because it has to

be linear to preserve the modulation. Hence class C amplifiers cannot be employed.

An approach which marries the advantages of low-level modulation with the efficiency of a Class

C power amplifier chain is to arrange a feedback system to compensate for the substantial

distortion of the AM envelope. A simple detector at the transmitter output (which can be little

more than a loosely coupled diode) recovers the audio signal, and this is used as negative feedback

to the audio modulator stage. The overall chain then acts as a linear amplifier as far as the actual

modulation is concerned, though the RF amplifier itself still retains the Class C efficiency. This

approach is widely used in practical medium power transmitters, such as AM radiotelephones.

High level

Advantages

One advantage of using class C amplifiers in a broadcast AM transmitter is that only the final stage

needs to be modulated, and that all the earlier stages can be driven at a constant level. These class

C stages will be able to generate the drive for the final stage for a smaller DC power input.

However in many designs in order to obtain better quality AM the penultimate RF stages will need

to be subject to modulation as well as the final stage.

Communication Basics

27

Disadvantages

A large audio amplifier will be needed for the modulation stage, at least equal to the power of the

transmitter output itself. Traditionally the modulation is applied using an audio transformer, and

this can be bulky. Direct coupling from the audio amplifier is also possible (known as a cascode

arrangement), though this usually requires quite a high DC supply voltage (say 30V or more),

which is not suitable for mobile units.

Types of AM modulators

A wide range of different circuits have been used for AM. While it is perfectly possible to create

good designs using solid-state electronics, valved (tube) circuits are shown here. In general, valves

are able to easily yield RF powers far in excess of what can be achieved using solid state. Most

high-power broadcast stations still use valves.

Plate AM modulators

In plate modulation systems the voltage delivered to the stage is changed. As the power output

available is a function of the supply voltage, the output power is modulated. This can be done

using a transformer to alter the anode (plate) voltage. The advantage of the transformer method is

that the audio power can be supplied to the RF stage and converted into RF power.

Anode modulation

using a transformer.

The tetrode is supplied

with an anode supply

(and screen grid

supply) which is

modulated via the

transformer. The

resistor R1 sets the grid

bias, both the input

and outputs are tuned

LC circuits which are

tapped into by

inductive coupling.

Basics

28

An example of a series

modulated amplitude

modulation stage. The

tetrode is supplied with an

anode supply (and screen

grid supply) which is

modulated by the

modulator valve. The

resistor VR1 sets the grid

bias for the modulator

valve, both the RF input

(tuned grid) and outputs

are tuned LC circuits

which are tapped into by

inductive coupling. When

the valve at the top

conducts more than the

potential difference

between the anode and

cathode of the lower valve

(RF valve) will increase.

The two valves can be

thought of as two resistors

in a potentiometer.

Communication Basics

29

Screen AM modulators

Under steady state conditions (no audio driven) the stage will be a simple RF amplifier where

the grid bias is set by the cathode current. When the stage is modulated the screen potential

changes and so alters the gain of the stage.

Other modes which are related to AM

Several derivatives of AM are in common use. These are

Single-sideband modulation

(SSB, or SSB-AM single-sideband full carrier modulation), very similar to single-sideband

suppressed carrier modulation (SSB-SC)

Filter method

Using a balanced mixer a double side band signal is generated, this is then passed through a very

narrow bandpass filter to leave only one side-band. By convention it is normal to use the upper

sideband (USB) in communication systems, except for HAM radio when the carrier frequency is

below 10 MHz here the lower side band (LSB) is normally used.

Phasing method

The phasing method is another way to generate of single sideband signals. One of the weaknesses

of this method is the need for a network which imposes a constant 90o phase shift on audio signals

throughout the entire audio spectrum. By reducing the audio bandwidth the task of designing the

phaseshift network can be made more easy.

Imagine that the audio is a single sine wave E = Eo sine (ωt)

The audio signal is passed through the phase shift network to give two identical signals which

differ by 90o.

http://en.wikibooks.org/w/index.php?title=Grid&action=edit&redlink=1
http://en.wikipedia.org/wiki/Single-sideband_modulation
http://en.wikipedia.org/wiki/Single-sideband_modulation

Basics

30

So as the audio input is a single sine wave the outputs will be

E = Eo sine (ωt)

and

E = Eo cosine (ωt)

These audio outputs are mixed in non linear mixers with a carrier, the carrier drive for one of these

mixers is shifted by 90o. The output of these mixers is combined in a linear circuit to give the SSB

signal.

Vestigial-sideband modulation[]

Vestigial-sideband modulation (VSB, or VSB-AM) is a type of modulation system commonly used

in TV systems, it is normal AM which has been passed through a filter which removes one of the

sidebands.

Morse

Strictly speaking the commonly used 'AM' is double-sideband full carrier. Morse is often sent

using on-off keying of an unmodulated carrier(Continuous wave), this can be thought of as an AM

mode.

FM modes

Direct FM

Direct FM (true Frequency modulation) is where the frequency of an oscillator is altered to impose

the modulation upon the carrier wave. This can be done by using a voltage controlled capacitor

(Varicap diode) in a crystal controlled oscillator. The frequency of the oscillator is then multiplied

up using a frequency multiplier stage, or is translated upwards using a mixing stage to the output

frequency of the transmitter.

Indirect FM

Indirect FM employs varicap diode to impose a phase shift (which is voltage controlled) in a tuned

circuit which is fed with a plain carrier. This is termed Phase modulation, the modulated signal

from a phase modulated stage can be understood with a FM receiver but for good audio quality

the audio applied to the phase modulation stage.

http://en.wikipedia.org/wiki/Vestigial-sideband_modulation

Communication Basics

31

This is a solid state circuit, on the right a RF drive is applied to the base of the transistor, the tank

circuit (LC) connected to the collector via a capacitor contains a pair of varicap diodes. As the

voltage applied to the varicaps is changed the phase shift of the output will change.

Sigma-delta modulation (∑Δ)

3.1.1.3 RF power amplifiers

Valves

For high power systems it is normal to use valves, please see Valved RF amplifiers for details of

how valved RF power stages work.

Advantages of valves

Good for high power systems

Electrically very robust, they can tolerate overloads for minutes which would destroy bipolar

transistor systems in milliseconds

Disadvantages of valves

Heater supplies are required for the cathodes

High voltages (Threat of death) are required for the anodes

Valves have a shorter working life than solid state parts because the heaters tend to fail

Solid state

For low and medium power it is often the case that solid state power stages are used. Sadly for

high power systems these cost more per Watt of output power than a valved system.

http://en.wikipedia.org/wiki/Sigma-delta_modulation
http://en.wikibooks.org/w/index.php?title=Watt&action=edit&redlink=1

Basics

32

3.1.1.4 Linking the transmitter to the aerial

The vast majority of modern equipment is designed to operate with a resistive load driven via

coaxial cable of one particular impedance, often 50 ohms. To connect the aerial to this coaxial cable

transmission line a matching network and/or a balun may be required. Commonly a SWR meter

and/or a Antenna analyzer are used to check the goodness of the match between the aerial system

and the transmission line (feeder).

See Antenna tuner and balun for details of matching networks and baluns respectively.

3.1.1.5 EMC matters

While this section was written from the point of view of a radio ham with relation to Television

interference (radio transmitter interference) it applies to the construction and use of all radio

transmitters, and other electronic devices which generate high RF powers with no intention of

radiating these. For instance a dielectric heater might contain a 2000 Watt 27 MHz source within it,

if the machine operates as intended then none of this RF power will leak out. However if the

device is subject to a fault then when it operates RF will leak out and it will be now a transmitter.

Also computers are RF devices, if the cases is poorly made then the computer will radiate at VHF.

For example if you attempt to tune into a weak FM radio station (88 to 108 MHz, band II) at your

desk you may lose reception when you switch on your PC. Equipment which is not intended to

generate RF, but does so through for example sparking at switch contacts is not considered here,

for a consideration of such matters please see Television interference (electrical interference) for

further details.

RF leakage (defective RF shielding)

All equipment using RF electronics should be inside a screened metal box, all connections in or out

of the metal box should be filtered to avoid the ingress or egress of radio signals. A common and

effective method of doing so for wires carrying DC supplies, 50 Hz AC connections, audio and

control signals is to use a feedthrough capacitor. This is a capacitor which is mounted in a hole in

the shield, one terminal of the capacitor is its metal body which touches the shielding of the box

while the other two terminal of the capacitor are the on either side of the shield. The feed through

capacitor can be thought of as a metal rod which has a dielectric sheath which in turn has a metal

coating.

In addition to the feed through capacitor, either a resistor or RF choke can be used to increase the

filtering on the lead. In transmitters it is vital to prevent RF from entering the transmitter through

any lead such as a power, microphone or control connection. If RF does enter a transmitter in this

way then an instability known as motorboating can occur. Motorboating is an example of a self

inflicted EMC problem.

If a transmitter is suspected of being responsible for a television interference problem then it

should be run into a dummy load, this is a resistor in a screened box or can which will allow the

transmitter to generate radio signals without sending them to the antenna. If the transmitter does

http://en.wikipedia.org/wiki/Antenna_tuner
http://en.wikipedia.org/wiki/balun

Communication Basics

33

not cause interference during this test then it is safe to assume that a signal has to be radiated from

the antenna antenna to cause a problem. If the transmitter does cause interference during this test

then a path exists by which RF power is leaking out of the equipment, this can be due to bad

shielding. This is a rare but insidious problem and it is vital that it is tested for.

You are most likely to see this leakage on homemade equipment or equipment which has been

modified. It is also possible to observe RF leaking out of microwave cookers.

Spurious emissions

Early in the development of radio technology it was recognized that the signals emitted by

transmitters had to be 'pure'. For instance Spark-gap transmitters were quickly outlawed as they

give an output which is so wide in terms of frequency. In modern equipment there are three main

types of spurious emissions.

The term Spurious emissions refers to any signal which comes out of a transmitter other than the

wanted signal. The spurious emissions include harmonics, out of band mixer products which are

not fully suppressed and leakage from the local oscillator and other systems within the transmitter.

Harmonics

These are multiples of the operation frequency of the transmitter, they can be generated in a stage

of the transmitter even if it is driven with a perfect sine wave because no real life amplifier is

perfectly linear. It is best if these harmonics are designed out at an early stage. For instance a push-

pull amplifier consisting of two tetrode valves attached to an anode tank resonant LC circuit which

has a coil which is connected to the high voltage DC supply at the centre (Which is also RF

ground) will only give a signal for the fundamental and the odd harmonics.

Basics

34

Here is a slightly worse design which only has one tetrode, while perfectly good designs have been

made using this circuit it does have more potential shortcomings than the above circuit.

Communication Basics

35

In addition to the good design of the amplifier stages, the transmitter's output should be filtered

with a low pass filter to reduce the level of the harmonics.

The harmonics can be tested for using a RF spectrum analyser (expensive) or with an absorption

wavemeter (cheap). If a harmonic is found which is at the same frequency as the frequency of the

signal wanted at the receiver then this spurious emission can prevent the wanted signal from be

received.

Local oscillators and unwanted mixing products

Imagine a transmitter, which has an intermediate frequency (IF) of 144 MHz, which is mixed with

94 MHz to create a signal at 50 MHz, which is then amplified and transmitted. If the local oscillator

signal was to enter the power amplifier and not be adequately suppressed then it could be

radiated. It would then have the potential to interfere with radio signals at 94 MHz in the FM

audio (band II) broadcast band. Also the unwanted mixing product at 238 MHz could in a poorly

designed system be radiated. Normally with good choice of the intermediate and local oscillator

frequencies this type of trouble can be avoided, but one potentially bad situation is in the

construction of a 144 to 70 MHz converted, here the local oscillator is at 74 MHz which is very

close to the wanted output. Good well made units have been made which use this conversion but

their design and construction has been challenging. This problem can be thought of as being

related to the Image response problem which exists in receivers.

One method of reducing the potential for this transmitter defect is the use of balance and double

balanced mixers. If the equation is assumed to be

E = E1 . E2

and is driven by two simple sine waves, f1 and f2 then the output will be a mixture of four

frequencies

f1

f1+f2

f1-f2

f2

If the simple mixer is replaced with a balanced mixer then the number of possible products is

reduced. Imagine that two mixers which have the equation {I = E1 . E2} are wired up so that the

current outputs are wired to the two ends of a coil (the centre of this coil is wired to ground) then

the total current flowing through the coil is the difference between the output of the two mixer

stages. If the f1 drive for one of the mixers is phase shifted by 180o then the overall system will be

a balanced mixer.

Basics

36

E = K . Ef2 . ΔEf1

So the output will now have only three frequencies

f1+f2

f1-f2

f2

Now as the frequency mixer has fewer outputs the task of making sure that the final output

is clean will be simpler.

Instability and parasitic oscillations

If a stage in a transmitter is unstable and is able to oscillate then it can start to generate RF at either

a frequency close to the operating frequency or at a very different frequency. One good sign that it

is occurring is if a RF stage has a power output even without being driven by an exciting stage.

Another sign is if the output power suddenly increases wildly when the input power is increased

slightly, it is noteworthy that in a class C stage that this behaviour can be seen under normal

conditions. The best defence against this transmitter defect is a good design, also it is important to

pay good attention to the neutralization of the valves or transistors.

Receiver Design from http://en.wikipedia.org/wiki/Tuner_(electronics)

37

Reference

Radiocommunication handbook (RSGB), ISBN 09006125842

3.2 Receiver Design from http://en.wikipedia.org/wiki/Tuner_(electronics)

 Inductively coupled crystal radio receiver

The simplest tuner consists of an inductor and capacitor connected in parallel, where the capacitor or

inductor is made to be variable. This creates a resonant circuit which responds to an alternating

current at one frequency. Combined with a detector, also known as ademodulator, (diode D-1, in the

circuit), it becomes the simplest radio receiver, often called a crystal set.

Practical radio tuners use a superheterodyne receiver. Older models would realize manual tuning by

means of mechanically operated ganged variable capacitors. Often several sections would be

provided on a tuning capacitor, to tune several stages of the receiver in tandem, or to allow

switching between different frequency bands. A later method used a potentiometer supplying a

variable voltage tovaractor diodes in the local oscillator and tank circuits of front end tuner, for

electronic tuning. Still later, phase locked loop methods were used, with microprocessor control.

In a self-contained radio receiver for audio, the signal from the detector after the tuner is run

through a volume control and to an amplifier stage. The amplifier feeds either an internal speaker

or headphones. In a tuner component of an audio system (for example, a home high-fidelity

system or a public address system in a building), the output of the detector is connected to a

separate external system of amplifiers and speakers.

The broadcast audio FM band (88 - 108 MHz in most countries) is around 100 times higher in

frequency than the AM band and provides enough space for a bandwidth of 50 kHz.This

bandwidth is sufficient to transmit both stereo channels with almost the full bandwidth of the

human ear. Sometimes, additional subcarriers are used for unrelated audio or data transmissions.

The left and right audio signals must be combined into a single signal which is applied to the

modulation input of the transmitter; this is done by the addition of an inaudible subcarrier signal

to the FM broadcast signal. FM stereo allows left and right channels to be transmitted. The

availability of FM stereo, a quieter VHF broadcast band, and better fidelity lead to the

specialization of FM broadcasting in music, tending to leave AM broadcasting with spoken-word

material.

2 http://en.wikibooks.org/wiki/Special:BookSources/0900612584

http://en.wikibooks.org/wiki/Special:BookSources/0900612584
http://en.wikipedia.org/wiki/Tuner_(electronics)
http://en.wikipedia.org/wiki/Crystal_radio
http://en.wikipedia.org/wiki/Inductor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Detector_(radio)
http://en.wikipedia.org/wiki/Demodulator
http://en.wikipedia.org/wiki/Crystal_radio_receiver
http://en.wikipedia.org/wiki/Superheterodyne_receiver
http://en.wikipedia.org/wiki/Potentiometer
http://en.wikipedia.org/wiki/Varactor_diode
http://en.wikipedia.org/wiki/Phase_locked_loop
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/FM_stereo
http://en.wikipedia.org/wiki/FM_broadcasting

Basics

38

3.3 Antenna

An antenna (or aerial) is an electrical device which converts electric power into radio waves, and vice

versa.[1]
 It is usually used with a radio transmitter or radio receiver. In transmission, a radio transmitter

supplies an oscillating radio frequency electric current to the antenna's terminals, and the antenna

radiates the energy from the current as electromagnetic waves (radio waves). In reception, an

antenna intercepts some of the power of an electromagnetic wave in order to produce a tiny

voltage at its terminals, that is applied to a receiver to be amplified.

Antennas are essential components of all equipment that uses radio. They are used in systems such

as radio broadcasting, broadcast television, two-way radio, communications receivers, radar, cell phones,

and satellite communications, as well as other devices such as garage door openers, wireless

http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Radio_wave
http://en.wikipedia.org/wiki/Antenna_(radio)#cite_note-Graf-1
http://en.wikipedia.org/wiki/Transmitter
http://en.wikipedia.org/wiki/Receiver_(radio)
http://en.wikipedia.org/wiki/Transmission_(telecommunications)
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Amplifier
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Radio_broadcasting
http://en.wikipedia.org/wiki/Broadcast_television
http://en.wikipedia.org/wiki/Two-way_radio
http://en.wikipedia.org/wiki/Communications_receiver
http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Cell_phone
http://en.wikipedia.org/wiki/Satellite_communications
http://en.wikipedia.org/wiki/Garage_door_opener
http://en.wikipedia.org/wiki/Wireless_microphone

Antenna

39

microphones, bluetooth enabled devices, wireless computer networks, baby monitors, and RFID tagson

merchandise.

Typically an antenna consists of an arrangement of metallic conductors (elements), electrically

connected (often through atransmission line) to the receiver or transmitter. An oscillating current

of electrons forced through the antenna by a transmitter will create an oscillating magnetic

field around the antenna elements, while the charge of the electrons also creates an

oscillating electric field along the elements. These time-varying fields radiate away from the antenna

into space as a moving transverse electromagnetic field wave. Conversely, during reception, the

oscillating electric and magnetic fields of an incoming radio wave exert force on the electrons in

the antenna elements, causing them to move back and forth, creating oscillating currents in the

antenna.

Antennas may also include reflective or directive elements or surfaces not connected to the

transmitter or receiver, such as parasitic elements, parabolic reflectors or horns, which serve to direct

the radio waves into a beam or other desired radiation pattern. Antennas can be designed to transmit

or receive radio waves in all directions equally (omnidirectional antennas), or transmit them in a

beam in a particular direction, and receive from that one direction only (directional or high

gain antennas).

Diagram of the electric fields (blue) and

magnetic fields (red) radiated by adipole

antenna (black rods)during transmission.

Large parabolic antenna for communicating

with spacecraft

Antenna tuner

An antenna tuner, transmatch or antenna tuning unit (ATU) is a device connected between a radio

transmitter or receiver and its antenna to improve power transfer between them

by matching the impedance of the radio to the antenna. An antenna tuner matches a transceiver with

a fixed impedance (typically 50 ohms for modern transceivers) to a load (feed line and antenna)

impedance which is unknown, complex or otherwise does not match. An ATU allows the use of

one antenna on a broad range of frequencies. An antenna and transmatch are not as efficient as

a resonant antenna due to feedline losses due to the SWR (multiple reflections) and losses in the

ATU itself. An ATU is an antenna matching unit, and cannot change the resonant frequency of the

http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Wireless_LAN
http://en.wikipedia.org/wiki/Baby_monitor
http://en.wikipedia.org/wiki/RFID_tag
http://en.wikipedia.org/wiki/Conductor_(material)
http://en.wikipedia.org/wiki/Driven_element
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Passive_radiator
http://en.wikipedia.org/wiki/Parabolic_antenna
http://en.wikipedia.org/wiki/Horn_antenna
http://en.wikipedia.org/wiki/Radiation_pattern
http://en.wikipedia.org/wiki/Omnidirectional_antenna
http://en.wikipedia.org/wiki/Directional_antenna
http://en.wikipedia.org/wiki/High_gain_antenna
http://en.wikipedia.org/wiki/High_gain_antenna
http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Dipole_antenna
http://en.wikipedia.org/wiki/Dipole_antenna
http://en.wikipedia.org/wiki/Parabolic_antenna
http://en.wikipedia.org/wiki/Radio_transmitter
http://en.wikipedia.org/wiki/Radio_transmitter
http://en.wikipedia.org/wiki/Radio_antenna
http://en.wikipedia.org/wiki/Impedance_matching
http://en.wikipedia.org/wiki/Electrical_impedance
http://en.wikipedia.org/wiki/Ohm
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Electrical_resonance
http://en.wikipedia.org/wiki/Standing_wave_ratio

Basics

40

aerial. Similar matching networks are used in other equipment (such aslinear amplifiers) to

transform impedance.

Basic network for a antenna tuner

3.4 Software Defined Radio (SDR)

Software Defined Radio is a Wireless communication in which the transmitter modulation is

generated or defined by a computer, and the receiver uses a computer to recover the signal

intelligence? To select the desired modulation type, the proper programs must be run by

microcomputers that control the transmitter and receiver

SDR block diagram

3.5 HDSDR (High Definition Software Defined Radio)

HDSDR (High Definition Software Defined Radio) is a freeware SDR program for Microsoft

Windows 2000/XP/Vista/7/8. Typical applications are Radio listening, Ham Radio, SWL, Radio

http://en.wikipedia.org/wiki/Linear_amplifier

ExtIO.dll

41

Astronomy, NDB-hunting and Spectrum analysis. HDSDR (former WinradHD) is an advanced

version of Winrad, written by Alberto di Bene

3.6 ExtIO.dll

The HDSDR software doesn't communicate with the SDR hardware directly. It communicates with

the SDR radio hardware through an External Input Output Dynamic Link Library (ExtIO-DLL)

file, which is a type of plug-in. Alberto di Bene designed the DLL interface so that Winrad can

operate with a wide range of SDR hardware. We extended the DLL-interface to support TX

switching. Winrad and HDSDR can support new hardware radios using an ExtIO-DLL file without

the need to change the HDSDR software. ExtIO DLL files are written by anyone who wishes to

provide support for any particular SDR hardware. In this manner, several radios can be used with

a single piece of software. The software in this case is HDSDR.

3.7 How do I develop an ExtIO.dll ?

We assume that you are a software developer familiar with C/C++ programming. Here is a

“hopefully” well documented header file 3, which specifies the interface between HDSDR and an

ExtIO-DLL. Here is also an example ExtIO DLL 4 with sources as public-domain, developed with

Microsoft Visual C++ 2008 Express ion.

3.8 Visual C++ 2008 Express

Visual C++ is part of the Visual Studio Programming Suite. A light express version is freely available.

Visual Studio is an Integrated Development Environment (IDE) for developing web applications,

client applications, and Windows Phone mobile applications. It supports C, C++, C#, Visual Basic

3.9 Qt

Qt is designed for developing applications and user interfaces once and deploying them across

several desktop and mobile operating systems. The easiest way to start application development

with Qt is to download and install Qt 5. It contains Qt libraries, examples, documentation, and the

necessary development tools, such as the Qt Creator integrated development environment (IDE)

3.10 RF hardware (USB Stick)

For the RF hardware there are some existing SDR USB sticks we can use it:

3.10.1 TERRATEC ran T stick DVB-T/DAB/DAB + Stick USB 2.0 5

3 Guide\LC_ExtIO_Types.h - reference: http://www.hdsdr.de/download/LC_ExtIO_Types.h

4 Guide\ExtIO_Demo_101\.. - reference: http://hdsdr.de/download/ExtIO/ExtIO_Demo_101.zip

5 Reference: http://www.amazon.de/Terratec-ran-T-Stick-DVB-T-schwarz/dp/B007EB995U/

http://www.amazon.de/Terratec-ran-T-Stick-DVB-T-schwarz/dp/B007EB995U/

Basics

42

Price: EUR 29.98

The ultimate all-rounder for the digital TV and radio

reception on your PC

USB stick for DVB-T (TV) and DAB / DAB + (radio). Direct

recording and programming via EPG recording Software for

both television and radio reception. Support for all major

DVB-T Features

3.10.2 Hackrf (an-open-source-SDR-platform) 6

Price: about 300$

Transmit or receive any radio signal from 30 MHz to

6000 MHz on USB power with HackRF.

HackRF is an open source hardware project to build a

Software Defined Radio (SDR) peripheral.

3.11 RF Overview

Radio Frequency (RF) is a rate of oscillation in the range of about 9 kHz to 300 GHz, which

corresponds to the frequency of radio waves, and the alternating currents which carry radio

signals. It is the use of radio signals to communicate real-time data from the warehouse floor to the

WMS database and back to the floor.

This expes processing in the warehouse. Scanners collect the data and transmit it via radio

frequency to antennas located throughout the warehouse. From the antennas, the signal proceeds

to an access point that communicates with the warehouse management system. This process

reduces paper, data entry time delays, cycle count processing, out of stock quantities, typing

errors...

6 The primary web page for HackRF is: http://greatscottgadgets.com/hackrf/

http://greatscottgadgets.com/hackrf/

RF Frequencies policies

43

3.12 RF Frequencies policies

The LNFT allocates Lebanon’s radiofrequency spectrum into a number of frequency bands

relevant to ITU regulations and specifies the general purposes for which the bands may be used.

This process is referred to as the allocation of frequency bands to radio communication services.

The primary objectives to be achieved with the radio spectrum are:

-To harmonize spectrum use with international developments. In this regard, Lebanon follows

closely the work of the ITU, the CEPT, the league of Arab States and the local regional organization

-To manage the radio spectrum within Lebanon taking into account the governmental

requirements and the needs of the various commercial sectors

-To stimulate technological innovation and competitiveness

The LNFT will be updated from time to time dependant on international initiatives and national

decisions. The main source documentation used in the development of this version of LNFT was

the ITU Radio Regulations and the Provisional Final Acts of the ITU WRC07.

Each band may be allocated to one or more services. The services printed in capitals are

called “primary” services; the names which printed in small characters are called “secondary”

services. Stations of a secondary service shall not cause harmful interference to stations of primary

service and cannot claim protection from harmful interference from stations of a primary service.

 For our purpose we should use the Amateurs service bands which are

specified in the following table7:

Frequency

Band (kHz

MHz or

GHz)

International Region 1

Allocation

National Allocation

Main

application

Notes

135.7 – 137.8 kHz FIXED

MARITIME MOBILE

Amateur 5.4C03

5.64 5.67 5.4C04

FIXED

MARITIME MOBILE

5.64 5.67 5.4C04

SRD

Maritime

applications

Ultra Low Power

Active

Medical Implants

ERC REC 62-01

1810-1830

kHz

AMATEUR

5.98

5.99

5.100 5.101

AMATEUR

FIXED 5.98

MOBILE except

aeronautical mobile

5.100

Amateur

applications

1830-1850
kHz

AMATEUR

Amateur

applications

3500-3800
kHz

AMATEUR

FIXED

MOBILE
aeronautical

5.92

AMATEUR

FIXED

MOBILE
aeronautical

5.92

Amateur

applications

7 This table is a part from the LNFT document publish on 28-06-2008

Basics

44

7000-7100
kHz

AMATEUR
AMATEURSATELLITE

5.140 5.141 5.141A

AMATEUR
AMATEURSATELLITE

Amateur
applications

7100-7200
kHz

AMATEUR

5.141A 5.141B 5.141C

5.142

Amateur LBN 3

BROADCASTING

5.141C

10100-10150
kHz

FIXED

Amateur

FIXED

Amateur

14000-14250

kHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

14250-14350
kHz

AMATEUR

5.152

AMATEUR

18068-18168
kHz

AMATEUR
AMATEURSATELLITE

5.154

AMATEUR
AMATEURSATELLITE

21000-21450

kHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

24890-24990

kHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

28000-29700

kHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

50.0000

52.0000

MHz

BROADCASTING

5.164 5.162A

BROADCASTING

LAND MOBILE 5.164

Amateur

LBN 4, LBN 6

 Geographical sharing

with wind profiler

radars in the range 46-

68 MHz

144-146

MHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

Amateur

430-432
MHz

AMATEUR
RADIOLOCATION

5.271 5.272 5.273 5.274

5.275 5.276 5.277

FIXED 5.276
MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION

432-433.05

MHz

AMATEUR

RADIOLOCATION

Earth Exploration

Satellite (active) 5.279A
5.138 5.271 5.272 5.273

5.274 5.275 5.276 5.277

5.280 5.281 5.282

FIXED

MOBILE except

aeronautical mobile

AMATEUR
RADIOLOCATION

Earth Exploration

Satellite (active) 5.279A

5.276

5.277

433.05-

434.79 MHz

AMATEUR

RADIOLOCATION

Earth Exploration-
Satellite (active) 5.279A

5.138 5.271 5.272 5.276

5.277 5.280 5.281

FIXED

MOBILE except

aeronautical mobile
AMATEUR

RADIOLOCATION

Land Mobile

Earth Exploration-

Satellite (active) 5.279A

5.138 5.276

ISM

SRD

434.79-435
MHz

AMATEUR

RADIOLOCATION
Earth Exploration-

Satellite (active) 5.279A

5.138 5.271 5.272 5.276

5.277 5.280 5.281 5.282

FIXED

MOBILE except
Aeronautical Mobile

AMATEUR

AMATEURSATELLITE

RADIOLOCATION

Earth Exploration-

Satellite (active) 5.279A

5.276

 Amateur Satellite

Service restricted to
435-438 MHz.

435-438
MHz

 FIXED
AMATEUR

AMATEURSATELLITE

RADIOLOCATION

RF Frequencies policies

45

5.276

438-440
MHz

AMATEUR
RADIOLOCATION

5.271 5.273 5.274 5.275

5.276 5.277 5.283

FIXED
MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION

5.276

1240-1300

MHz

EARTH

EXPLORATION

SATELLITE (active)
RADIOLOCATION

SPACE RESEARCH

(active)

RADIONAVIGATIONSATELLITE

(S/E)(S/S)

5.329 5.329A 5.328B

Amateur

5.282 5.330 5.331
5.335A

RADIOLOCATION

EARTH

EXPLORATION
SATELLITE (active)

SPACE RESEARCH

(active)

RADIONAVIGATION

RADIONAVIGATIONSATELLITE

5.329 5.329A 5.328B

Amateur

Amateur-Satellite
5.282 5.330 5.331

5.335A

DME

Radio navigation

Amateur

This band 1260-1300

MHz is proposed to be

protected to distance
measurement

equipment (DME)

Wind profiler radars

between 1270 MHz and

1295 MHz

2300-2450

MHz

FIXED

MOBILE 5.384A

Amateur

Radiolocation

5.150 5.282 5.395

FIXED

MOBILE

Amateur

Radiolocation

IMT (2300-2400

MHz)

Fixed links

The band 2300-2400

MHz identified for IMT

(WRC07)

FIXED

MOBILE
Amateur

Amateur Satellite

5.150 5.282

FIXED Links

Amateur
SRDs

RLAN

AVI

RFID

WLAN

ISM

The band 2400-2483.5

MHz is designated for
ISM applications.

Radio communications

must accept any

interference caused by

ISM apparatus in this

band.

5650-5725

MHz

RADIOLOCATION

MOBILE except

aeronautical mobile

5.450A 5.446A

Amateur

Space Research (deep

space)

5.282 5.451 5.453
5.454 5.455

FIXED 5.453

MOBILE

RADIOLOCATION

Amateur

5.282 LBN1

Defense systems

Wireless Access

RLANs

Shipborne and

VTS

Radar

Amateur

applications

ERC REC 70-03

Amateur Satellite

Service (Earth to

space), 5650-5670 MHz

from RR 5.282.

5725-5830

MHz

FIXED-SATELLITE

(E/S)

RADIOLOCATION

Amateur

5.150 5.451 5.455 5.456

5.453

FIXED 5.453

MOBILE

FIXED-SATELLITE

(E/S)

RADIOLOCATION

Amateur

5.150 LBN1

Amateur

applications

SRD

ISM

Radars

BFWA

ERC REC 70-03

ISM 5725-5875 MHz

RTTT 5805-5815 MHz

SRDs 5725-5875 MHz

5830-5850
MHz

FIXED-SATELLITE

(E/S)

RADIOLOCATION

Amateur

Amateur-Satellite (S/E)

5.150 5.451 5.455 5.456

5.453

FIXED

MOBILE

FIXED-SATELLITE

(E/S)

RADIOLOCATION

Amateur

Amateur-Satellite (S/E)

5.150 5.453

Fixed links

Amateur

applications

SRD

ISM

Radars

Amateur Satellite 5830-

5850 MHz (S/E)

10.00-10.15

GHz

FIXED

MOBILE

RADIOLOCATION

Amateur

5.479

FIXED

MOBILE

RADIOLOCATION

Amateur

5.479

Fixed links

SAB

10.15-

10.30 GHz

Fixed links

FWA

ERC REC 12-05 for

fixed service

ERC REC 13-04 for

FWA 10.15-10.30/10.5-

10.65 GHz

10.30-10.45
GHz

Fixed links
SAB

10.45-10.50
GHz

RADIOLOCATION

Amateur

Amateur Satellite

5.481

FIXED

RADIOLOCATION

MOBILE

Amateur

Amateur Satellite

Fixed links

SAB

ERC REC 12-05 for

fixed service

Basics

46

24.00-24.05
GHz

AMATEUR

AMATEURSATELLITE
5.150

AMATEUR

AMATEURSATELLITE
5.150

Amateur

ISM 24-24.5 GHz

24.05-24.25
GHz

RADIOLOCATION

Amateur

Earth exploration

Satellite (active)

5.150

RADIOLOCATION

Amateur

Earth exploration

Satellite (active)

Fixed

Mobile

5.150

Amateur

ISM

SAB

SRD

Motion sensors

ERC REC 70-03

ISM 24-24.5 GHz

47.00-47.20

GHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

Amateur

applications

Amateur satellite

applications

48.20-48.54
GHz

FIXED

FIXED-SATELLITE

(E/S) 5.552

(S/E) 5.516B 5.554A
5.555B

MOBILE

FIXED

FIXED-SATELLITE

(E/S) 5.552

(S/E) 5.516B 5.554A
5.555B

MOBILE

Amateur

Fixed satellite

applications

SAB

ERC REC 25-10

Feeder link band for

40GHz broadcasting

satellites

76.00-77.50
GHz

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur-Satellite

Space Research (S/E)
5.149

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur-Satellite

Space Research (S/E)
5.149

Radio astronomy

applications

RTTT

Amateur

applications
Amateur satellite

applications

Civil

radiolocation

Spectral line and wide

band continuum

observations

Road Transport and

Traffic Telematics 76-
77 GHz Radar

77.50-78.00
GHz

AMATEUR

AMATEUR

SATELLITE

Radio Astronomy
Space Research (S/E)

5.149

AMATEUR

AMATEUR

SATELLITE

Radio Astronomy
Space Research (S/E)

5.149

Radio astronomy

applications

Spectral line and wide

band continuum

observations

78.00-79.00

GHz

RADIOLOCATION

Amateur

Amateur Satellite

Radio astronomy

Space Research (S/E)

5.149 5.560

RADIOLOCATION

Amateur

Amateur-Satellite

Radio astronomy

Space Research (S/E)

5.149 5.560

Radio astronomy

applications

Spectral line and wide

band continuum

observations

79.00-81.00

GHz

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur Satellite

Space Research (S/E)

5.149

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur Satellite

Space Research (S/E)

5.149

Radio astronomy

applications

Spectral line and wide

band continuum

observations

122.25-123
GHz

FIXED

INTER-SATELLITE
MOBILE 5.558

Amateur

5.138

FIXED

INTER-SATELLITE
MOBILE 5.558

Amateur

5.138

Amateur

applications
Amateur satellite

applications

SRD

ERC REC 70-03

134-136

GHz

AMATEUR

AMATEURSATELLITE

Radio Astronomy

AMATEUR

AMATEURSATELLITE

Radio Astronomy

Amateur

applications

Amateur satellite

applications

136-141
GHz

RADIO ASTRONOMY
RADIOLOCATION

Amateur

Amateur satellite

5.149

RADIO ASTRONOMY
RADIOLOCATION

Amateur

Amateur satellite

5.149

Radio astronomy
applications

Amateur

applications

Amateur satellite

applications

Spectral line and wide
band continuum

observations

241-248
GHz

RADIO ASTRONOMY

RADIOLOCATION

Amateur
Amateur-Satellite

5.138 5.149

RADIO ASTRONOMY

RADIOLOCATION

Amateur
Amateur-Satellite

5.138 5.149

Amateur

applications

Amateur satellite
applications

Spectral line and wide

band continuum

observations
ERC REC 70-03

248-250
GHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

RF modules

47

Radio Astronomy

5.149

Radio Astronomy

5.149

The yellow rows indicate the frequency band which we are going to use it.

From 433.05 to

434.79 MHz

AMATEUR RADIOLOCATION

Earth Exploration- Satellite (active)

5.279A 5.138 5.271 5.272 5.276

5.277 5.280 5.281

FIXED MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION Land Mobile

Earth Exploration- Satellite

(active) 5.279A 5.138 5.276

ISM

SRD

3.13 RF modules

An RF Module is a (usually) small electronic circuit used to transmit, receive, or transceive radio

waves on one of a number of carrier frequencies. RF Modules are widely used in consumer

application such as garage door openers, wireless alarm systems, industrial remote controls, smart

sensor applications, and wireless home automation systems. They are often used instead of

infrared remote controls as they have the advantage of not requiring line-of-sight operation.

In this project we will use an RF module to send and receive message between two programmable

microcontrollers with some condition related to the frequency, range and module speed. For this

purpose there are several RF modules which may do this, bellows we will take a look on some of

it:

3.13.1 STD-402

The transceiver to be used is MB-STD-RS232. It is a bi-directional semi-duplex radio modem

having RS232 serial interface. It uses CIRCUIT DESIGN’s standard 434 MHz FM Narrow Band

transceiver module STD-402 transceiver for RF part. This transceiver was selected because of its

frequency of 434 MHz For this frequency in Germany there is no extra permission necessary.

Another reason is that this transceiver is a cheap one.

The STD-402 transceiver is an UHF Narrow Band Multi channel Transceiver. The UHF FM-

Narrow Band semi-duplex radio data module STD-402 equipped PLL controller in its robust metal

housing. Unlike other transceivers, the STD-402 is ready to transmit RF data without complicated

controller board. The compact size and low power consumption of the STD-402 make it ideal for

battery operated applications where its interference rejection and practical distance range are

much better than similar RF modules based on Wide Band SAW – resonator frequency devices.

Most of RF settings are done by internal microcomputer, which allows the user to manipulate the

module without professional knowledge of RF circuit.

3.13.1.1 Special for MB-STD-RS232

Basics

48

Figure 5.3.1: MB-STD-RS232 – CIRCUIT DESIGN

The RF part complies with the European radio, EMC and safety requirements and has been

notified in major European countries under the R & TTE directive. The MB-STD-RS232 provides

long range data link at low/medium data rate for various industrial telemetry and data transfer

applications. Also this board can be used as a test board of the STD-402 TR.

Features

 CE compliance STD-402 434 MHz RF module on the board.

 RS232 interface with D-sub 9pins connector or Modular 6pin jack.

 Fixed frequency / Auto frequency setting selectable.

 Cross / Straight cable selection SW.

Applications

 Serial data transmission (RS232C communication)

 Telemeter (FA line, Sensor information)

 Wireless connection between PC and peripheral RS232 equipment

General Description

MB-STD-RS232 is designed to make it possible for the user to connect between RS232 equipments

with the radio. STD-402 434 MHz narrow band radio module that complies with EN300220 is

equipped on the board. 64 channels are pre-programmed in the module.

There are two frequency setting are available. In fixed (manual) setting, RF channel can be set on

board switches. In auto setting, RF channel is set to vacant channel automatically.

Operation mode and communication set up (Ack, parity, data rate) can be selected by on board

dip-switch. The operation mode 1 is designed for two-way communication and the operation

mode 2 is designed for one-way communication (TX -> RX).

1:N communication is possible by using unique module ID number that designated to each RF

module.

Specification

RF parameter

 Communication mode Half-Duplex

 Frequency range 433.200 to 434.775 MHz

CH step 25 kHz

Number of CH 64 CH

CH setting Fix / Auto (8Gr*8ch)

Modulation data speed 9600bps

Modulation 2FSK

Emission class F1D

Transmission power 10 mW

Serial Interface

Interface RS-232C

RF modules

49

Data format Asynchronous communication (UART)

Data speed of RS 1200/2400/4800/9600 bps

Flow control RS / CS hardware control

Buffer Transmission 2kB, Reception 2KB

Interface connector D-Sub 9P / Modular 6P

 Other

Switches Power, Frequency, Operation

Mode, Cable (Cross/Straight)

LED indication TX, RX, RSSI, LD, LE

Dimension 85*53*15mm

Supply Voltage 4.0 to 9V DC.

Figure 5.3.2: MB-STD-RS232 – CIRCUIT DESIGN

For more details about this board, refer to Annex A.

Basics

50

3.13.1.2 Special for STD-402 (Transceiver)

Figure 6.6: STD-402 Transceiver – CIRCUIT DESIGN

The STD-402 transceiver is an UHF Narrow Band Multi channel Transceiver.

The UHF FM-Narrow Band semi-duplex radio data module STD-402 equipped PLL controller in

its robust metal housing. Unlike other transceiver, the STD-402 is ready to transmit RF data

without complicated controller board. The compact size and low power consumption of the STD-

402 make it ideal for battery operated applications where its interference rejection and practical

distance range are much better than similar RF modules based on Wide Band SAW – resonator

frequency devices.

Most of RF settings are done by internal microcomputer, which allows the user to manipulate the

module without professional knowledge of RF circuit.

Features

 European EN300 200 standard compliance.

 High technology into compact module for easy operation.

 Low voltage operation from 3.6 V DC.

 Low current consumption, ideal for battery operated applications.

 9600bps data rate.

 Carrier sense output for Multi-Channel access operation.

Application

 Remote control system.

 Security systems.

 Bi-directional communication systems.

 Telemetry systems

 Handy terminal.

STD-402 characteristics

 Common

 Communication form Semi-duplex

 Frequency range 433.200 MHz to 433.775 MHz

 Channel step 25 KHz.

 Baud rate 9600bps max.

RF modules

51

 Supply voltage 3.6 – 12 V DC (Direct Mode).

 Dimensions 53  35  12 mm.

 Transmitter

 RF output power 9 mW  1mW.

 Data input level 3.6 – 12V (Direct Mode).

 Input signal Digital

 Spurious emission < -60 dBm (< 1 GHz).

 Supply current 36 mA.

 Receiver

 Receiver type Double super heterodyne PLL synthesizer.

 Selectivity  4 kHz at –6dB point.

 Data output Digital.

 The STD-402 transceiver has 3 mode operation guides:

1. Direct Mode Operation Guide (For more details about this mode, refer to Annex B)
2. Auto Mode Operation Guide. (For more details about this mode, refer to Annex C)
3. Auto Mode Operation Guide for CPU interface. (For more details about this mode, refer to Annex D)

Or the MB-STD-RS232 equips STD-402 transceiver module and performs packet communication using CPU

interface mode of the transceiver.

3.13.2 RFM42B-RFM31B 433MHz

Features:

• 433/868/915MHz ISM bands Frequency range:

• Low Power Consumption

• Data Rate = 0.123 to 256 kbps

• FSK, GFSK, and OOK modulation

Basics

52

• Power Supply = 1.8 to 3.6 V

• Ultra low power shutdown mode

• Wake‐up timer

• TX 64 byte FIFO

• Low battery detector

• Temperature sensor and 8-bit ADC

• –40 to +85 °C temperature range

• Integrated voltage regulators

• Frequency hopping capability

• On‐chip crystal tuning

• 14-PIN DIP & 16-PIN SMD package

• Low cost

• Power‐on‐reset (POR)

Special for RFM42B (Transmiter):

• Output Power Range

+1 to +20dBm (RFM42B)

–8 to +13dBm (RFM43B)

 • Integrated 32 kHz RC or 32 kHz XTAL

• Configurable packet handler

Special for RFM31B (Receiver):

• Sensitivity = –121 dBm

• Digital RSSI

• Auto-frequency calibration (AFC)

• Clear channel RX BW 2.6–620 kHz

• Programmable assessment

• Programmable packet handler

• Programmable GPIOs

• Embedded antenna diversity algorithm

• Configurable packet handler

• Preamble detector

• RX 64 byte FIFO

Application example:

RF modules

53

3.13.3 BOWITZ W.T.

 من كتاب الإرسال اللاسلكي و البث

 الكتاب الثامن من موسوعة عالم الالكترونيات للمهندس أمين فهمي
 دار الراتب الجامعية

 :الباب الثامن

 أجهزة الارسال و الاستقبال التجارية
 561: إبتداء من صفحة

3.13.4 Comparison between modules

module Frequency Range

(m)

Speed

(bps)

other

SHY-J6122TR 300 – 450 MHz Made In chine

Available in Lebanon

Rx Tx 315Mhy 315 MHz 433.92

MHz

> 500 m < 10Kbps Made In chine

Available in Lebanon

RFM12 433MHz 433 MHz > 115.2 Kbps Programmable TxRx

bandwidth

SPI interface

Made In chine

Available in Lebanon

RFM12 915 MHz 915 MHz

STD-402 434 MHz 500 m 9600 bps Serial com. Need extra

circuit (max232)

Not available anymore

BOWITZ W.T. Full W.T. project, We

should build it by

ourselves using the

BOWITZ open source

information

55

4 Specification

4.1 System Requirements

[SysReq 1] The system shall be a demonstration plattform for customers. The customers can then

specify their individual requirements. Afterwards the IAP ECS paltform shall be migrated in every

customer project to the specific needs

[SysReq 2] Our goal is to design an Emergency communication system (voice and information) for

the red halfmoon, Red Cross or police to stay on touch in emergency situations.

4.2 Hardware Requirements

[HWReq1] The system shall use a SDR (software defined radio) with RF transmission technology.

[HWReq 2] The sending and receiving HW shall be a cheap off-the-shell system so that the project

can be finished in December 2013.

4.3 Software Requirements

tbd

57

5 System Design

5.1 System Overview

5.2 Central Station

5.2.1 Architecture

Base Station

Software

Driver

ExtIO.dll

GUI interface

(C++ programming)

Demodulation

Modulation

Signal

processing

WinRad SDR (Software Defined Radio)

Keyboard

Screen

Display

Antenna

Ran T-stick
+

SDR platform

Client

SCS-SMS SCS-SMS

SCS-SMS
SCS-SMS

SCS-SMS

5.2.2 SDR development side

In our project, we need the Software Defined Radio code which is included in HDSDR software.

But as we know the HDSDR software is not open-source software while WinRad is. Then we have

two potential choices to do this step:

System Design of v3.2

GUI using I and Q

from WinRad

SCS-SMS

with W.T.

ran T-stick+

SDR platform

System Design

58

For the HDSDR: we can change and develop the ExtIO.dll file of this program to input from my

STD hardware source and to output on my GUI. In this case the HDSDR software will

work o the background of our GUI software.

This choice means that we should use the HDSDR software in the two communication

sides. This means also that we should use PC on the two sides again.

For the WinRad: as we say before WinRad is Open source then we can use its code. We should

read its code to know where is the SDR code to copy it to our GUI.

This choice has the following problem: with WinRad we can only receive while we need to

send and receive. This means that we should develop the code such that also sending is

possible.

5.2.3 Graphical User Interface

The Graphical User Interface is the interaction interface between the user and the system. The goal

of this interface is to monitor the location status: road status, problems on road, hospital status,

and also it will have a messaging box to write notes for each other. Also the user interface should

have the HDSDR option (change frequencies, send/receive, volume up/down) with an extra button

to open the HDSDR software when user want.

Mobile Stations

59

5.3 Mobile Stations

In the client side we can use the hardware of SCS-SMS project instead of PC but we should first

add an RF transceiver to it with doing some modification on it

The main modifications are:

- Adding the RF hardware (amplifier, filter, antenna)

- Adding the A/D and D/A converter

- Put the SDR code on its processor

System Design

60

Base Station

Software

Driver

ExtIO.dll

GUI interface

(C++ programming)

Demodulation

Modulation

Signal

processing

WinRad SDR (Software Defined Radio)

Keyboard

Screen

Display

Antenna

HackRF

SDR platform

Antenna

Amateur Radio Transceiver

Amplifier Filter

Client

In this version we need to change on the hardware with the software of the SCS-SMS project to be

able to use it in our project. The basic changes are:

- Adding the RF hardware (amplifier, filter, antenna)

- Adding the A/D and D/A converter

- Put the SDR (HDSDR) on a second processor

The new block diagram will be:

SCS-SMS after changes to GIS-STD

Keypad

LCD
Write on

LCD

Read from

Keypad
Encryption

Decryption

AES

PIC microcontroller

Demodulation

Modulation

Signal

processing

SDR

DAC

ADC

Amplifier Filter

RF hardware

Antenna

Processor

61

6 Mechanics

6.1 Mechanical Design

6.2 Prototype without cover

63

7 SCS-SMS

Secured communication System

7.1 Abstract of SCS-SMS

The goal of this project is to sending SMS securely on several way of

communication (i. e.: telephone, mobile, RF transceiver…)

7.2 System design

System plan:

Block diagram:

SCS-SMS

SCS-SMS Block Diagram

Keypad
Mic

port

Speaker

port
Receiving

Serial Com.
Write on

LCD

Read from

Keypad

Send by

Serial Com. Encryption

Decryption

AES

PIC microcontroller

Tx

Rx
LCD

SCS-SMS

64

New:

7.3 Architectures

The architectures of this project is contain as a basic component a PIC microcontroller with a

4x4 keypad with a LCD and with some other electronic components

Equipment used:

PIC microcontroller 18f4550 1

LCD 2x16 (line X character) 1

Keypad 4x4 1

Resistor 4.7 kΩ 1

Pot resistor 10 kΩ max 1

Capacitor 1µF 4

Crystal 48000 MHz 1

Voltage regulator 78L05 1

Push button 1

PIC microcontroller:

The microcontroller needs a programmer with a compiler to write your program in it. The

most widely compiler is the MPLAB software which we will use it in this project, the MPLAB

Keypad

LCD
Write on

LCD

Read from

Keypad
Encryption

Decryption

AES

PIC microcontroller

Demodulation

Modulation

Signal

processing

DAC

ADC

Antenna

RF Modules

Amplifie

r

Filter

Architectures

65

already have an Assembly compiler for the PIC but if you want to write your program in C

language then you need a C compiler for your PIC. On our project the compiler we use it is

MCC18 which is for the 18 PIC series. We will discuss the c program in the next chapter

LCD:

2x16 LCD is used in this project to display character on 2 lines 16 characters Liquid Crystal

Display. This LCD has 14 input pins to write on and to control LCD

LCD PINs description:

Pin Symbol Description

1 Vss Ground

2 Vcc +5 V power supply

3 Vee Power supply to control contrast

4 RS RS=0 to select command register

RS=1 to select data register

5 RW RW=0 for write

RW=1 for read

6 E Enable

7 DB0 The 8-bit data bus

8 Db1 The 8-bit data bus

9 DB2 The 8-bit data bus

10 DB3 The 8-bit data bus

11 DB4 The 8-bit data bus

12 DB5 The 8-bit data bus

13 DB6 The 8-bit data bus

14 DB7 The 8-bit data bus

On each time you need to write on LCD or to send a command to LCD you should set the

Enable pin E before then disable it after sending.

Also you should do a harmony between the speed of the LCD receiving with the speed of PIC

data sending, and this will be do it by the PIC software using a delays function.

Finally, a Pot resistor should be connecting to the R pin of the LCD to control the LCD light

brightness.

Keypad:

The keypad we use is 4x4 keypad with 8 I/O pins; the 4x4 keypad design show in the picture

bellow:

SCS-SMS

66

As we see in the picture above, we nave 4 input pins and 4 output pins. We should set each

input one by one and in each time we should read the output on the 4 output pins to know which

key was pressed.

In the software program you should specify the meaning of each key. In our project, we specify

our key as follow:

In the normal case the keypad will write numbers if F1 (Function1 key) pressed then the key

will write the Blue character (A, D, G, J, M, P, T, X, S). IF F2 (Function2 key) pressed then the key

will write the Green character (B, E, H, K, N, Q, U, Y, W). If the F3 (Function3 key) pressed then the

key will write the Red character (C, F, I, L, O, R, V, Z). There are also three other key which are:

(Enter) to send data, (_) to write a space, () to delete the last character.

System Design:

The design of the system was developed on Proteus to simulate and test before the built of the

real system.

The figure bellow shows us the system design:

Architectures

67

As we see, our design is too simple. It has three base components: PIC, keypad, and a LCD.

The Keypad is connected to port B of the PIC, and LCD connected to the port C and D. port D

connected to LCD Data register and port C (first three pins only) connected to LCD Controller. The

virtual machine is added for testing purpose.

The design is enough in Proteus simulation but it is not in the real hardware while we should

add some components for: timing resonator, voltage regulator, and reset button.

Timing components resonator:

A PIC microcontroller requires an external clock circuit (some PIC

microcontrollers have built-in clock circuits) to function accurately. For

accurate timing applications, the clock circuitry consists of a crystal, and

two small capacitors. Figure bellow shows the circuit diagram of a PIC

microcontroller with a 4-MHz crystal clock circuit. The crystal and the

capacitors are connected to the OSC1 and OSC2 inputs of the

microcontroller.

Power source and Reset circuit

A PIC microcontroller starts executing the user program from

address 0 of the program memory when power is applied to the

chip. As shown in Figure bellow, the reset input (MCLR) of the

microcontroller is usually connected to the 5V supply voltage

through a 4.7K resistor.

SCS-SMS

68

There are many applications where the user may want to force reset action e.g. by pressing an

external button so that the program re-starts to execute from the beginning. External reset is very

useful during microcontroller-based system development

and testing. Figure bellow shows how an external reset

button can be connected to a PIC microcontroller. Normally

the MCLR input is at logic 1, and goes to logic 0 which resets

the microcontroller when the reset button is pressed. The

microcontroller goes back to the normal operating mode

when the button is released.

Power supply

Every electronic circuit requires a power supply to

operate. The required power can either be provided from a battery, or the mains voltage can be

used and then reduced to the required level before it is used in the circuit (e.g. a mains adaptor). In

this section, we shall look at the design of a power supply circuit to power our PIC microcontroller

circuits.

PIC microcontrollers can operate from a power supply voltage in the range 2 to 6V. The

standard power supply voltage in digital electronic circuits is 5 V and this is the voltage with

which the PIC microcontrollers are mostly operated. Unfortunately, it is not possible to obtain 5 V

using standard alkaline batteries only. The nearest we can get is by using three batteries, which

gives 4.5 V and this is not enough to power standard logic circuits. The simplest solution to drop

the voltage from 9 to 5 V is by using a potential divider circuit using two resistors. Although a

potential divider circuit is simple, it has the major disadvantage that the voltage at the output

depends on the current drawn from the circuit. As a result of this, the output voltage will change

as we add or remove components from our circuit. Also, the output voltage falls as the battery is

used. A voltage regulator circuit is needed to convert the 9 V battery voltage into 5V, independent

of the current drawn from the supply. A basic voltage regulator circuit consists of a regulator

integrated circuit and filter capacitors. Figure bellow shows a low-cost voltage regulator circuit

using the 78L05-type voltage regulator IC, and two filter capacitors. 78L05 is a 3-pin IC with a

maximum current capacity of 100 mA.

Architectures

69

One of the pins of 78L05 is connected to the +V terminal of the battery in parallel with a 0.33-uF

capacitor. One of the pins is connected to the -V terminal of the battery. The third pin provides the

+5 V output and a 0.01-uF capacitor should be used in parallel with this pin. In applications where

a larger current is required, the 7805 regulator IC can be used. This is pin compatible with the low-

power 78L05 and it has a maximum current capacity of 1 A. 78L05 should be used with a suitable

heat-sink in applications drawing more than a few hundreds of mill-amperes.

The complete circuit diagram of our PIC based basic system, together with the power supply,

is shown in Figure bellow. The circuit is now fully functional, what is required now is to write our

program and load it into the program memory of the microcontroller.

The final circuit is show in the figure bellow:

SCS-SMS

70

The final circuit on PCB board is show in the figure bellow (see layout on Appendix B):

7.4 PIC software

As we see in the section before, we will write our program using C language. So, we should

install the MCC18 C compiler for our MPLAB software.

In our program, some (.h) libraries which will be use in the program should be include on the

head of our program

The (.h) libraries we include it is:

P18f4550.h, stdio.h, dalays.h, string.h

And this is doing by this C code:

#include<p18f4550.h>

#include<stdio.h>

PIC software

71

#include<delays.h>

#include<string.h>

Now, let’s start with our program. The program is containing some special functions a side to

the main function and the initialization functions.

The special functions are:

void INIT_PORT(void);

void InitSerial(void);

char Encryption(char PC);

char Decryption(char CC);

void SendToSerial(char m);

void SendStringToSerial(char msg[]);

char ReceiveFromSerial(void);

void LCD_CMD(unsigned int value);

void WRITE_CHAR_LCD(unsigned char value);

void WRITE_STRING_LCD(char value[]);

char KeyPad(void);

void on_touch(void);

void send_SMS(void);

void send_data(void);

void Menu(void);

INIT_PORT function

The goal of this function is to initialize the input output port/pin for the microcontroller by

setting the TRIS for each port or pin used. This function also clears all port from any past setting.

This function has no return no calling input.

C code:

void INIT_PORT(void)

{

 ADCON1=0x0E; //for using analog port RA0

 TRISAbits.TRISA0 = 1; //input pin

 TRISAbits.TRISA1 = 1; //input pin

 PORTA =0x00;

 TRISB =0b11110000;

 PORTB =0x00;

 TRISCbits.TRISC0 = 0; //output pin for LCD RS

 TRISCbits.TRISC1 = 0; //output pin for LCD RW

 TRISCbits.TRISC2 = 0; //output pin for LCD E

 TRISCbits.TRISC6 = 0; //output pin

 TRISCbits.TRISC7 = 1; //input pin

SCS-SMS

72

 PORTC =0x00;

 TRISD =0x00; //output port 00000000

 PORTD =0x00;

}

InitSerial function

To communicate with external components such as computers or microcontrollers, the PIC

microcontroller uses a component called USART - Universal Synchronous Asynchronous

Receiver Transmitter. This component can be configured as:

 A Full-Duplex asynchronous system that can communicate with peripheral devices, such as

CRT terminals and personal computers

 A Half-Duplex synchronous system that can communicate with peripheral devices, such as

A/D or D/A integrated circuits, serial EEPROMs, etc.

To enable the serial communication with PIC microcontroller we must set different parameters

within two registers:

1. TXSTA - Transmit Status and Control Register

2. RCSTA - Receive Status and Control Register

The send information will be stored inside TXREG register, which acts as a temporary buffer

storage of information prior to transmission. While the receive information will be store in the

RCSTA register, which acts as a temporary buffer storage.

Each transmission is transmitted in the particular rate (BAUD). The baud rate is measured in

units of bps (bit per second). This is done by setting the system clock to the value needed. To do

so, we need to “write” a hexadecimal number to the SPBRG register. The value written to the

SPBRG register set the clock cycle to the value we want for the BAUD rate.

PIC software

73

The size of SPBRG register is 8-bit. In asynchronous mode, the baud rate of transmission of the

information can be set to high speed or to low speed. The rate selection, as already seen, is made

by the BRGH bit in TXSTA register:

1 = High speed 0 = Low speed

For each baud rate we need to calculate the value being placed in the SPBRG differently:

SPBRG = (Fosc / (16 x Baud rate)) - 1, BRGH = 1 High Speed

SPBRG = (Fosc / (64 x Baud rate)) - 1, BRGH = 0 Low Speed

In our case, we have: Fosc=48 Mhz, Baud rate=9600

 For High Speed => SPBRG = 0x137 hex

 For Low Speed => SPBRG = 0x4D hex

After the calculation of this tree register we can set it by this function as follow, as we see this

function also have no return no calling input

C code:

void InitSerial(void)

{

 SPBRG = 0x4D; // 4D hex or 77 decimal (baud rate=9600), Low

speed: SPBRG = (Fosc / (64 x Baud rate)) - 1

 TXSTA = 0x22; // determinng the setting for the transmitter

 RCSTA= 0x90; //determining the setting for the receiver

}

SendToSerial function

this function receive a character as calling input and put it into the buffer of the transmission

register to be send and a while loop used with the TRMT register to wait until message was sent.

No return for this function, it has only char as calling input.

C code:

void SendToSerial(char m)

{

 TXREG = m;

 while(TXSTAbits.TRMT==0){}

}

SendStringToSerial function

SCS-SMS

74

This function is to send a more than one character to serial by only one command. This

function has no return but it need a string array from the caller. (@) is specified for ENTER

meaning.

C code:

void SendStringToSerial(char msg[])

{

 int i, lenght;

 lenght = strlen(msg);

 for(i=0; i <= lenght; i++){

 if(msg[i]=='@') break;

 SendToSerial(msg[i]);

 }

}

ReceiveFromSerial function

This function is to receive the data send from other and a while loop used with the RCIF

register to wait until message was received. No calling input for this function but it return the

receiving data for the caller.

C code:

char ReceiveFromSerial(void)

{

 PORTAbits.RA4 = 0; // reset the alert when data received

 while(PIR1bits.RCIF==0); // Wait until RCIF gets low

 return RCREG; // Retrieve data from reception register

}

LCD_CMD function

The goal of this function is to send a command for the LCD. To send a command for the LCD,

after the enabling of E register you should clear the RS and RW register. When you clear this two

register the LCD know that the data will be receive it is a command. After sending the

hexadecimal number of the command the enable register E should be disabling again.

Commands Hexadecimal code:

0x01 CLEAR DISPLAY SCREEN

0x02 RETURN HOME

0x04 SHIFT CURSER TO LEFT

0x06 SHIFT CURSER TO RIGHT

0x05 SHIFT DISPLAY TO RIGHT

0x07 SHIFT DISPLAY TO LEFT

0x0C CURSER OFF

PIC software

75

0x0E CURSER BLINKING

0x10 SHIFT CURSOR POSITION TO LEFT

0x14 SHIFT CURSOR POSITION TO RIGHT

0x18 SHIFT THE ENTIRE DISPLAY TO LEF

0x1C SHIFT THE ENTIRE DISPLAY TO RIGHT

0x80 FORCE CURSOR TO BEGINNING OF 1ST LINE
Or you can start from where you want 0x8X ex: 0x83

0xC0 FORCE CURSOR TO BIGINNING OF 2ND LINE
Or you can start from where you want 0xCX ex: 0xC7

0x38 TO WRITE ON THE TWO LINES

A delay should be executing to harmony the speed of the LCD and PIC; PIC will wait the LCD

to be ready to receive a new order. No return for this function but it receives an integer of the

command value from the caller.

C code:

void LCD_CMD(unsigned int value)

{

 PORTCbits.RC2=1; //E

 PORTCbits.RC0=0; //RS

 PORTCbits.RC1=0; //RW

 Delay10KTCYx(15);

 PORTD=value;

 Delay10KTCYx(15);

 PORTCbits.RC2=0; //E

 Delay10KTCYx(30);

}

WRITE_CHAR_LCD function

As the LCD_CMD function, the goal of this function is to send a data to the LCD to write it. To

write on LCD, after the enabling of E register you should set the RS register and clear the RW

register. When you do that the LCD know that the data will be receive it should be write on it.

Now we can send the data to be written on LCD then the enable register E should be disabling

again.

Also, a delay should be executing to harmony the speed of the LCD and PIC; PIC will wait the

LCD to be ready to receive a new data. No return for this function but it receives the character

from the caller.

C code:

void WRITE_CHAR_LCD(unsigned char value)

{

 PORTCbits.RC2=1; //E

 PORTCbits.RC0=1; //RS

SCS-SMS

76

 PORTCbits.RC1=0; //RW

 Delay1KTCYx(5);

 PORTD=value;

 Delay1KTCYx(5);

 PORTCbits.RC2=0; //E

}

WRITE_STRING_LCD function

This function is to send more than one character (a string) to LCD by only one command. This

function has no return but it need a string array from the caller.

C code:

void WRITE_STRING_LCD(char value[])

{

 int i, lenght;

 lenght = strlen(value) - 1;

 for(i=0; i <= lenght; i++){

 WRITE_CHAR_LCD(value[i]);

 }

 //Delay10KTCYx(10);

}

KeyPad function

The goal of this function is to get a key pressed by the user. We discussed in the previous

chapter how the keypad it works. In this function we write the IF condition which will specific the

meaning of each pressed key.

In out project we specify that the normal way of the keypad is to write number with enter and

space and we specify a three functional key (f1, f2, f3) to change from the normal way to one of the

three functional way which will write the English alphabetic instead of numbers. Figure bellow

shows the keypad key specification.

This function has no receiving input from the caller but it returns the pressed character for the

caller

C code:

PIC software

77

char KeyPad(void)

{

 char msg='*'; // to be sure that a key was pressed

 PORTB =0x00;

 msg = KeyPressed;

 if(msg != '*')

 {

 KeyPressed = '*';

 return msg;

 }

waiting:

 PORTBbits.RB0=1;

 if(PORTBbits.RB4==1)return('1');

 else if(PORTBbits.RB5==1)return '4';

 else if(PORTBbits.RB6==1)return '7';

 else if(PORTBbits.RB7==1)return '<';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return '2';

 else if(PORTBbits.RB5==1)return '5';

 else if(PORTBbits.RB6==1)return '8';

 else if(PORTBbits.RB7==1)return '0';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return '3';

 else if(PORTBbits.RB5==1)return '6';

 else if(PORTBbits.RB6==1)return '9';

 else if(PORTBbits.RB7==1)return ' ';

 PORTB =0x00;

 PORTBbits.RB3=1;

 if(PORTBbits.RB4==1) // F1

 {

 PORTB =0x00;

 msg = '*'; // to be sure that a key was pressed

f1:

 PORTBbits.RB0=1;

 if(PORTBbits.RB5==1)return 'G';

 else if(PORTBbits.RB6==1)return 'P';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return 'A';

 else if(PORTBbits.RB5==1)return 'J';

 else if(PORTBbits.RB6==1)return'T';

 else if(PORTBbits.RB7==1)return'S';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return 'D';

 else if(PORTBbits.RB5==1)return 'M';

 else if(PORTBbits.RB6==1)return 'X';

 PORTB =0x00;

 if(msg=='*') goto f1;

 }

SCS-SMS

78

 else if(PORTBbits.RB5==1) // F2

 {

 PORTB =0x00;

 msg = '*'; // to be sure that a key was pressed

f2:

 PORTBbits.RB0=1;

 if(PORTBbits.RB5==1)return 'H';

 else if(PORTBbits.RB6==1)return 'Q';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return 'B';

 else if(PORTBbits.RB5==1)return 'K';

 else if(PORTBbits.RB6==1)return'U';

 else if(PORTBbits.RB7==1)return'W';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return 'E';

 else if(PORTBbits.RB5==1)return 'N';

 else if(PORTBbits.RB6==1)return 'Y';

 PORTB =0x00;

 if(msg=='*') goto f2;

 }

 else if(PORTBbits.RB6==1) // F3

 {

 PORTB =0x00;

 msg = '*'; // to be sure that a key was pressed

f3:

 PORTBbits.RB0=1;

 if(PORTBbits.RB5==1)return 'I';

 else if(PORTBbits.RB6==1)return 'R';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return 'C';

 else if(PORTBbits.RB5==1)return 'L';

 else if(PORTBbits.RB6==1)return'V';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return 'F';

 else if(PORTBbits.RB5==1)return 'O';

 else if(PORTBbits.RB6==1)return 'Z';

 else if(PORTBbits.RB7==1)return '^';

 PORTB =0x00;

 if(msg=='*') goto f3;

 }

 else if(PORTBbits.RB7==1)return '@';

 PORTB =0x00;

 if(msg=='*') goto waiting;

 return msg;

}

PIC software

79

send_SMS function

The goal of this function is to wait the user to write a SMS to be sending via serial. (@) is

specified for ENTER meaning.

C code:

void send_SMS(void)

{

 int i=0;

 unsigned char SMS[16];

 SMS[0]='*';

Loop:

 SMS[i]=KeyPad();

 if(SMS[i]=='<')

 {

 if(i!=0)

 {

 i--;

 LCD_CMD(0x10); //shift cursor position to

left

 }

 goto Loop;

 }

 else if(SMS[i]=='@' && i!=0)

 {

 SendCyphierToSerial(SMS);

 SMS[i]='*';

 LCD_CMD(0xC0); //Second Line

 goto Loop;

 }

 else if(SMS[i]!='^')

 {

 WRITE_CHAR_LCD(SMS[i]);

 Delay10KTCYx(20);

 if(i==15)

 {

 SendCyphierToSerial(SMS);

 LCD_CMD(0xC0); //Second Line

 i=0;

 }

 else i++;

 goto Loop;

 }

 else SMS[i]='*';

}

on_touch function

This function is staying on receiving mode till the user press MENU key.

C code:

void on_touch(void)

{

 int i=0;

SCS-SMS

80

 unsigned char waiting[15]="WAITING SMS...";

 char rc;

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(waiting);

 LCD_CMD(0xC0); //second LINE

 while(1)

 {

/*

 LCD_CMD(0xC0); //second LINE

 ReceiveCypherText();

 Delay10KTCYx(50);

 LCD_CMD(0x01); //Clear screen

*/

 rc = ReceiveFromSerial();

 WRITE_CHAR_LCD(rc);

 i++;

 if(i==16)

 {

 LCD_CMD(0x01); //Clear screen

 LCD_CMD(0xC0); //second LINE

 }

 }

}

send_data function

This function ask the user to choice how he want to send his SMS, to specific one of for all by

BROADCAST.

C code:

void send_data(void)

{

 unsigned char broadcast[12]="4 broadcast";

 unsigned char to_one[9]="5 to one";

 unsigned char writeM[11]="write SMS:";

 unsigned char EntID[10]="Enter ID:";

 unsigned char GoOut[7]="Go Out";

 char Key_Pressed;

 int i=0;

screen2:

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(broadcast);

 LCD_CMD(0xC0); //second LINE

 WRITE_STRING_LCD(to_one);

 Key_Pressed = KeyPad();

 if(Key_Pressed=='4')

 {

 // broadcast choice

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(writeM);

 LCD_CMD(0xC0); //second LINE

PIC software

81

 while(1)

 {

 send_SMS();

 Key_Pressed = KeyPad();

 if(Key_Pressed == '@') break;

 else

 {

 LCD_CMD(0xC0); //Second Line

 for(i=16; i>0; i--) WRITE_CHAR_LCD('

');

 LCD_CMD(0xC0); //Second Line

 send_SMS();

 }

 }

 }

 else if(Key_Pressed=='5')

 {

 // to one choice

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(EntID);

 LCD_CMD(0xC0); //second LINE

 Key_Pressed = KeyPad();

 if(Key_Pressed=='M')

 {

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(writeM);

 LCD_CMD(0xC0); //second LINE

 while(KeyPad()!='@')

 {

 send_SMS();

 }

 }

 else

 {

 WRITE_STRING_LCD(GoOut);

 Delay10KTCYx(50);

 }

 }

}

Menu function

This function is the MENU which the user choice in it if he want to stay on touch for any

coming SMS or if he want to send SMS. This function have no input (caller input) no output

(return).

C code:

void Menu(void)

{

 unsigned char OnTouch[11]="1 on touch";

 unsigned char SendData[12]="2 send data";

 unsigned char wrong[8]="UnValid";

 unsigned char choice[7]="choice";

 char Key_Pressed;

screen1:

 LCD_CMD(0x01); //CLEAR SCREEN

SCS-SMS

82

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(OnTouch);

 LCD_CMD(0xC0); //second LINE

 WRITE_STRING_LCD(SendData);

 Key_Pressed = KeyPad();

 if(Key_Pressed=='1')

 {

 // on touch choice

 on_touch();

 }

 else if(Key_Pressed=='2')

 {

 // send data choice

 send_data();

 }

 else

 {

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x84); //FIRST LINE specific place

 WRITE_STRING_LCD(wrong);

 LCD_CMD(0xC4); //second LINE specific place

 WRITE_STRING_LCD(choice);

 }

}

Encryption function

This function is to encrypt message before sending it. This will be encrypting via AES encrypt

theorem in the next part.

C code:

char Encryption(char PC)

{

 int n=0;

 n = ((int)PC) + 1;

 return ((char)n);

}

Decryption function

This function is to decrypt received message before display on LCD. This will be decrypting

via AES encrypt theorem in the next part.

C code:

char Decryption(char CC)

{

 int n=0;

 n = ((int)CC) - 1;

 return ((char)n);

Test

83

}

Main function

Main function of the program

C code:

void main()

{

 unsigned char welcometo[11]="welcome to";

 unsigned char SCS[8]="GIS-ECS";

 PORTAbits.RA4 = 1;

 INIT_Interrupt();

 INIT_PORT();

 InitSerial();

 LCD_CMD(0x01);

 LCD_CMD(0x0E);

 LCD_CMD(0x38);

 Delay10KTCYx(100); // wait for 500ms

 PORTAbits.RA4 = 0;

 LCD_CMD(0x83); //FIRST LINE

 WRITE_STRING_LCD(welcometo);

 LCD_CMD(0xC4); //second LINE

 WRITE_STRING_LCD(SCS);

 Delay10KTCYx(10);

begin:

 Menu();

 goto begin;

}

7.5 Test

Before build the hardware system we should test the system on any simulation software. We

choice the Proteus ISIS simulation to do the system testing

On Proteus:

In the simulation software Proteus ISIS professional the system work as follows:

- After connecting components together a virtual terminal should be add in place of the

second side to imagine the interaction between two systems.

- When you press the start button, the LCD display the welcome screen (see the figure

bellow)

SCS-SMS

84

- Then the system work as follows:

- Also, we test the sender\receiver side together with the following design:

Test

85

On Real Hardware:

87

8 AES encryption

Advanced Encryption Standard

One of the most widely used block cipher algorithms is the Data Encryption Standard (DES),

adopted in 1977 by the American National Standards Institute (ANSI).

After more than twenty years of use with continuous aging due to advances in cryptography,

the National Institute of Standards and Technology (NIST). On 2 October 2000 the NIST

announced that the new encryption technique, named Advanced Encryption Standard (AES),

would use the Rijndael algorithm, designed by two well-known specialists, Joan Daemen and

Vincent Rijmen from Belgium.

8.1 Introduction

AES is based on a design principle known as a substitution-permutation network, and is fast

in both software and hardware. AES is a variant of Rijndael which has a fixed block size of 128 bits,

and a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with

block and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a

maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, termed the state, although some

versions of Rijndael have a larger block size and have additional columns in the state. Most AES

calculations are done in a special finite field.

The key size used for an AES cipher specifies the number of repetitions of transformation

rounds that convert the input, called the plaintext, into the final output, called the cipher-text. The

number of cycles of repetition is as follows:

 10 cycles of repetition for 128-bit keys.

 12 cycles of repetition for 192-bit keys.

 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each containing five similar but different stages,

including one that depends on the encryption key itself. A set of reverse rounds are applied to

transform cipher-text back into the original plaintext using the same encryption key.

8.2 AES Algorithm8

i. KeyExpansion: round keys are derived from the cipher key using Rijndael's key schedule.

ii. InitialRound

a. AddRoundKey—each byte of the state is combined with the round key using bitwise

xor.

iii. Rounds

a. SubBytes—a non-linear substitution step where each byte is replaced with another

according to a lookup table.

8 Reference: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AES encryption

88

b. ShiftRows—a transposition step where each row of the state is shifted cyclically a

certain number of steps.

c. MixColumns—a mixing operation which operates on the columns of the state,

combining the four bytes in each column.

d. AddRoundKey

iv. Final Round (no MixColumns)

a. SubBytes

b. ShiftRows

c. AddRoundKey

A. The SubBytes step

In the SubBytes step, each byte in the state matrix is replaced with a SubByte using an 8-

bit substitution box, the Rijndael S-box. This operation provides the non-linearity in the cipher. The

S-box used is derived from the multiplicative inverse over GF(28), known to have good non-

linearity properties. To avoid attacks based

on simple algebraic properties, the S-box is

constructed by combining the inverse

function with an invertible affine

transformation. The S-box is also chosen to

avoid any fixed points (and so is

a derangement), and also any opposite fixed

points.

B. The ShiftRows step

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each

row by a certain offset. For AES, the first row is left unchanged. Each byte of the second row is

shifted one to the left. Similarly, the third and fourth rows are shifted by offsets of two and three

respectively. For blocks of sizes 128 bits and 192 bits, the shifting pattern is the same. Row n is

shifted left circular by n-1 bytes. In this way, each column of the output state of the ShiftRows step

is composed of bytes from each column of the

input state. (Rijndael variants with a

larger block size have slightly different

offsets). For a 256-bit block, the first row is

unchanged and the shifting for the

second, third and fourth row is 1 byte, 2 bytes

and 3 bytes respectively—this change only applies for the Rijndael cipher when used with a 256-bit

block, as AES does not use 256-bit blocks. The importance of this step is to make columns not

linear independent if so, AES becomes four independent block ciphers.

C. The MixColumns step

AES Algorithm

89

In the MixColumns step, the four bytes of each column of the state are combined using an

invertible linear transformation. TheMixColumns function takes four bytes as input and outputs

four bytes, where each input byte affects all four output bytes. Together

with ShiftRows, MixColumns provides diffusion in the cipher.

During this operation, each column is multiplied by the known matrix that for the 128-bit key is:

The multiplication operation is defined as: multiplication by 1 means no change,

multiplication by 2 means shifting to the left, and multiplication by 3 means shifting to the left and

then performing XOR with the initial unshifted value. After shifting, a conditional xor with 0x1B

should be performed if the shifted value is larger than 0xFF.

In more general sense, each column is treated as a polynomial over GF(28) and is then

multiplied modulo x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x + 0x02. The coefficients are

displayed in their hexadecimal equivalent of the binary representation of bit polynomials

from GF(2)[x]. The MixColumns step can also be viewed as a multiplication by a particular MDS

matrix in a finite field. This process is described further in the article Rijndael mix columns.

D. The AddRoundKey step

In the AddRoundKey step, the subkey

is combined with the state. For each round, a

subkey is derived from the

main key usingRijndael's key schedule; each

subkey is the same size as the state. The

subkey is added by combining each byte of the

state with the corresponding byte of the

subkey using bitwise XOR.

AES encryption

90

8.3 Coding 9

AES is a symmetric key block cipher algorithm. The algorithm executes a series of rounds. The

intermediate results of the rounds over the block are called states. In order to prepare for the round

transformations, a “KeyExpansion” operation must be executed. This operation uses the original

key to create several round keys. Each round key, including the original one, will be used in one of

the rounds.

This operation is performed by this C code:

9 Reference: Microchip AN821 Advanced Encryption Standard Using the PIC16XXX

void KeyExpansion()

{

 unsigned char i,j;

 unsigned char temp[4],k;

 for(i=0; i<4; i++)

 {

 RoundKey[i*4]=Key[i*4];

 RoundKey[i*4+1]=Key[i*4+1];

 RoundKey[i*4+2]=Key[i*4+2];

 RoundKey[i*4+3]=Key[i*4+3];

 }

 while (i < (4 * (11)))

 {

 for(j=0;j<4;j++)

 {

 temp[j]=RoundKey[(i-1) * 4 + j];

 }

 if (i % 4 == 0)

 {

 k = temp[0];

 temp[0] = temp[1];

 temp[1] = temp[2];

 temp[2] = temp[3];

 temp[3] = k;

 temp[0]=sbox[temp[0]];

 temp[1]=sbox[temp[1]];

 temp[2]=sbox[temp[2]];

 temp[3]=sbox[temp[3]];

Coding

91

Where Rcon represent a vector of round constant, RoundKey represent the array that

stores the round keys, Key is the encryption key, and sbox is the encryption substitution table and

later we will see rsbox which is the decryption substation table.

These variables are saved in the ROM of the PIC under this code:

 temp[0] = temp[0] ^ Rcon[i/4];

 }

 else if (4 > 6 && i % 4 == 4)

 {

 temp[0]=sbox[temp[0]];

 temp[1]=sbox[temp[1]];

 temp[2]=sbox[temp[2]];

 temp[3]=sbox[temp[3]];

 }

 RoundKey[i*4+0] = RoundKey[(i-4)*4+0] ^ temp[0];

 RoundKey[i*4+1] = RoundKey[(i-4)*4+1] ^ temp[1];

 RoundKey[i*4+2] = RoundKey[(i-4)*4+2] ^ temp[2];

 RoundKey[i*4+3] = RoundKey[(i-4)*4+3] ^ temp[3];

 i++;

 }

}

const rom unsigned char sbox[256] = {
 //0 1 2 3 4 5 6 7 8 9 A B C D E F

 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0

 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1

 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2

 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3

 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4

 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5

 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6

 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7

 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8

 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9

 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A

 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B

 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C

 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D

 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E

 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F

const rom unsigned char Rcon[10] = {
 0x36, 0x1B, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

const rom unsigned char rsbox[256] = {
 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,

 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,

 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,

 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,

 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,

 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,

 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,

 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,

 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,

 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,

 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,

 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,

 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,

 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,

AES encryption

92

In the encryption process, each of the ten rounds (with the exception of the last one) is

composed of four stages:

• byte_sub

• shift_row

 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,

 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

unsigned char out[16], state[4][4];

unsigned char RoundKey[160];

unsigned char Key[16]="YOUR_SECURE_KEY";

void substitution_s()

{

 int i,j;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[i][j] = sbox[state[i][j]];

 }

 }

}

void enc_shift_row()

{

 unsigned char temp;

 // Rotate first row 1 columns to left

 temp=state[1][0];

 state[1][0]=state[1][1];

 state[1][1]=state[1][2];

 state[1][2]=state[1][3];

 state[1][3]=temp;

 // Rotate second row 2 columns to left

 temp=state[2][0];

 state[2][0]=state[2][2];

Coding

93

• mix_column

While the xtime function is done under this process:

 state[2][2]=temp;

 temp=state[2][1];

 state[2][1]=state[2][3];

 state[2][3]=temp;

 // Rotate third row 3 columns to left

 temp=state[3][0];

 state[3][0]=state[3][3];

 state[3][3]=state[3][2];

 state[3][2]=state[3][1];

 state[3][1]=temp;

}

void mix_column()

{

 int i;

 unsigned char Tmp,Mem;

 for(i=0;i<4;i++)

 {

 Mem = state[0][i];

 Tmp = state[0][i] ^ state[1][i] ^ state[2][i]

^ state[3][i];

 state[0][i] ^= Tmp ^ xtime(state[0][i] ^

state[1][i]);

 state[1][i] ^= Tmp ^ xtime(state[1][i] ^

state[2][i]);

 state[2][i] ^= Tmp ^ xtime(state[2][i] ^

state[3][i]);

 state[3][i] ^= Tmp ^ xtime(state[3][i] ^ Mem);

 }

}

char xtime(char x)

{

 if(x < 0x80)

 return (x <<= 1);

 else

 return (x = (x << 1) ^ 0x1b);

}

AES encryption

94

• key_addition

In the decryption process, each of the ten rounds (with the exception of the first one) is

composed of four stages:

• inv_byte_sub

• inv_mix_column

void key_addition(unsigned char round)

{

 int i,j;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[j][i] ^= RoundKey[round * 16 + i * 4 + j];

 }

 }

}

void substitution_si()

{

 unsigned char i,j;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[i][j] = rsbox[state[i][j]];

 }

 }

}

void inv_mix_column()

{

 unsigned char i;

 unsigned char Tmp0, Tmp1, Tmp2, Tmp3;

 for(i=0;i<4;i++)

 {

 Tmp0 = state[0][i] ^ state[1][i] ^ state[2][i]

^ state[3][i];

 Tmp1 = xtime(state[0][i] ^ state[2][i]);

 Tmp2 = xtime(state[1][i] ^ state[3][i]);

 Tmp3 = xtime(xtime(Tmp1 ^ Tmp2)) ^ Tmp0;

Coding

95

• dec_shift_row

The original key schedule functions use several RAM positions, in order to save all round

keys used in the encryption/decryption process.

To reduce the RAM consumption, the implementation of the round keys was done on-the-fly. To

do this, three different functions were added:

 state[0][i] ^= xtime(state[0][i]^ state[1][i] ^ Tmp1)

^ Tmp3;

 state[1][i] ^= xtime(state[1][i]^ state[2][i] ^ Tmp2)

^ Tmp3;

 state[2][i] ^= xtime(state[2][i]^ state[3][i] ^ Tmp1)

^ Tmp3;

 state[3][i] = state[0][i] ^ state[1][i] ^ state[2][i]

^ Tmp0;

 }

}

void dec_shift_row()

{

 unsigned char temp;

 // Rotate first row 1 columns to right

 temp=state[1][3];

 state[1][3]=state[1][2];

 state[1][2]=state[1][1];

 state[1][1]=state[1][0];

 state[1][0]=temp;

 // Rotate second row 2 columns to right

 temp=state[2][0];

 state[2][0]=state[2][2];

 state[2][2]=temp;

 temp=state[2][1];

 state[2][1]=state[2][3];

 state[2][3]=temp;

 // Rotate third row 3 columns to right

 temp=state[3][0];

 state[3][0]=state[3][1];

 state[3][1]=state[3][2];

 state[3][2]=state[3][3];

 state[3][3]=temp;

}

AES encryption

96

1. enc_key_schedule (key): This function takes the actual key and generates the next

round key that is placed in the same RAM positions.

C code

2. dec_key_schedule(key): This function takes the actual key and generates the

previous round key that is placed in the same RAM positions.

C code

void enc_key_schedule()

{

 char Rcon = 0x01;

 Key[0] ^= sbox[13];

 Key[1] ^= sbox[14];

 Key[2] ^= sbox[15];

 Key[3] ^= sbox[12];

 Key[0] = Key[0] ^ Rcon;

 Rcon = xtime(Rcon);

 Key[4] ^= Key[0];

 Key[5] ^= Key[1];

 Key[6] ^= Key[2];

 Key[7] ^= Key[3];

 Key[8] ^= Key[4];

 Key[9] ^= Key[5];

 Key[10] ^= Key[6];

 Key[11] ^= Key[7];

 Key[12] ^= Key[8];

 Key[13] ^= Key[9];

 Key[14] ^= Key[10];

 Key[15] ^= Key[11];

}

void dec_key_schedule()

{

 char Rcon = 0x01;

 Key[12] ^= Key[8];

 Key[13] ^= Key[9];

 Key[14] ^= Key[10];

 Key[15] ^= Key[11];

 Key[8] ^= Key[4];

 Key[9] ^= Key[5];

 Key[10] ^= Key[6];

 Key[11] ^= Key[7];

 Key[4] ^= Key[0];

 Key[5] ^= Key[1];

Coding

97

 Key[6] ^= Key[2];

 Key[7] ^= Key[3];

 Key[0] ^= sbox[Key[13]];

 Key[5] ^= sbox[Key[14]];

 Key[6] ^= sbox[Key[15]];

 Key[7] ^= sbox[Key[12]];

 Key[0] = Key[0] ^ Rcon;

 if(Rcon & 0x01)

 Rcon = 0x80;

 else

 Rcon >>1;

}

AES encryption

98

Code flow chart

A. Encryption flow chart

Coding

99

The structure of the encryption program is:

void encrypts(char in[])

{

 unsigned char i,j,round;

 KeyExpansion();

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[j][i] = in[i*4 + j];

 }

 }

 key_addition(0);

 for(round=1;round<=10;round++) // 10 rounds

 {

 substitution_s();

 enc_shift_row();

 if(round != 10) // last round is done

without mix_column

 mix_column();

 enc_key_schedule(); // direct key_schedule

executed on-the-fly

 key_addition(round);

 }

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 out[i*4+j]=state[j][i];

 }

 }

}

AES encryption

100

B. Decryption flow chart

Coding

101

Then structure of the decryption program is:

void decrypts(char in[])

{

 unsigned char i,j,round;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[j][i] = in[i*4 + j];

 }

 }

 key_addition(10);

 round = 9;

 for(round;round>0;round--)

 {

 substitution_si();

 dec_shift_row();

 key_addition(round);

 inv_mix_column();

 dec_key_schedule(); // inverse key_schedule

executed on-the-fly

 }

 substitution_si();

 dec_shift_row();

 dec_key_schedule(); // inverse key_schedule

executed on-the-fly

 key_addition(0);

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 out[i*4 +j]=state[j][i];

 }

 }

}

103

9 Hardware of ECS Demo System

9.1 Realization of RF Module

9.1.1 Using STD-402

In SCS-SMS project we use the USART theory which is included in the PCI microcontroller

to send and receive data via serial. So, we can use the STD-402 to send and receive message by

adding the max232 circuit. We use the max232 IC to translate the Tx/Rx of microcontroller (0V –

5V) to the RS232 Tx/Rx (-10V, +10V).

 The test of the transceiver is shown in following lines:

The MB-STD-RS232 board which equips the STD-402 transceiver module has stored unique

module identification number in the radio module. When one unit is set up for master and other

unit is for slave, slave modem unit operate with same ID as master unit.

1. Connect the serial cable to the D-SUB 9pin connector.

2. Set "Cable SW" (Cross / straight) according to the cable.

 3. Connect the supply voltage of the transceiver to 6V DC.

4. Select unit to be master and set SW1 to "9" and SW2 to "1". Select unit to be slave and set

SW1 to "9" and SW2 to "0".

5. Power ON the units.

6. When power of the master is turned on, TX, RX and LE LED turn ON and LD blinks.

 Radio communication start and continue for about 10sec.

7. When power of slave unit is turned on, TX, RX LED turn ON and RSSI turn on when

signal from master is received. LD blinks when group setting is completed.

Realization of RF Module

104

8. After slave unit receives unique module identification code stored in master units, radio

communication can be performed with this code.

9. Power of the units.

10. Setting the mode and the property of the communication by the SW switch.

 1 : ON  Transmitter 1 : OFF  Receiver

 2 : OFF  Mode 1 (Two way communication)

 3 : ON  Setting prohibited.

 4 : ON  Setting prohibited.

 5 : ON  ACK response (Yes).

 6 : ON  Parity Yes (Even).

 7 : ON  Communication speed.

 8 : ON  Communication speed. (9600bps).

11. MB-STD-RS232 has 64 pre-programmed frequency channels. These frequencies are

divided to 8 groups. Each group contains 10 frequencies. The group can be selected by

SW2, and the value inside the group is selected by SW1. The frequency used to build the

test is 433.975 MHz To select this frequency, set the SW1 switch to 3 and the SW2 switch to

1. The master and the slave unit should be selected to the same frequency.

12. Power on the units.

13. MB-STD-RS232 is in RX mode at wait time (stand by), which means RX is turned ON

at wait time. When the unit receives radio data from the other unit, the RSSI LED turn ON

and the unit will start outputting the data to RS232 port.

14. When the unit gets data from PC through RS232C connector, the data is stored in

internal buffer and then will be sent after the MB-STD-RS232 check that the carrier

frequency to be set is not used in air. The TX LED turned ON when the unit will transmit

the data. The unit returns to RX mode when all data is gone.

Hardware of ECS Demo System

105

 MAX232 circuit:

The MAX232 is an IC, first created in 1987 by Maxim Integrated Products, that converts signals from
an RS-232 serial port to signals suitable for use in TTL compatible digital logic circuits. The MAX232 is a dual
driver/receiver and typically converts the RX, TX, CTS and RTS signals.

The drivers provide RS-232 voltage level outputs (approx. ± 7.5 V) from a
single + 5 V supply via on-chip charge pumps and external capacitors. This
makes it useful for implementing RS-232 in devices that otherwise do not
need any voltages outside the 0 V to + 5 V range, as power supply design
does not need to be made more complicated just for driving the RS-232 in
this case.

The receivers reduce RS-232 inputs (which may be as high as ± 25 V), to
standard 5 V TTL levels. These receivers have a typical threshold of 1.3 V, and a typical hysteresis of 0.5 V.

Figure 5.4.1: IC MAX232 usage

Realization of RF Module

106

Hardware of ECS Demo System

107

9.1.2 Realization of RF Module Using RFM42B-RFM31B – 433MHz

The RFM42B and the RFM31B use the SPI communication theory to send (RFM42B) or to receive

(RFM31B) data. So, to use this two RF module some software and hardware change should be

implement to the SCS-SMS project.

9.1.2.1 Serial Periferal interface (SPI)

The RFM31B/42B communicates with the host MCU over a standard 3-wire SPI interface:

SCLK, SDI, and nSEL. The host MCU can read data from the device on the SDO output pin. A SPI

transaction is a 16-bit sequence which consists of a Read-Write (R/W) select bit, followed by a 7-bit

address field (ADDR), and an 8-bit data field (DATA) as demonstrated in Figure 2. The 7-bit

address field is used to select one of the 128, 8-bit control registers. The R/W select bit determines

whether the SPI transaction is a read or writes transaction. If R/W = 1 it signifies a WRITE

transaction, while R/W = 0 signifies a READ transaction. The contents (ADDR or DATA) are

latched into the RFM31B/42B every eight clock cycles. The SCLK rate is flexible with a maximum

rate of 10 MHz.

To read back data from the RFM31B/42B, the R/W bit must be set to 0 followed by the 7-bit

address of the register from which to read. The 8 bit DATA field following the 7-bit ADDR field is

ignored n the SDI pin when R/W = 0. The next eight negative edge transitions of the SCLK signal

will clock out the contents of the selected register. The data read from the selected register will be

available on the SDO output pin. The READ function is shown in Figure 3. After the READ

function is completed the SDO pin will remain at either logic 1 or logic 0 state depending on the

last data bit clocked out (D0). When nSEL goes high the SDO output pin will be pulled high by

internal pullup.

The figure bellow shows us the PIN description:

9.1.2.2 The new hardware design

 The change which will be happen is caused by adding the two RFM module, the two RFM

module connect to the same pins (5 pins connect to the PIC and three connect to the power

supply). The RFM module is low power consumption, it’s need about 85mA with supply voltage

range between 1.8V and 3.6V, and you can see in its datasheet that the best is 3.0V. For this reason

and because of our system supply voltage is 5V, so we need to regulate the supply voltage of the

RFM to 3V. We do that by voltage divider theory by adding two high impedence (MΩ) resistors.

 We know that our supply voltage is 5V which is regulate by 78L05 and the goal is to get 3V,

so using voltage divider theory as you can see in the next figure we can get it. The cause of using

two high impedance resistors is to eliminate the effect of the interior impedence in the system and

the impedence in the RFM module.

Realization of RF Module

108

Input Voltage = 5V

R1 = 3 MΩ

V out = (3 / 5) x 5 = 3V

R2 = 2 MΩ

Vout = (2 / 5) x 5 = 2V

Now, let connect the RFM modules to the PIC. The figure bellow shows us how the module

connects to PIC microcontroller:

 In SCS-SMS we use the PIC 18f4550, so the connection should be doing as follows:

RFM module pins PIC pins

SDO SDI (RB0 PIN)

SCK SCK (RB1 PIN)

NIQR INT2 (RB2 PIN)

SDI SDO (RC7)

NSEL SS (RA5) for RFM31B & (RB3) for RFM42B

 While two else pins should connected to the Ground and one else should connect to +3V, and

all the remaining pins doesn’t connected anywhere.

Hardware of ECS Demo System

109

 As we see in the table above, we have 3 connections to the port B which already used in the

SCS-SMS project for the KEYPAD. So, we need to change the connection of the KEYPAD to

another pins (we take pins RA0 to RA3 for input keypad pins and RB4 to RB7 for the output

keypad pins). Finally the new circuit design became as followes:

9.1.2.3 MSSP module to establishing (SPI)10

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for

communication with other peripheral or microcontroller devices. These peripheral devices may be

serial EEPROMs, shift registers, display drivers, A/D converters, etc. the MSSP module can operate

in one of two methods:
- Serial Peripheral interface (SPI)
- Inter-integrated circuit (I2C)

 Control Registers:

 The MSSP module has three associated control registers. These include a status register

(SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and

10 PIC18F4550 datasheet, chapter 19, page 197

Realization of RF Module

110

their individual Configuration bits differ significantly depending on whether the MSSP

module is operated in SPI or I2C mode.

 SPI mode:

 The SPI mode allows 8 bits of data to be synchronously transmitted and received

simultaneously. All four modes of the SPI are supported. To accomplish communication,

typically three pins are used:

• Serial Data Out (SDO) – RC7/RX/DT/SDO

• Serial Data In (SDI) – RB0/AN12/INT0/FLT0/SDI/SDA

• Serial Clock (SCK) – RB1/AN10/INT1/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

 • Slave Select (SS) – RA5/AN4/SS/HLVDIN/C2OUT

 Registers:

 The MSSP module has four registers for SPI mode operation. These are:

 • MSSP Control Register 1 (SSPCON1)

 • MSSP Status Register (SSPSTAT)

 • Serial Receive/Transmit Buffer Register (SSPBUF)

 SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The

SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only.

The upper two bits of the SSPSTAT are read/write. SSPBUF is the buffer register to which data

bytes are written to or read from.

In receive operations; SSPSR and SSPBUF together create a double-buffered receiver. When

SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both

SSPBUF and SSPSR.

 SSPSTAT register:

SMP: sample bit, in master mode (1: data sampled at end, 0: at middle), in slave mode (SMP=0)

CKE: SPI clock select bit (1: transmit on transition from active to Idle, 0: from Idle to active)

D/A, P, S, R/W, UA: used in I2C only

BF: Buffer full status bit when receive (1: SSPBUF full, 0: receive not complete)

 SSPCON1 register:

Hardware of ECS Demo System

111

 WCOL: write collision Detect bit (on transmitting) (1: collision, 0: no collision)

 SSPOV: receive overflow indicator bit (slave mode) (1: overflow, 0: no overflow)

 SSPEN: master Synchronous Serial Port Enable bit (1: enable serial pot, 0: serial port be I/O)

 CKP: clock polarity select bit (1: idle state for clock is High, 0: is low)

 SSPM3:SSPM0: Master Synchronous serial Port Mode Select bits

 0101 = SPI Slave mode, clock=SCKpin, Sspin control disabled, SS can be used as I/Opin

 0100 = SPI Slave mode, clock=SCKpin, Sspin control enabled

 0011 = SPI Master mode, clock=TMR2 output/2

 0010 = SPI Master mode,, clock=Fosc/64

 0001 = SPI Master mode,, clock=Fosc/16

 0000 = SPI Master mode,, clock=Fosc/4

 In our case, we need to use the micro controller in Master mode to connect it the the 2 slave

modules (RFM31B and RFM42B) we have.

 Master mode:

 The master can initiate the data transfer at any time because it controls the SCK. The master

determines when the slave is to broadcast data by the software protocol.

 In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to.

If the SPI is only going to receive, the SDO output could be disabled (programmed as an input).

The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed

clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal

received byte (interrupts and status bits appropriately set). This could be useful in receiver

applications as a “Line Activity Monitor” mode.

 The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This,

then, would give waveforms for SPI communication. In Master mode, the SPI clock rate (bit rate) is

user-programmable to be one of the following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 • TCY)

• FOSC/64 (or 16 • TCY)

• Timer2 output/2

This allows a maximum data rate (at 48 MHz) of 12.00 Mbps.

 When used in Timer2 Output/2 mode, the bit rate can be configured using the PR2 Period

register and the Timer2 prescaler. However, writing to SSPBUF does not clear the current TMR2

value in hardware. Depending upon the current value of TMR2 when the user firmware writes to

SSPBUF, this can result in an unpredictable MSb bit width.

 When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change

of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is

loaded with the received data is shown.

Realization of RF Module

112

 Implementation:

In our case, the PIC is used as SPI in master mode and inially set the two regidter as followes;

SSPSTAT: (0xC0) SMT=1, CKE=1, all the remaing bit are readeble not writable as we see before.

SSPCON1: (0x30) WCOL=0, SSPOV=0, SSPEN=1, CKP=1, SSPM=0000.

Bellows is the SPI code in C programing with comment when necessary: (SPI.c)
#include<p18f4550.h>

#include<string.h>

#include<delays.h>

#include"SPI.h"

void InitDAC(void)

{

 NSEL1pin = 0;

 NSEL2pin = 0;

 SDIpin = 1;

 SCKpin = 0;

 NIQRpin = 1;

 SDOpin = 0;

 ADCON1=0x0f; //Turn off A/D

 SSPSTAT=0xC0; //SMP: SPI master mode, CKE: active to idle clock state, 0, 0, 0,

0, 0, 0

 SSPCON1=0x30; // Mode 1,1 SPI Master Mode, 1/4 Tosc bit

}

void Send_char_SPI(char data)

{

 SS1 = 0; // Enable SS1 Output (low)

 SS2 = 1; // Disable SS2 Output (high)

 SSPBUF=data; // sending the upper 8 bits serially

 while(!SSPSTATbits.BF); // wait until the upper 8 bits are sent

 SS1 = 1; // Disable SS1 Output (high)

 SS2 = 0; // Enable SS2 Output (low)

}

void Send_int_SPI(int data)

{

 unsigned int c;

 unsigned int lower_bits, upper_bits;

 c = ((data+1)*16) -1; // here we obtain 12 bit data

 //first obtain the upper 8 bits

 upper_bits = c/256; // obtain the upper 4 bits

 upper_bits = (48) | upper_bits; // append 0011 to the above 4 bits

 //now obtain the lower 8 bits

 lower_bits = 255 & c; // ANDing separates the lower 8 bits

 SS1 = 1; // Disable SS1 Output (high)

 SS2 = 0; // Enable SS2 Output (low)

 PORTBbits.RB0=0;

 SSPBUF=upper_bits; // sending the upper 8 bits serially

 while(!SSPSTATbits.BF); // wait until the upper 8 bits are sent

 SSPBUF=lower_bits; // sending the lower 8 bits serially

 while(!SSPSTATbits.BF); // wait until the lower 8 bits are sent

 PORTBbits.RB0=1;

 SS1 = 1; // Disable SS1 Output (high)

 SS2 = 0; // Enable SS2 Output (low)

}

void Send_string_SPI(char s[])

Hardware of ECS Demo System

113

{

 int i, lenght;

 lenght = strlen(s);

 for(i=0; i <= lenght; i++)

 {

 Send_char_SPI(s[i]);

 Delay10KTCYx(17); // wait until the 8 bits char are sent

 // Delay Subroutine: 169129 Clock cycles ~= 17(10KTCY)

~= 0.014 seconds

 }

}

char Receive_data_SPI(void)

{

 while(!SSPIFbits.PIR1); // Interrupt flag set when transmission/reception is

complete

 return SSPBUF;

}

Bellowe is the Header file for this c librery: (SPI.h)

#ifndef SPI_H

#define SPI_H

#define Clock_Khz 48000 //Fosc = 48Mhz

#define NSEL1pin TRISAbits.TRISA5 // connect to the NSEL pin of the Tx

#define NSEL2pin TRISBbits.TRISB3 // connect to the NSEL pin of the Rx

#define SDIpin TRISBbits.TRISB0 // connect to the SDO pin of SPI module

#define SCKpin TRISBbits.TRISB1 // connect to the SCK pin of SPI module

#define NIQRpin TRISBbits.TRISB2 // connect to the NIQR pin of SPI module

#define SDOpin TRISCbits.TRISC7 // connect to the SDI pin of SPI module

#define SS1 PORTAbits.RA5 // selection slave 1 (transmiter)

#define SS2 PORTBbits.RB3 // selection slave 2 (receiver)

void InitSPI(void);

void Send_char_SPI(char n);

void Send_int_SPI(int n);

void Send_string_SPI(char s[]);

char Receive_data_SPI(void);

#endif

115

10 Further Work: System Integration and Integration Test of ECS Demo
System

tbd

117

Appendix A: Alternative Project Plans

A.1: Three Alternatives for Central Station / Mobile Stations

As we see before, each side of this project has multiple potential choices. And each choice has its

extra tasks. In this part we will specific the tasks with the period of each choice of each side.

 For the STD hardware.

a. Using existing STD hardware (ran) in the two sides (connect to computer).

No extra potential tasks for this choice (only 1 week for testing)

b. Using existing STD hardware (ran) in the base side and using the new SCS-SMS

hardware on the client side

Tasks for this choice:

- Change the SCS-SMS hardware to be able to use (need among 3 weeks)

- Change and develop the input part of the ExtIO file to be compatible with the client side

hardware (2 weeks)

Note that, if this choice is taken you can’t take the HDSDR as a choice for the SDR.

c. Develop a hardware to be able to connect to 4 antenna on the base side and to one

antenna on the client side (base on HackRF project)

Tasks for this choice:

- Develop the hardware for one antenna for the client side (3 weeks)

- Develop the hardware for 4 antennas for the base side (2 extra weeks)

- Change and develop the input part of the ExtIO file to be compatible with the client side

hardware (one antenna) (2 weeks)

- Change and develop the input part of the ExtIO file to be compatible with the base side

hardware (4 antenna) (1 extra week)

 For the SDR code

a. Using HDSDR by develop its ExtIO.

Tasks for this choice:

- Change and develop the output part of the ExtIO file to be compatible with the GUI

interface software (4 weeks)

- Develop our GUI interface (4 weeks)

b. Using the source code of WinRad

Tasks for this choice:

- Take the SDR code from the WinRad software (3 weeks)

- Develop the SDR code to send and receive (2 weeks)

118

- Change and develop the output part of the ExtIO file to be compatible with the GUI

interface software (4 weeks)

- Develop our GUI interface (4 weeks)

A side to this task and duration there are the testing and documentation tasks and period.

Bellow is two project plans:

Project 1: choice (a) for STD hardware choice (a) for the SDR code

Using existing STD hardware (ran) in the two sides (connect to computer). With using HDSDR by

develop its ExtIO for the SDR code

Event Time

Getting start with software (Qt, VC++, HDSDR) 2 weeks

Using HDSDR to receive and transmit Radio wave 1 week

Getting Start with DLL and see demo ExtIO 1 week

Change and develop the output part of the ExtIO file to be compatible

with the GUI interface software

4 weeks

Develop our GUI interface 4 weeks

System testing (task 9) 2 weeks

Documentation and Final report (task 10) 3 weeks

Approximately 4 months and 1 week with a possibility of delay

Project 2: choice (b) for STD hardware choice (b) for the SDR code

Using existing STD hardware (ran) in the base side and using the new SCS-SMS hardware on the

client side. With using of the source code of WinRad for the SDR code

Event Time

Getting start with software (Qt, VC++, WinRad) 2 weeks

Using WinRad to receive Radio wave 1 week

Read with understanding the WinRad code 1 week

Take the SDR code from the WinRad software 2 weeks

Develop the SDR code to send and receive 2 weeks

Getting Start with DLL and see demo ExtIO 1 week

Change and develop the output part of the ExtIO file to be compatible

with the GUI interface software

4 weeks

Develop our GUI interface 4 weeks

Change the SCS-SMS hardware to be able to use 3 weeks

Change and develop the input part of the ExtIO file to be compatible with

the client side hardware

2 weeks

System testing (task 9) 2 weeks

Documentation and Final report (task 10) 3 weeks

Approximately 6 months and 2 weeks with a possibility of delay

Project 3: choice (c) for STD hardware choice (b) for the SDR code

Develop hardware to be able to connect to 4 antennas on the base side and to one antenna on the

client side with using of source code of WinRad

Event Time

Getting start with software (Qt, VC++, WinRad) 2 weeks

119

Using WinRad to receive Radio wave 1 week

Read with understanding the WinRad code 1 week

Take the SDR code from the WinRad software 2 weeks

Develop the SDR code to send and receive 2 weeks

Getting Start with DLL and see demo ExtIO 1 week

Change and develop the output part of the ExtIO file to be compatible

with the GUI interface software

4 weeks

Develop our GUI interface 4 weeks

Develop the hardware for one antenna for the client side 3 weeks

Develop the hardware for 4 antennas for the base side 2 weeks

Change and develop the input part of the ExtIO file to be compatible with

the client side hardware (one antenna)

2 weeks

Change and develop the input part of the ExtIO file to be compatible with

the base side hardware (4 antenna)

1 week

System testing (task 9) 2 weeks

Documentation and Final report (task 10) 3 weeks

Approximately 7 months and 2 weeks with a possibility of delay

A.2: Demo System Integration with different developers

Event Time

Using WinRad to receive Radio wave using exist SDR platform 1 week

Introduction to HackRF SDR platform 2 weeks

Build our SDR platform 2 weeks

Using WinRad to receive Radio wave via new SDR platform 1 week

Build our Amateur Radio Transceiver (ART) 3 weeks

Connect the SCS-SMS hardware to the ART with testing 2 weeks

Take I and Q from WinRad to a file 1 week

Develop GUI interface to read SMS from file 2 weeks

System testing 2 weeks

Documentation and Final report 2 weeks

Approximately 18 weeks with a possibility of delay

These tasks are dividing to a three work packages, which are:

1st package: building of the SDR platform

2nd package: building of the Amateur Radio Transceiver

120

3rd package: WinRad and interface software

121

Appendix B: All about HackRF

HackRF is a project to produce a low cost, open source software radio platform.

Principal author: Michael Ossmann: mike@ossmann.com

Home hackRF website: https://github.com/mossmann/hackrf

HackRF is an open source hardware project to build a Software Defined Radio (SDR)

peripheral.

B.1 HackRF overview

SDR is the application of Digital Signal Processing to radio waveforms. It is similar

to the software-based digital audio techniques that became popular a couple of decades

ago. Just as a sound card in a computer digitizes audio waveforms, a software radio

peripheral digitizes radio waveforms. It's like a very fast sound card with the speaker and

microphone replaced by an antenna. A single software radio platform can be used to

implement virtually any wireless technology (Bluetooth, ZigBee, cellular technologies, FM

radio, etc.).

Digital audio capabilities in general purpose computers enabled a revolution in the

sound and music industries with advances such as hard disk recording and MP3 file

sharing. Today's computers are fast enough to process radio waveforms in similar ways,

and the radio communications industry is going through the same sorts of changes. One

critical advance is finally taking place now, and that is the availability of low cost tools

enabling anyone to take part in the revolution.

 Wide Operating Frequency Range:

HackRF operates from 30 MHz to 6 GHz, a wider range than any SDR peripheral

available today. This range includes the frequencies used by most of the digital radio

systems on Earth. It can operate at even lower frequencies in the MF and HF bands when

paired with the Ham It up RF up converter.

mailto:mike@ossmann.com
https://github.com/mossmann/hackrf

122

 Transceiver:

HackRF can be used to transmit or receive radio signals. It operates in half-duplex

mode: it can transmit or receive but can't do both at the same time. However, full-duplex

operation is possible if you use two HackRF devices.

 Low Cost:

HackRF was designed to be the most widely useful SDR peripheral that can be

manufactured at a low cost. The estimated future retail price of HackRF is $300, but you

can get one for even less by backing the Kickstarter project today.

 Wideband:

The maximum bandwidth of HackRF is 20 MHz, about 10 times the bandwidth of

TV tuner dongles popular for SDR. That means that HackRF could be used for high speed

digital radio applications such as LTE or 802.11g.

 Open Source:

The most important goal of the HackRF project is to produce an open source design

for a widely useful SDR peripheral. All hardware designs and software source code are

available under an open source license. The hardware designs are produced in KiCad, an

open source electronic design automation tool. You can download the Jawbreaker

(HackRF beta) design and build your own HackRF today!

 Compatible:

HackRF beta units are already being used on Linux, OS X, and Windows platforms.

The device takes full advantage of USB 2.0, an interface found on almost every general

purpose computer. HackRF already works with the popular GNU Radio software

framework, and HackRF support can be added to other SDR software.

 Tested:

The Jawbreaker design depicted above is the fully functional HackRF beta design.

Hundreds of Jawbreakers have been distributed to developers and beta testers. HackRF

has already been used for Digital Audio Broadcasting (DAB), Bluetooth monitoring,

spectrum sensing, wireless microphones, AIS, FM radio, and more. I plan to use feedback

from beta testers to make your HackRF even better than Jawbreaker.

123

B.2 Jawbreaker11

Jawbreaker is the first complete HackRF platform, a wideband software radio

transceiver with a USB interface.

Hardware notes:

Schematic and layout files were designed in KiCad, an open source electronic

design automation package.

order of copper layers:

 Copper 1: Front

 Copper 2: Inner3

 Copper 3: Inner2

 Copper 4: Back

PCB description: 4 layer PCB 0.062 in

 Copper 1 0.5 oz foil plated to approximately 0.0017 in

 Dielectric 1-2 0.0119 in

 Copper 2 1 oz foil (0.0014 in)

 Dielectric 2-3 0.0280 in

 Copper 3 1 oz foil (0.0014 in)

 Dielectric 3-4 0.0119 in

 Copper 4 0.5 oz foil plated to approximately 0.0017 in

FR4 or similar substrate with Er=4.5 (+/- 0.1)

double side solder mask black

double side silkscreen white

6 mil min trace width and

6 mil min isolation

B.3 Jellybean12

11 ..\\6-ECS-SDR\5-Guide\HackRF\hardware\jawbreaker
This file contain also the Hardware design file, but it should open by KiCad software
12 ..\\6-ECS-SDR\5-Guide\HackRF\hardware\jellybean
This file contain also the PCB design as pdf, with the Hardware design file, but it should open by

KiCad software

124

Jellybean is a microcontroller platform based on the LPC43xx. It is designed to

control Lemondrop.

Hardware notes:

Schematic and layout files were designed in KiCad, an open source electronic

design automation package.

order of copper layers:

 Front

 Inner3

 Inner2

 Back

PCB description: 4 layer PCB 1.6 mm

 Copper 1 35 um

 Dielectric 1-2 0.35 mm

 Copper 2 18 um

 Dielectric 2-3 0.76 mm

 Copper 3 18 um

 Dielectric 3-4 0.35 mm

 Copper 4 35 um

DE104iML or equivalent substrate (Er=4.42@2.4GHz TanD=0.016)

double side solder mask black

double side silkscreen white

6 mil min trace width and

6 mil min isolation

This file contain also the PCB design as pdf, with the Hardware design file, but it should open by

KiCad software

B.4 Lemondrop13

Lemondrop is a 2.3 to 2.7 GHz wireless transceiver with a 22 Msps ADC/DAC and

flexible clocking for software radio applications.

Hardware notes:

Schematic and layout files were designed in KiCad, an open source electronic

Design automation package.

order of copper layers:

 Front

 Inner3

 Inner2

 Back

PCB description: 4 layer PCB 1.6 mm

 Copper 1 35 um

 Dielectric 1-2 0.35 mm

13 ..\\6-ECS-SDR\5-Guide\HackRF\hardware\lemondrop
This file contain also the Hardware design file, but it should open by KiCad software

125

 Copper 2 18 um

 Dielectric 2-3 0.76 mm

 Copper 3 18 um

 Dielectric 3-4 0.35 mm

 Copper 4 35 um

DE104iML or equivalent substrate (Er=4.42@2.4GHz TanD=0.016)

double side solder mask black

double side silkscreen white

6 mil min trace width and

6 mil min isolation

B.5 HackRF Hardware

126

 Board IC:

U1-U2-U5-U6-U7-U10-U11:SKY13350;Skyworks;SKY13350-385LF;0.01-6.0 GHz GaAs SPDT Switch

U3:RX_LOWPASS_FILTER;AVX;LP0603A1880ANTR;FILTER LOW PASS 1880MHZ 0603 SMD

U4:RFFC5072;RFMD;RFFC5072TR7;WIDEBAND SYNTHESIZER/VCO WITH INTEGRATED

6GHz MIXER

U8:RX_HIGHPASS_FILTER;TDK;DEA162400HT-8004B1;FILTER HIGHPASS

WLAN&BLUETOOTH

U9-U12-U14:SKY13317;Skyworks;SKY13317-373LF;20 MHz-6.0 GHz pHEMT GaAs SP3T Switch

U13–U25:MGA-81563;Avago;MGA-81563-TR1G;0.1-6 GHz 3 V

U15:GSG-74HC04;Texas Instruments;SN74AHC04RGYR;IC HEX INVERTERS 14-QFN

U16:GSG-74HC08;Texas Instruments;SN74AHC08RGYR;IC QUAD 2IN POS-AND GATE 14-QFN

U17:MAX2837;Maxim;MAX2837ETM+;IC TXRX 2.3GHZ-2.7GHZ 48TQFN

U18:MAX5864;Maxim;MAX5864ETM+;IC ANLG FRONT END 22MSPS 48-TQFN

U19:SI5351C;Silicon Laboratories Inc;SI5351C-B-GM;IC CLK GENERATOR 160MHZ 20QFN

U20:W25Q80BV;Winbond;W25Q80BVSSIG;IC FLASH 8MBIT 8SOIC

U21:TPS62410;Texas Instruments;TPS62410DRCR;IC BUCK SYNC DUAL ADJ 0.8A 10SON

U22:GSG-IP4220CZ6;NXP;IP4220CZ6

U23:LPC43XXFBD144;NXP;LPC4330FBD144

U24:GSG-XC2C64A-7VQG100C;Xilinx;XC2C64A-7VQG100C;IC CR-II CPLD 64MCELL 100-VQFP

U26:RF LDO;DNP

 Other component:
FB1:FILTER;Murata;BLM21PG221SN1D;FERRITE CHIP 220 OHM 2000MA 0805

FB2:FILTER;Murata;BLM21PG221SN1D;FERRITE CHIP 220 OHM 2000MA 0805

Q1:MOSFET_P;Fairchild;BSS84;MOSFET P-CH 50V 130MA SOT-23

Q2:MOSFET_P;Fairchild;BSS84;MOSFET P-CH 50V 130MA SOT-23

T1:MIX_IN_BALUN;Anaren;B0310J50100AHF;Ultra Low Profile 0805 Balun 50 to 100 ohm

Balanced

T2:MIX_OUT_BALUN;Anaren;B0310J50100AHF;Ultra Low Profile 0805 Balun 50 to 100 ohm

Balanced

T3:RX_BALUN;Johanson Technology;2500BL14M100T;BALUN CERAMIC CHIP WIMAX 2.5GHZ

T4:TX_BALUN;Johanson Technology;2500BL14M100T;BALUN CERAMIC CHIP WIMAX 2.5GHZ

X1:GSG-XTAL4PIN;AVX;CX3225GB25000D0HEQZ1;CRYSTAL 25.000MHZ 8PF SMD

X2:MCU_XTAL;TXC;7V-12.000MAAE-T;CRYSTAL 12.000 MHZ 12PF SMD

With a lot of: capacitors, resistors, inductors, ports with jumpers

127

B.6 Extra file

 LPCXpresso Flash Debug Tutorial(pdf file)14

This pdf file contains the following points:

 Hardware required:
o NXP LPC-Link board included with any LPCXPRESSO Board
o LPC43xx board

 Software required:
o LPCXpresso v4.2.3 build 292

 Starting LPCXpresso IDE

 Create a project

 Flashing ".bin" or ".elf" in SPIFI flash memory

 Debugger configuration

 LPCXpresso Flash Debug Tutorial(pdf file)15

This file contains the following folders:

Blinky

Blinky_rom_to_ram

Common

Cpld

Cpldjtagprog

Cpldjtagprog_rom_to_ram

Hackrf_usb

Hackrf_usb_rom_to_ram

Mixertx

sgpio

sgpio_passthrough_rom_to_ram

sgpio_rx

simpletx

spiflash

startup

startup_systick

startup_systick_perfo

startup_systick_perfo_rom_to_ram

14 ..\\6-ECS-SDR\5-Guide\HackRF\doc\LPCXpresso_Flash_Debug_Tutorial.pdf
15 ..\\6-ECS-SDR\5-Guide\HackRF\firmware

128

With makefile and this readme note:
The primary firmware source code for USB HackRF devices is hackrf_usb. Most of the

other directories contain firmware source code for test and development. The common directory

contains source code shared by multiple HackRF firmware projects. The cpld directory contains

HDL source for the CPLD present on the Jawbreaker and Jellybean designs.

The firmware is set up for compilation with the GCC toolchain available here:

https://code.launchpad.net/gcc-arm-embedded

Required dependency:

https://github.com/mossmann/libopencm3

Another file named firmware-bin contain hackrf_usb_rom_to_ram.bin

B.7 Host build16

How to build host software on Windows:

Prerequisite for cygwin or mingw:

* cmake-2.8.10.2 or more see http://www.cmake.org/cmake/resources/software.html

* libusbx-1.0.14 or more see

http://sourceforge.net/projects/libusbx/files/latest/download?source=files

* Install Windows driver for HackRF hardware or use Zadig see

http://sourceforge.net/projects/libwdi/files/zadig

 - If you want to use Zadig select HackRF USB device and just install/replace

it with WinUSB driver.

* Build libhackrf before to build this library, see host/libhackrf/Readme.md.

For Cygwin:

cmake -G "Unix Makefiles" -DCMAKE_LEGACY_CYGWIN_WIN32=1 -

DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/

make

make install

For Mingw:

#normal version

cmake -G "MSYS Makefiles" -DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/

#debug version

cmake -G "MSYS Makefiles" -DCMAKE_BUILD_TYPE=Debug -

DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/

make

make install

16 ..\\6-ECS-SDR\5-Guide\HackRF\host\hackrf-tools

https://code.launchpad.net/gcc-arm-embedded
https://github.com/mossmann/libopencm3

129

Appendix C: Alternative System Designs

Fig. 5.1 A and B: System Overview

System Design of v2.0

GUI using I and Q

from WinRad

SCS-SMS

with W.T.

ran T-stick+

SDR platform

SCS-SMS

SCS-SMS

SCS-SMS

System Design of v1.0

GUI using I and Q

from Winrad

SCS-SMS

with ART

HackRF

SDR platform

SCS-SMS Amateur Radio

Transceiver

SCS-SMS Amateur Radio

Transceiver

SCS-SMS Amateur Radio

Transceiver

130

Literature

[HarckRF] …

http://en.wikibooks.org/wiki/Special:BookSources/0900612584

…

